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ON SOME PROPERTIES OF GENOMORPHISMS
OF C-ALGEBRAS

JANA MERVARTOVA, Brno
(Received February 16, 1981)

ABSTRACT

The genomorphism concept is a generalization of the homomorphism concept.
In this article some properties of genomorphisms of connected mono-unary
algebras are studied.

1. BASIC CONCEPTS

1.1. Notation.

(1) If A4 is a set, we denote by |4 | the cardinal number of A.

(2) Let A, B be nonempty sets and ¢ a mapping of A4 into B. Then we write
¢ : A — B and, further, we denote by id, the identity map of 4 onto 4.

(3) Ord denotes the class of all ordinal numbers. If « € Ord then we put W, =
= {f € Ord; § < a}. Finally, we denote by N the set of all finite ordinal numbers.

{4) Let o0, 00, 00, ¢ Ord. If M is an arbitrary set of ordinal numbers, then we
denote by =< the order relation on M U {o0,, w,} such that its restriction
< (M x M) to M is the natural order relation of ordinal numbers and that for
eachae Misa < 0; < ,. ‘

(5) Let p,ge N, p # 0, then p/q denotes that p is a divisor of gq.

(6) Let A, B be nonempty sets, ¢ a partial map from A4 into B. Let @ # C < A4,
@ # D = B. Then we put:

(a) dom ¢ = {xe 4;IyeB: o(x) = y},

-(b) ¢(C) = {9(x) € B; x e C n dom ¢},

(©) ¢~ (D) = {xedom ¢; ¢(x) € D}.
Further, we denote by ¢ |¢ the restriction of ¢ to C (i.e. the mapping of C n dom ¢
into B).

(7) Let A be a nonempty set, & is the family of n-ary partial operations «,
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“defined, for ne N, on a nonempty subset of 4". Then we denote by the ordered
pair (A4; &) a partial universal algebra. _

If® # M < A, then [M; o] denotes the subalgebra of (4; o) generated by M
(in usual sense). If M = {a,, ..., a,} for some ke N — {0}, we write [M; o]
as [ay, ..., q,; ]

1.2. Definition. Let 4 = (4; &), B = (B; 29 be partial universal algebras.
A mapping ¢ : A - B is said to be generative if for each a; € o of arity r;, > 0
and each (ay, ..., a,) € dom «; it holds that ¢(a,(a,, ..., a,)) € [o(a,), ..., ¢(a,); Z].
¢ is said to be congruential if for each «; € o of arity r; > 0 and each (a,, ..., a,),
(ay, ..., a,) edoma; with the property ¢(a;) = ¢(aj) for each 1 <j < r; it
follows '

o(aay, ..., a,‘)) = (P(ai(all.’ ey a;i))'

@ is said to be a genomorphism, if it is both generative and congruential.

1.3. Lemma. Let A = (A4; ), B = (B; &) be partial universal algebras, ¢ : A —
— B be generative, 8 # S < A. Then o([S; &) = [¢(S); #].
Proof see [1], paragraph 2, lemma 2.

2. UNARY ALGEBRAS

2.1. Definition. Let 4 be a nonempty set, f a partial map from 4 into 4. Then
the ordered pair (4;f) = A is called a mono-unary algebra.

2.2. Definition. Let (4;f) be a mono-unary algebra. We put f° = id,. Suppose
that we have defined a partial map /"' from 4 into 4 for ne N — {0}. We denote
by f" the following partial map from A4 into 4: if xedom "~ ! and f"~(x) e domf
then we put f*(x) = f(f*~ ' (x)).

2.3. Lemma. Let (A;f) be a mono-unary algebra. Then the following assertions
hold:

(@ If ne N - {0}, xedomf™, then xedomf™ for each me{0,...,n} and
S™(x) e dom f for each me {0, ..., n — 1}.

(b) Letne N, x€ A be arbitrary. Then x € dom f", if and only if fP(x) e dom f4~?
Sforeachp,qe N,O s p =<q=<n

() If m,neN, xedomf™, f™(x)edomf", then xedomjfm*r fm+n(x) =
= f*(f™(x)), x e dom f", f"(x) e dom f™ and f"(f"(x)) = f"(f™(x)).

