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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XIX: 99—108,1983 

ON SOME PROPERTIES OF GENOMORPHISMS 
O F C-ALGEBRAS 

JANA MERVARTOVÁ, Brno 
(Received February 16,1981) 

ABSTRACT 

The genomorphism concept is a generalization of the homomorphism concept. 
In this article some properties of genomorphisms of connected mono-unary 
algebras are studied. 

1. BASIC CONCEPTS 

1.1. Notation. 
(1) If A is a set, we denote by \A | the cardinal number of A. 
(2) Let A, B be nonempty sets and cp a mapping of A into B. Then we write 

cp : A -+ B and, further, we denote by id^ the identity map of A onto A. 
(3) Ord denotes the class of all ordinal numbers. If a e Ord then we put Wa == 

= {P e Ord; p < a}. Finally, we denote by Nthe set of all finite ordinal numbers. 
(4) Let oo, oo j , oo2 $ Ord. If M is an arbitrary set of ordinal numbers, then we 

denote by _ the order relation on Mu{oo1 ,oo2} such that its restriction 
g n(MxM) to M is the natural order relation of ordinal numbers and that for 
each a e Mis a < ooj < oo2. 

(5) Let p, q e N, p ^ 0, then p/q denotes that p is a divisor of q. 
(6) Let A, B be nonempty sets, cp a partial map from A into B. Let 0 ^ C £ A, 

0 ^ D <= B. Then we put: 
(a) dom <p = {x e A; 3 y e i?: <p(x) = y}, 
(b) cp(C) = {(p(x) e B; xe C n dom cp}, 
(c) (p~x(D) = {xedom <p; <p(x) e D}. 

Further, we denote by cp | c the restriction of cp to C (i.e. the mapping of C n dom <p 
into B). 

(7) Let A be a nonempty set, si is the family of «-ary partial operations an 
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defined, for ne JV, on a nonempty subset of An. Then we denote by the ordered 
pair (A; s/) a partial universal algebra. 

If 0 # M £ y4, then [M; «s/] denotes the subalgebra of (A; sf) generated by M 
(in usual sense). If M = {ax, ..., ak) for some keN — {0}, we write [M; «sa/] 
as [flj, . . . ,a*; . j<] . 

1.2. Definition. Let A = (A; <a/), B ~ (B;0fy be partial universal algebras. 
A mapping cp : v4 -» J3 is said to be generative if for each af e si of arity r4 > 0 
and each (at, ..., ar.) e dom af it holds that ^(ajfaj, ..., ar,)) e [(K^i), ..., q>(ar); 3f\. 
<p is said to be congruential if for each af e ^ of arity rf > 0 and each (a t , ..., af |), 
(a'|, ..:, a r .)e domaj with the property (p(aj) = (p(aj) for each 1 ^ y ^ r , it 
follows 

9(«i(*i, ..., ar.)) = p(a,(a't, ..., a^)). 

<p is said to be a genomorphism, if it is both generative and congruential. 

1.3. Lemma. Let A = (A; s#), B = (B; 33) be partial universal algebras, <p : A ~+ 
-> B be generative, 0 # 5 s A. r/?e« (p([S; <<]) = [>(£); # ] . 

P roof see [1], paragraph 2, lemma 2. 

2. U N A R Y A L G E B R A S 

2.1. Definition. Let A be a nonempty set,fa partial map from A into A. Then 
the ordered pair (A;f) = A is called a mono-unary algebra. 

2.2. Definition. Let (A(;f) be a mono-unary algebra. We putf0 = idA. Suppose 
that we have defined a partial map f""1 from A into A for n e N ~ {0}. We denote 
byf" the following partial map from A into A: if xe domfn~l and fn~x(x) e domf 
then we putf"(x) ^ f(fn'\x)). 

2.3. Lemma. Let (A;f) be a mono-unary algebra. Then the following assertions 
hold: 

(a) If ne N •-- {0}, x e domf", then xe domfm for each m e {0, . . . ,«} aw/ 
fm(x) e domf for each m e {0, ..., n - 1}. 