Proof see [2], 1.6.

2.4. Definition. Let (4;f) be a mono-unary algebra and let x € 4 be arbitrary.
Then we define [x] 4, ;) = {f"(x); xedomf", ne N}.

2.5. Remark. From 1.1. (7), 2.1. and 2.4. it follows immediately that [x;f] =
= ([*x]cu. 1)s f ltx1ca. ») fOT €aCh x € A.
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2.6. Definition. Let (4;f) be a mono-unary algebra, For arbitrary x, ye,4
we put (x, y) € o(4,f), if and only if there are m, ne N such that x e dom f™
yedomf" and f™(x) = f"(y). If o(4,f) = Ax A, then (4, f) is called a connected
unary algebra and we denote it briefly a c-algebra.

2.7. Definition. Let (4;f) be a c-algebra and x € 4 be arbitrary. Then we define
Z(x) = {y € A; there is an infinite set N(y) = N such that x e dom f" and f"(x) = y
for each n € N(y)}. Now we put Z(4, f) = Z(x), where x € A is an arbitrary element,
R(4,f) = 12(4,1) 1.

Remark. The definition 2.7. is correct — see [2], 2.5. and 2.6.

2.8. Lemma. Let (A;f) be a c-algebra and Z(A,f) # 9. If x € A is arbitrary,
then x e dom f" for each ne N and Z(A, f) € [x]4, -

Proof. By 2.7. R(4, f) # 0. Suppose first that x € Z(4, f). Then x = f*-R4:f)(x)
for each k € N by [2], 2.12.(a). From 2.3.(a) it follows that x € dom f" for each
neN.Now,let A — Z(A,f) # Dand x € A — Z(A, f) be arbitrary. If x, € Z(4, f)
is arbitrary, then there are m, n € N such that x e dom f™, x, € dom f" and f™(x) =
= f"(x,) by 2.6., and we obtain x € dom f" for each n € N by 2.3.(a). We put n, =
= min {n € N; xo € dom f" and f"(x,) = f™(x)}. Clearly ny, £ R(4, f) and f™(x,) €
€ Z(A,f) by [2], 2.10. and 2.11.(a), which implies x, = fR4)(x,) =
= FRAD IO = fRUDI(I(xy)) = fRADTI(fM(x)) = fRADR0IR(x)
by the above, 2.3.(b), (c) and [2], 2.11.(a). Thus, x, € [x]4, ) by 2.4.

29. Lemma. Let (4;f) be a c-algebra, A — Z(A,f) # 0, xe A — Z(A,f)
arbitrary. If x'€[x]4,5) and x€[xJ4, sy for some x'€ A, then x = x'.

Proof. By 2.4. there are k, /€ N such that x e dom f*, x' e dom f', x' = f*(x)
and x = f(x'). Thus, x = fi(x') = fI(f*(x)) = f'**(x) by 2.3.(b), (¢). If I + k>0,
then x e Z(4,f) by [2], 2.8.(a) which is a contradiction. Therefore / + k =0
and x = x' by 2.2.

2.10. Definition. Let (A;f) be a c-algebra. We put A® = {x € A4; there is
a sequence (x;);y such that x; e dom f for each ie N — {0}, x, = x and f(x;+,) =
= x; for each ie N}, A° = {x e 4; f~!(x) = 8}. Let a € Ord, a > 0 and suppose
that the sets A4* have been defined for all xe W,. Then we put A* =
={xed- | 451 'x)c |J 4%}

xeWq xeWe

2.11. Lemma. Let (A;f) be a c-algebra, A” # 0 and x € A® be arbitrary. Then

@ [x)a, 5y S 4>,

(®) If (x)ien is such a sequence that x,€ dom f for each ie N — {0}, xo = %
and f(x;4,) = x, for each i € N, then (x)ien € A®.

Proof. .