(6) £e* ne N, XE A be arbitrary. Then x e domf", tfaw/ otf/y- if fp(x) e domfa"~p 

far eacA p,qe N,Q ^ p ^ q ^ n. 
(c) If m,neN, jcedomf1", fm(%) e domf", rhew x e d o m f w + n , fm+n(x) = 

= /"(/w(*)) , x6domfw ,fw(x)edomfm andfm(fn(x» =fn(fm(x)). 
P r o o f see [2], 1.6. 

2.4. Definition. Let (-4;f) be a mono-unary algebra and let x e A be arbitrary. 
Then we define [x ] ( i 4 t / ) = {fn(x); x e domf", n e N}. 

2.5. Remark. From 1.1. (7), 2.1. and 2.4. it follows immediately that [*; / ] = 

* ( H M , / ) ; / I C * U / ) ) f o r e a c h xeA-
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2.6. Definition. Let (AJ) be a mono-unary algebra. For arbitrary x,ye,A 
we put (x, y)eq(AJ), if and only if there are m,neN such that xedomf* 
y e domfn and/m(jc) =/w(y). If Q(AJ) = Ax A, then (AJ) is called a connected 
unary algebra and we denote it briefly a c-algebra. 

2.7. Definition. Let (A J) be a c-algebra and # € A be arbitrary. Then we define 
Z(x) = {>> e A; there is an infinite set N(y) £ N such that x e domfn and/"(jc) = >> 
for each n e N(y)}. Now we put Z(AJ) = Z(x), where x € A is an arbitrary element, 
R(AJ) = \Z(AJ)\. 

Remark. The definition 2.7. is correct — see [2], 2.5. and 2.6. 

2.8. Lemma. Let (A J) be a c-algebra and Z(AJ) # 0 . If xeA is arbitrary, 
then x e domfn for each n e N and Z(AJ) <= M(^,/>. 

Proof. By 2.7. R(AJ) *- 0. Suppose first that x eZ(A,f). Then x =/**(X ' '>(x) 
for each k e N by [2], 2A2.(a). From 2.3.(a) it follows that x e domfn for each 
neN. Now, let A - Z(AJ) ¥= 0 and x e A - Z(Af,/) be arbitrary. If x0 e Z(^, / ) 
is arbitrary, then there are m,neN such that x e dom/m, *0 e dom/" and/w(x) = 
= fn(x0) by 2.6., and we obtain x e domfn for each n e N by 2.3.(a). We put n0 = 
= min {n eN;x0e domfn and/n(x0) = fm(x)}. Clearly n0 <; 1*64,/) and/no(x0) e 
eZ(AJ) by [2], 2.10. and 2.11.(a), which implies x0 = fR(A'f)(x0) = 

by the above, 2.3.(b), (c) and [2], 2.11.(a). Thus, x0 e [ x ] M i / ) by 2.4. 

2.9. Lemma. Let (A J) be a c-algebra, A - Z(AJ) # 0 , xeA- Z(AJ) 
arbitrary. If x' e [x~](Atf) and xe[x'2(Alf) for some x'e A, then x = *'. 

Proof. By 2.4. there are k,leN such that x e domfk, xf edomf1, xf = /*(*) 
and x = fl(x'). Thus, x = fl(x') = f(f\x)) = / ,+*(x) by 2.3.(b), (c). If / + k > 0, 
then xeZ(AJ) by [2], 2.8.(a) which is a contradiction. Therefore i f + k = - 0 
and x = x' by 2.2. 

2.10. Definition. Let (^; / ) be a c-algebra. We put A°° = {.X6^; there is 
a sequence (x()i€W such that xt e domf for each i e N — {0}, x0 = x and/(x i +i) = 
= Xi for each ie N}, -4° = {* e ^ ; / * ^ = 0}. Let a 6 Ord, a > 0 and suppose 
that the sets A* have been defined for all xeWa. Then we put A* = 
= {xe^~ U ^ r ' W s (J A^}. 