(a) Since (4%;f|,0) is a subalgebra of (4;f) by [2], 2.15.(a), f(x) € A for
cach ne N with the property x € dom ™ by 2.5., thus, by 2.4., [x]ia. ;) S 4”-
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(b) Let (x));.y be an arbitrary sequence having required properties (its existence
follows from 2.10.).

Now, xo = x€ A® by the assumption. Let ne N — {0} be arbitrary. We put
%o = X,, %; = x,,, for each je N. By the assumption, ¥; = X;4,€ domJ and
J&Eivy) = f(Xi4140) = X34 = X%; for each i e N which implies x,€ A® by 2.10

2.12. Remark. By [2], 2.15.(b), Z(4,f) < A® for A® # 0.

2.13. Definition. Let (4;f) be a c-algebra. Then we put A®! = A® — Z(4,f),
A®* = Z(A,f).

Notation. Let (4;f) be a c-algebra. Then we put 3(4,f) = min {3 € Ord;
= #}. Note that the number S(A f) have been defined correctly —see [2],
2 18. and 2.19.

2.14. Theorem. Let (A;f) be a c-algebra, then A = U A* with
xeWaca;0) U {01,032}
disjoint terms.

Proof see [2], 2.22.

2.15. Definition. Let (4;f) be a c-algebra. We define a map S(4,f) : 4 -
= Ord v {00, 0,} by the condition S(4, f) (x) = x foreach x € 4%, x € Wy, 7V
U {00,, 00,}. S(4,f) (x) is called the degree of x.

Notation. Let (4;f) be a c-algebra, xe A — A° arbitrary. If aeOrd U
v {0,, ©,} and S(4,f) (x') < a (or £ or > or 2) for each x’ e f~*(x), then
we write S(4,f) (f "'(x)) <« (or £ or > or = respectively).

2.16. Lemma. Let (A; f) be a c-algebra, o. € Ord, x € A — A®. Then the following
assertions hold:

(@) S(4,f) (x) = a if and only if a < S(A,f) (x) and S(4,f) (f " 1(%)) < a.

®) If S(4,1) (f7'(¥) < a, then S(4,f) (x) < a.

Proof see [2], 2.25.(a), ().

2.17. Lemma. Let (A; f) beac-algebra,x, € A — A® andlet x, € [x,]4, sy — {%1}
be arbitrary. Then S(A,f) (x;) < S(4,1) (x,).

Proof. By 2.4. there exists n€ N, by 2.2. and by the assumption n # 0, with
the property x, edomf™ and f"(x,) = x,. Since S(4,f) (x,) € Wy.5y S Ord
by 2.13. and 2.14., we have S(4,f) (x;) = S(4,1) (f"(x)) = S(4, /) (x) + n >
> S(4, 1) (x,) by [2], 2.26.(a). ,

3. GENOMORPHISMS OF C-ALGEBRAS

. 3.1, Notation. Let 4 = (4;f), B = (B; g) be mono-unary algebras. 'Tllen we
denote by G(A4, B) the set of all genomorphisms of 4 into B.
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3.2. Lemma. Letr A = (4;f), B = (B;g) be mono-unary algebras. Then o€
€ G(A, B) if and only if

1. for each x € dom f ¢(f(x)) € [@(x); g] holds,

2. o(f(x)) = o(f(x") for each x, x' € dom f having the property ¢(x) = o(x).

Proof. This assertion follows immediately from 1.2. and 2.1.

3.3. Definition. Let (4;f) be a mono-unary algebra, x € A arbitrary, Then
we put C(x) = {x' € 4; x’ e dom f* and f*(x') = x} for each k € N and Clx) =
= U Ci(x).

keN

3.4. Lemma. Let A = (4;f), B = (B; g) be c-algebras, ¢ € G(A, B) and x ¢ 4
such that thereis ko € N — {0} with the property o(f*°(x)) = @(x). Then the following
assertions hold:

@ o(f™(x)) = e(f™**(x)) for each m € N such that x € dom f™*ko,

®) o(f"(x)) = o(f"*"(x)) for each me N and ne N — {0} such that x e
€ domfm +nko,

(©) if ko = 1. then o([x; f1) = 9(x).