**Wm xeWm 

2.11. Lemma. Let (AJ) be a c-algebra, Am # 0 and xeA™ be arbitrary. Then 
(«) Mud ) ^ A", 
(b) If(Xi)i€N is such a sequence that xt edomf for each i € N — {0}, Xo ** x 

andf(x^x) = Xifor each i e N9 then (xt)ieN £ .4°°; 
Proof. 
(a) Since O*00;/!^) is a subalgebra of (A;f) by [2], 2 J 1(a),/"(*)€;* for 

each « e N with the property * e dott/» by 2.5., thufc, by 2.4., t * ] U t / , £ v*°°. 
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(b) Let (xt)ieN be an arbitrary sequence having required properties (its existence 
follows from 2.10.). 

Now, x0 = x e A™ by the assumption. Let n e N - {0} be arbitrary. We put 
x0 = xn9 Xj = xn+J for each jeN. By the assumption, Xi =-= x i + B edom/ and 
f(xt+i) -f(Xi^i+n) = xn+i =-= ** for each /eiV which implies xneA(X> by 2.10 

2.12. Remark. By [2], 2.15.(b), Z(A9f) c ^°° for A00 ^ 0. 

2.13. Definition. Let (A;f) be a c-algebra. Then we put A™1 = A™ - Z(A9f)9 

A™> = ZC4,/). 

Notation. Let (A[;/) be a c-algebra. Then we put 9(A9f) == min{9eOrd; 
A^ = $}. Note that the number 9(A9f) have been defined correctly —see [2], 
2.18. and 2.19. 

2.14. Theorem. Let (A;f) be a c-algebra, then A = (J A* with 

disjoint terms. 
Proof see [2], 2.22. 

2.15. Definition. Let (A;f) be a c-algebra. We define a map S(A9f) : A -> 
-• Ord u {oox, oo2} by the condition S(A9f) (x) = x for each x e A*9 x e WHAtf) u 
u {oOi, oo2}. S(A9f) (x) is called the degree of x. 

Notation. Let (A;f) be a c-algebra, xeA—A0 arbitrary. If a e O r d u 
u {aoj, oo2} and S(A9f)(x') < a (or ^ or > or ^ ) for each x' ef~*(x)9 then 
we write S(A9f)(f"

i(x)) < a (or <* or > or ;> respectively). 

2.16. Lemma. £et (.4;/) be a c-algebra, a 6 Ord, xe A — A00. Then the following 
assertions hold: 

(a) S(A9f) (x) =-= a if and only ifa£ S(A9f) (x) and S(A9f) (f^l(x)) < a. 
(b) If S(A9f) (f~ l(x)) < a, then S(A9f) (x) £ a. 
Proofsee[2],2.25.(a), (c). 

2.17. Lemma. Let (A;f)bea c-algebra, XXGA - A00 and let x2 e [ x j ( x , / } - {xx} 
be arbitrary. Then S(A9f) (xx) < S(A9f) (x2). 

Proof. By 2.4. there exists n e N9 by 2.2. and by the assumption » ? - 0 , with 
the property xx edom/* and ftt(xx) = x2. Since S(A9f) (xx) e WHA§n S Ord 
by 2.13. and 2.14., we have S(A9f)(x2) = S(A9f)(f

n(xx)) « S(Atf)(xl) + * > 
> ^ , / ) ( x 1 ) b y [ 2 ] , 2 . 2 6 . ( a ) . 

3. G E N O M O R P H I S M S OF C-ALGEBRAS 

3.1. Notation, Let A. = (A;f)9 JT=-- (B; g) be mono-unary algebras. TTien we 
denote by G ^ B) the set of all genomorphisms of A into A 
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3.2. Lemma. Lei A = (A;f)9 B = (B; g) be mono-unary algebras. Then m€ 

eG(/l,l?)ifandonlyif 
1. for each x e domf <p(f(x)) e {(p(x); g] holds, 
2. (p(f(x)) = (p(f(xf)) for each x9 x' e domf having the property cp(x) =* ̂ / ,\ 
Proof. This assertion follows immediately from 1.2. and 2.1. 