Proof.

(a) By the assumption, the assertion holds for m = 0 by 2.2. Now, let the
assertion hold for some me N with the property xedomf™*1*k Tpen
(f"*1(x)) = e(f(f"(x))) by 2.3.(b), (c), (@), @/ (f™(0)) = @(F(f™**(x))) by 3.2.
and the induction hypothesis and @(f(f™**(x))) = o(f™****(x)) by 2.3.(c).

(b) Let m € N be arbitrary such that x € dom f™*¥_Then x € dom /™ by 2.3.(a)
and @(f™(x)) = o(f™**(x)) by (a). Let the assertion hold for some ne N — {0}
such that xedomjfm*®*+Dk  Then, by 2.3.(a), xedomf™ and o(f™(x)) =
= @(f™*"™°(x)) by the induction hypothesis. Further, from 2.3.(a) and (a) it
follows ¢(fm+nko(x)) = (p(f(m+nko)+ko(x)) _ (p(f"'*("“)"°(x)).

(c) By 2.5. it is sufficient to prove that @(x) = ¢(f*(x)) for each ke N such .
that x e dom f*. This holds for k¥ = 1 by the assumption. Let the assertion hold
for some k € N — {0} with the property x € dom f**!. Then x € dom f*** apd
we obtain ¢(x) = ¢(f*(x)) = e(f***(x)) = ¢(f**!(x)) by (a) and the induction
hypothesis.

3.5. Lemma. >Let A = (4;f), B = (B; g) be c-algebras and ¢ € G(A, B). Then the
Jollowing assertions hold:

(@) If x € A is an arbitrary element, then ¢(C(x)) = C(@(x)).

(b) Let xy€[x,]a, 5y — {x1} and @(x,) = @(x;) ¢ Z(B, g). Then o([x,;f]) =
= ¢(x,). ‘ )

(¢) If Z(A,f) # 9 and for some x € Z(A,[f) ¢(x) ¢ Z(B, g), then ¢(Z(4,f)) =
= o(x).

Proof.

(a) Let x’ € C(x) be arbitrary. By 3.3., there exists k € N such that x’ € dom f*.
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and f*(x') = x which implies x € [x’; /] by 2.5. From 3.2. and 1.3. it follows that
o(x) € [p(x"); g], thus, by 2.5., there is /e N havmg the property g'(p(x')) = o(x).
Hence, ¢(x) € C(¢(x)) by 3.3.

(b) By the assumption and 2.4. there exists k€ N — {0} with the property
x, edom f* and f*(x,) = x,. Itis sufficient to prove that ¢(x,) = ¢(f(x,)) because
this implies ¢([x;;/]) = ¢(x,) by 3.4.(c). Indeed, x, € [ f(x,);f] by 2.5. because
x5 # x; and o(f(x,)) € [p(x,); g] by 3.2. Further, from 3.2. and 1.3. it follows
o(x,) = o(x,) € [e(f(x,)); g], thus, by 2.5. and 2.9., ¢(x;) = ¢(f(x,)).

(c) If R(A,f) = 1, then the assertion follows directly from 2.7. Let R(A4,f) > 1
and x' € Z(4,f) — {x} be arbitrary. From 2.5., 2.8. and [2], 2.10. it follows that
[x';f] = [x;f] = Z(4,f). Hence, x € [x"; f] and x" € [x; f] and o(x) € [o(x); g],
o(x)e[o(x); g] by 3.2. and 1.3. which implies @(x) = @(x') by 2.5. and 2.9.
Therefore, ¢(Z(4, f)) = ¢(x).

3.6. Lemma. Let A = (A;f), B = (B; g) be c-algebras such that R(B, g) # 0,
and let ¢ € G(A, B). Let x € A be such that there exists x' € [x]4, sy — {x} with
the property ¢(x) = @(x') € Z(B, g). Then there is e N — {0} such that ¢(x') =
= o(f'(x")) for each x'€[x]4, s, and such that | # | implies that @(x'), ...,
e, @(f'"Nx")) are mutually distinct for each x'e€[x], s, and I/R(A,f) for
R(A,f) # 0. _

Proof. By 2.4. there is k€ N — {0} such that x edomf* and f*(x) = x'.
From 2.5., [2], 2.10.; 3.2. and 1.3. it follows that ¢([x;f]) < Z(B, g). Let us
consider / = min {ke N — {0}; o(f¥(x)) = @(x)} (its existence is evident). We
show that / have all required properties:

1. From 3.4.(a) it follows that ¢(f™(x)) = ¢(f™*!(x)) for each m e N with the
property x € dom f™*! which implies that ¢(x") = @(f'(x)) for each x’ € [x] 4, )
by 2.4. and 2.3.(b), (c). Further, if / = 1, then for R(4,f) # 0 I/R(4, f) trivially.

2. Let/ > 1.

(a) From the minimality of / it follows that ¢(x) # o(f*(x)) for each ke
ef{l, ...l -1}

b) Further, let us admit that there are i,je N, 1 Si <j </ —1, such that
o(fi(x)) = @(fi(x)). Hence o(f'(x)) = o(fi(x)) = ¢(f' (f i(x))) by 2.3.(b), (¢)
and @(f"*i(x)) = (M"(f'(x) = o(f"*I™(f(x))) = ¢(f""/(x)) for each me N
with the property that xedomf™*/ by 2.3.(b), (c) and 3.4.(a) which implies,
for m = k such that [ =j + k, that o(f**i(x)) = o(f**(x)) = o(f(x)) = o(x)
where x € dom f'** by 2.3.(a). Since k € N — {0} (becausej <l)and 1 £ i + k <
<j+ k =1 by the assumption, o(f**i(x)) = ¢(x) is a contradiction to (a).
Therefore, ¢(x), ..., @(f'~'(x)) are mutually distinct elements of Z(B, g).

(c) Now, we prove that for each me N sych that x € dom f™+! o(f"(x)), ...

> @(fm+!1-1(x)) are mutually distinct: by (b), this assertion holds for m = 0
Let meN be such that @(f"(x), ..., p(f™+1~1(x)) are mutually distinct and
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x € dom fm+l' Then {(P(fm+1(x)), ) (P(f(m+l)+l-2(x))’ (p(f(m+l)+l—!(x))} =
= (P00, ey U™, D)} = (U, ey G(FTTAH),
o(f™(x))} with the mutually distinct elements by 1., 2.3.(c) and the induction
hypothesis. However, from 2.3.(b), (c) and 2.4. it follows that ¢(x'), ..., o(f*~(x"))
are mutually distinct for each x' € [x] 4, f)-

(d) Let R(A4,f) # 0 and x’ € Z(A, f) be arbitrary. Clearly / £ R(4, f). (See (c)
and [2], 2.11.(a)). If I = R(A4,f), then I/R(A,f) trivially. Let I < R(4,f) and
suppose on the contrary that [YR(A, f). Then there are i,je€ N — {0}, j < such
that R(4, f) = il + j. Now, from 1., 2.3.(b), (c), 3.4.(b) and [2], 2.11.(a) it follows
that o(x') = o(f*“(x)) = o(f"*(x) = @(f(f1(x)) = @(f/(x") which is
a contradiction to (c) by 2.8. Thus, //R(4, f).

3.7. Lemma. Let A = (A,f), B = (B; g) be c-algebras, A* # ® and ¢ € G(4, B).
Then the following assertions hold:

(a) If there is a sequence (x;);cxy S A% such that x; € dom f for each ie N — {0},
f(xi1,) = x; for eachie N and if | ¢((x;)icn) | > 1, then B® # 0 and (p(x)icn S
< B*.

(b) If there exists x € A® with the property ¢(x) ¢ B®, then p(A®) = @(x).

(©) If | o(A®) | > 1, then ¢(4A®) = B™.

Proof.