3.3. Definition. Let (A;f) be a mono-unary algebra, xeA arbitrary. Then 
we put Ck(x) = {x' e A; x' e domf* andf*(x') = x} for each k e N and C(x) = 
= U Ck(x). 

keN 

3.4. Lemma. Let A = (A;f)9 B = (B; g) be c-algebras, q> e G(A9 B) and xeA 
such that there is k0eN - {0} with the property (p(fko(x)) = <p(x). Then the following 
assertions hold: 

(a) <p(fm(x)) = (p(fm+k0(x)) for each meN such that x e domfm+*°, 
(b) cp(fm(x)) = cp(fm+nk0(x)) for each meN and neN- {0} such that Xe 

edomfm+nko, 
(c) ifk0 = 1, then <p([x;f]) = <p(x). 
Proof. 
(a) By the assumption, the assertion holds for m = 0 by 2.2. Now, let the 

assertion hold for some meN with the property xedomfm + x+k<>. Then 
<p(fm + 1(x)) = <p(f(fm(x))) by Z3.(b), (c), (a), cp(f(fm(x))) = ^(f(fm+*0(x)))*by 3.2. 
and the induction hypothesis and <p(f(fm+ko(x))) = q>(fm+1+ko(x)) by 2.3.(c). 

(b) Let m e N be arbitrary such that x e domfm+*°. Then x e domfm by 2.3.(a) 
and (p(fm(x)) = q>(fm+k0(x)) by (a). Let the assertion hold for some n e J V - {0} 
such that x€domfm+(n+1)*0. Then, by 2.3.(a), xedomfm and <p(fm(x)) = 
= q>(fm+nk0(x)) by the induction hypothesis. Further, from 2.3.(a) and (a) it 
follows q>(fm+nk0(x)) = <p(f<m+nk0)+k0(x)) = (p(fm+<n+i*°(x)). 

(c) By 2.5. it is sufficient to prove that <p(x) = <p(fk(x)) for each keN such 
that x e domfk. This holds for k = 1 by the assumption. Let the assertion hold 
for some keN - {0} with the property xedom f*+ I . Then xedomf*+*° and 
we obtain <p(x) = <p(fk(x)) = (p(fk+k0(x)) = <p(fk+1(x)) by (a) and the induction 
hypothesis. 

3.5. Lemma. Let A = (A ;f), B = (B; g) be c-algebras and <p e G(A9 B). Then the 
following assertions hold: 

(a) If xeA is an arbitrary element, then <p(C(x)) c C(<p(x)). 
(b) Let x2 e [x-.]^,) - {xx} and (p(xt) = <p(x2)$ Z(B9g). Then 9([xx;f\) =-= 

= ? ^ i ) . 
(£) If Z(A9f) * 0 and for some xeZ(A,f) <p(x) # Z(B9 g)9 then q>(Z(A,f))** 

= <p(x). 
Proof. 
(a) Let x' e C(x) be arbitrary. By 3.3., there exists keN such that x'edomf* 
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and/*(*') = * which implies x e [x'J] by 2.5. From 3.2. and 1.3. it follows that 
(p(x) e [<p(x'); g], thus, by 2.5., there is le Nhaving the property gl((p(x')) = cp(x). 
Hence, <p(xf) e C(cp(x)) by 3.3. ^ 

(b) By the assumption and 2.4. there exists k e N - {0} with the property 
xt e dom/* and/*(xj) = x2. It is sufficient to prove that (p(xt) = (p(f(xx)) because 
this implies <p([xt;f]) = (p(xx) by 3.4.(c). Indeed, x2 e [f(xt);f] by 2.5. because 
x2 ?- Xj and <p(f(xi))e[<p(xx);g] by 3.2. Further, from 3.2. and 1.3. it follows 
q>(xt) = <p(x2)e [(p(f(xt));g], thus, by 2.5. and 2.9., <p(xx) = (p(f(xx)). 

(c) If i?(.4,/) = 1, then the assertion follows directly from 2.7. Let R(AJ) > 1 
and x' e Z(AJ) - {x} be arbitrary. From 2.5., 2.8. and [2], 2.10. it follows that 
[x'J} = [xj] = Z(AJ). Hence, x e [x'J] and x' e [xj] and cp(x) e [cp(x'); g], 
cp(x') e [(p(x);g] by 3.2. and 1.3. which implies (p(x) = q>(x') by 2.5. and 2.9. 
Therefore, <p(Z(AJ)) = cp(x). 

3.6. Lemma. Let A = (A J), B = (B;g) be c-algebras such that R(B, g) ^ 0, 
and let cp e G(A,B). Let xe A be such that there exists x' e [x](Atf) — {x} with 
the property q>(x) = (p(x') e Z(B,g). Then there is le N — {0} such that (p(x') = 
= cp(fl(x')) for each x' e[x](Ayf) and such that I T~= 1 implies that (p(x'), ..., 
...- ^(/'"*(*')) are mutually distinct for each x'e[x](Atf) and ljR(AJ) for 
R(AJ)*0. 

Proof. By 2.4. there is k e N - {0} such that xedomfk and fk(x) = x'. 
From 2.5., [2], 2.10.; 3.2. and 1.3. it follows that cp([x;f]) c Z(B,g). Let us 
consider / = m i n { k e N - {0}; <p(f\x)) = q>(x)} (its existence is evident). We 
show that / have all required properties: 

1. From 3.4.(a) it follows that <p(fm(x)) = (p(fm + l(x)) for each m e N with the 
property x e domfm+l which implies that cp(x') = cp(fl(x')) for each x' e [x](A,f) 
by 2.4. and 2.3.(b), (c). Further, if / = 1, then for R(AJ) * 0 l\R(AJ) trivially. 

2. Let / > 1. 
(a) From the minimality of / it follows that (p(x) ¥= (pjk(x)) for each ke 

e { l , . . . , / - 1}. 
b) Further, let us admit that there are ij eN, 1 S i <j S / - h such that 

(p(fXx)) = <p(fJ(x)). Hence <p(fl(x)) = <p(fJ(x)) = (ptf'KfKx))) by 2.3.(b), (c) 
and q>(fm+i(x)) = cp(fm(f(x))) = ^ ( r + ^ W * ) ) ) = ^(/m+iW) f o r e a c h ™ e # 
with the property that x e d o m / m + i by 2.3.(b), (c) and 3.4.(a) which implies, 
for m = k such that / =f -F k, that cp(fk+i(x)) = (p(fk+J(x)) = <?(/'(*)) = <K*) 
where x e domfi+k by 2.3.(a). Since k e N - {0} (because j < /) and 1 = i + k < 
<J -F fc = / by the assumption, <p(fk+i(x)) = <p(x) is a contradiction to (a). 
Therefore, <p(x), ..., (p(fl~x(x)) are mutually distinct elements of Z(B,g). 

(c) Now, we prove that for each meN such that xedomfm+l (p(fm(x)\ ..., 
*••, <p(/*,+i~1(*)) are mutually distinct: by (b), this assertion holds for m = 0. 
Let m e N be such that <p(fm(x)), ...,cp(f«+i-i(x)) a r e mutually distinct and 
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xedomfm+l. Then {(p(fm+i(x))9 ..., <p(fm+»+l-2(x))9 <K/ ( w + 1 ) + l~'(*))} = 
= {<p(fm+i(x)9 ..., (p(fm"l^(x)), (P(fm+,(x))} = {cp(fm+t(x))9 ..., <p(fm+l~l(x))9 

(p(fm(x))} with the mutually distinct elements by 1., 2.3.(c) and the induction 
hypothesis. However, from 2.3.(b), (c) and 2.4. it follows that <p(x')9 ..., <p(flmml(x')) 
are mutually distinct for each x' e [ x ] M > / ) . 

(d) Let R(A9f) ¥= 0 and x' e Z(A9f) be arbitrary. Clearly / S R(AJ)* (See (c) 
and [2], 2.11.(a)). If / = R(A,f), then l/R(A,f) trivially. Let / < R(A9f) and 
suppose on the contrary that l)(R(A,f). Then there are i,je N — {0}, j < I such 
that R(A,f) = il + j . Now, from 1., 2.3.(b), (c), 3.4.(b) and [2], 2AL(a) it follows 
that q>(x') = <p(fR(A>f)(x')) = cp(fil+j(x')) = cp(fil(fj(x'))) = ? ( / V ) ) w h i c h i s 

a contradiction to (c) by 2.8. Thus, l\R(A9f). 