(a) By 2.5., x; € | x;,;f] for each i e N which implies ¢(x;) € [@(x;4+4); g] for
each i e N by 3.2. and 1.3., thus for each i € N there is /; € N such that ¢(x;,,) €
e dom g' and ¢(x;) = g"(¢(x;4,)). By the assumption, there are i,, i, € N, i} # i,
such that ¢(x;) # ¢(x;,). Let, for example, i; < i,. Then x;, € [x;,])ca,5y — {¥i,}
by 2.3.(b) and 2.4. and there exists ie N, i; < i < i, — 1 such that /; # 0. We
put ny = min {i e N; I; # 0}. Then, for'n, # 0, ], = 0 for each k € {0, ..., ny — 1}
by the above, i.e. ¢(x) = ¢(x,) for each k€ {0, ..., ny}, and J, # O for each
k = ny: suppose on the contrary that there is je N, j = n,, with the property
l; = 0. Since I,, # 0, then j > ny. By the above and 2.2. ¢(f(x;+,)) = ¢(x;) =
= glj((p(xj+l)) = g%p(xj+1)) = ¢(x;4,) which implies @([x;+1;f]) = 0(x;41)
by 3.4.(c), thus /, = 0 for each ke N, k < j, by 2.2. and 2.5. Hence /,, = 0 which
is a contradiction. Now, we may put y = y,, mo =0, m; = m;_, + [, 4;—, for
each ie N — {0} and @(x,,+)) = Vm, for each i€ N, Vp,—r = &(ym,) for each
ke{l,...,l,,+i-,} and each i € N — {0} in virtue of 2.3.(a), (b). From 2.3.(a), (b)
and the above it follows that y,e dom g for each i e N — {0}. Further, if je N
is arbitrary, then there is i € N such that j = m; — k for some ke {1, ..., [, 4;-1}
and we obtain y; = yu,—ix = 8Om) = &' m)) = E0m-k+1) = 8j+1) by
2.3.(a), (c). Thus, y; = g(y;4+,) for each ie N. From the above it follows that
@(xo) = @(x,,) = yo = y € B®, hence B® # §. Finally, (¢(x)))icy € (V)ien S B®
by 2.11.(b).

(b) Let x e A with the property @(x) ¢ B® bé arbitrary but fixed and let us
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consider an arbitrary element x’ € 4 — {x}. By 2.6. there are m, n € N such that
xedom f™, x’' e domf" and f™(x) = f"(x'). We put f™(x) = f"(x') = X. By 2.4.,
xe[x)a, 5y X€[x']a,s) and by 2.11.(a) X A®. Further, there is a sequence
(X)ien S A® such that ¥ = %,, X;€dom f for each i € N — {0}, f(X;+,) = X, for each
ie N and x e {%;;ie N}. To prove it we take an arbitrary sequence (x;);ey S A®
such that x = x,, x;€dom f for each ie N — {0} and f(x;+) = x; for each i € N (its
existence follows from 2.10. and 2.11.(b)) and in virtue of 2.11(a) and 2.4. we put
X; = f™ Y(x) for each i € {0, ..., m} and X,,,; = x; for each i e N — {0}. Now, if
there is iy € N — {0} such that ¢(X,) # ¢(%,), then (¢(%));cy S B® by (a), thus
@(x) = @(x,) € B® which is a contradiction. Therefore, ¢((X;);cx) = @(¥;) Which
implies. (%) = (%) = @(x,) = @(x) ¢ B*. Similarly we can prove that ¢(x') =
= ¢(X) because, by the above, ¢(x)¢ B®. Thus, ¢(x) = ¢(X) = ¢(x'). Since x’
has been selected arbitrary, we have ¢(4°) = ¢(x).

(c) Suppose on the contrary that there is x € A such that ¢(x) ¢ B®. Then
o(A®) = ¢(x) by (b), thus | ¢(4®)| = 1 which is a contradiction. Therefore
o(A*) = B*.

3.8. Lemma. Let A = (A,f), B = (B, g) be c-algebras, ¢ € G(A, B). Then the
following assertions hold:

(@ If x, € [x1](4 s S(B.g) (9(x1)) = S(B, g) (¢(x2)) # oo, then ‘P(x1) = @(x,).

() If x, € [x,3f], then S(B, g) (¢(x,)) < S(B, g) (¢(x2)).

(c) Let x € A be such that S(4, f) (x) € Ord — {0} and S(4,f) (x) > S(B, g)(q)(x)).
Then there exists x' € f ~1(x) having the property ¢(x’) = ¢(x).

Proof.

(a) From 2.4., 3.2. and 1.3. it follows that ¢(x,) € [¢(x,)]5,q)- If @(x,) #
# ¢(x;), then S(B, g) (¢(x1)) # S(B,g) (¢(x;)) by the assumption, 2.14, 2.15,
and 2.17. which is a contradiction. Thus ¢(x,) = ¢@(x,).

(b) By 2.5. there is k € N such that x, edomf* and f*(x,) = x,. If k = 0.
then the assertion holds trivially. Let k € N — {0}. Then o(x;) € [¢(x,); g] by 3.2,
and 1.3. If S(B, g) (p(x,)) € {0,, 002} then the assertion follows from 2.5., 2.13.,
2.11.(a), 2.12. and [2], 2.10.

If S(B, g) (p(x,)) € Wy4, ), then the assertion follows from 2.5., 2.14., 2.15.
and [2], 2.26.(a).

(c) Let S(4,f) (x) = 1. Then S(B, g) (¢(x)) = 0 and, by 2.10, 2.15. and 3.5.(a),
o(x’) = ¢(x) for each x' € f ~!(x). Let S(4, f) (x) € Ord — {0, 1} and S(4, ) (x) >
> S(B, g) (¢(x)). We denote by « the ordinal number S(4, f) (x). Suppose that the
assertion holds for each x’' € 4 with the property S(4,f) (x') < a. By 2.16.(a),
S(4,/) (f'(x)) < a. Assume first that there is x'€f~'(x) with the property
- 8(A4,f) (x") > S(B, g) (p(x')). Now, the induction hypothesis implies that there
exists xo € f~!(x’) with the property o(xo) = @(x'), thus @([xo;1]) = @(x,) =
= @(x’) by 3.4.(c). Hence @(x) = o(f%(x,)) = @(x") by 2.5. and 2.3.(c). Let
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S(A4, f) (x') < S(B, g) (p(x")) for each x'ef~'(x). By (b) and 2.5. we obtain
S(B, g) (p(x")) < S(B, g) (¢(x)) for each xe £~ (x). If there exists x'e f~!(x) such
that S(B, g) (¢(x)) = S(B, g) (¢(x"), then o(x) = @(x’) by the assumption, (a) and
2.14. Finally we prove that S(B, g) (¢(x")) < S(B, g) (p(x)) for each x'ef~(x)
cannot occur: in this case, S(4,f)(x) > S(B,g) (¢(x)) > S(B, g) (¢p(x)) =
= S(4,f) (x") for each x’ef~'(x), thus S(4,f)(f'(x)) < S(B,g) (¢(x)) and
from 2.16.(b) it follows that S(4,f) (x) < S(B, g) (¢(x)) which is a contradiction
to the assumption that S(4, f) (x) > S(B, g) (¢(x)).

3.9. Lemma. Let A = (A;f), B = (B; g) be c-algebras, ¢ € G(A, B) and x € A be
such that S(4,f) (x) > S(B, 8) (¢(x)). Then o([x; f]) = ¢(x).

Proof. By 1.1.(4), 2.10., 2.13. and 2.15. the following cases can occur:

(1) S(B, &) (p(x)) = co,. Then S(4, f) (x) = ©, and the assertion follows from
2.5., 3.5.(c) and [2], 2.10.

(2) S(B, g) (¢(x)) € Ord.

(@) If S(4,f) (x) e {0, 00,}, then the assertion follows from 2.5., 2.8., 2.10.,
2.11.(a), 2.12., 2:13., 2.14., 3.7.(b) and from [2], 2.10., 2.15.(a).

(b) If S(4,f) (x) € Ord, then S(4,f) (x) # 0 by the assumption, from 3.8.(c)
it follows that there is x’ € f ~(x) with the property @(x) = ¢(x) and the assertion
follows from 3.4.(c).
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