3.7. Lemma. Let A = (A9f), B = (B; g) be c-algebras, A00 ^ 0 and (p e G(A, B). 
Then the following assertions hold: 
(a) If there is a sequence (Xi)ieN != A!00 such that xt e domffor each ie N — {0}, 

f(xi + 1) = xt for each i eNandif \ <p((Xi)ieN) | > 1, fhe/2 J5°° ?- 0 and((p(xt))iGN s 
£ B°°. 

(6) If there exists xeA* with the property (p(x) # 500 , then <p(^°°) = <?(*)• 
(c) I/| ^(A00) | > 1, then cp(A«>) £ 5°°. 

Proof. 

(a) By 2.5., x; elxi+1;f] for each / e N which implies <p(x,-) e [<$(xi+1); g] for 
each / e N by 3.2. and 1.3., thus for each i e N there is /, e N such that <p(xi+1) e 
e dom g'f and q>(xt) = gli((p(xi+1)). By the assumption, there are ^ , i2 e N, ix ?- i2 

such that <p(xfl) ^ <K*i-2)- Let, for example, i\ < /2 . Then xfl € [Xi2](,i,/) - {*j2} 
by 2.3.(b) and 2.4. and there exists ieN, it ^ / ^ /2 - 1 such that lt # 0. We 
put n0 = min {/ e N; lt ^ 0}. Then, for «0 T-= 0, 4 = 0 for each k e {0, ..., n0 — 1} 
by the above, i.e. <p(**) = (p(x„0) for each k e {0, ...,n0}9 and 4 # 0 for each 
k ^ n0: suppose on the contrary that there is je N, j ^ n0, with the property 
lj = 0. Since l„0 ^ 0, then j > n0. By the above and 2.2. <p(f(xj+1)) = <p(xj) = 
= glj(<P(xJ+1)) = g°((p(xj+1)) = <?(*/+1) which implies <K[*/+i;/]) = (p(xJ+t) 
by 3.4.(c), thus 4 = 0 for each k e N, k <*j, by 2.2. and 2.5. Hence l„Q = 0 which 
is a contradiction. Now, we may put y = y0, m0 = 0, mt = w,--! -f- 4 0 + i - i for 
each / G N - {0} and (p(xno+i) = ym for each ieN, ym-.k ^ g\ym) for each 
k e {1, ..., 4 0 - M - I } and each i e N - {0} in virtue of 2.3.(a), (b). From 2.3.(a), (b) 
and the above it follows that R e d o i n g for each ieN— {0}. Further, if jeN 
is arbitrary, then there is ie N such that j = mt — k for some k e {I, ..., 4 0 + , _ t} 
and we obtain y} = ym,-* = g*0>w.) = g(gk~1(ym)) = g(ym . -k + i) « g(yj+i) by 
2.3.(a), (c). Thus, yt = g(yi+i) for each ie N. From the above it follows that 
<p(x0) = <p(xj = j 0 = j e r , hence B«> # 0. Finally, (<Kx;))i6iv <= (j;.)Ujy s 5 * 
by2.11.(b). 

(b) Let xeA™ with the property <p(x)$B™ be arbitrary but fixed and let us 
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consider an arbitrary element x'e A™ - {x}. By 2.6. there are m,neNsuch that 
xedomf", x'edomf" and/w(jc) =/*(*')• We put/w(x) = /"(*') = *• By 2.4., 
*€[*](-4,/)» xelx'](A,f) a n d by 2.11.(a) xeA*3. Further, there is a sequence 
(%i)ieN~l A"0 such that x = x0, ^edom/for each i eN— {0}, /(x i + 1) = x* for each 
/€ N and .xefjCjj/eN}. To prove it we take an arbitrary sequence (Xi)ieN <= A00 

such that x = x0, Xjedom/for each /eN— {0} and /(x l+1) = *i for each i e N (its 
existence follows from 2.10. and 2.1 l.(b)) and in virtue of 2.11(a) and 2.4, we put 
Xi =/m~*(x) for each /e {0, ..., m} and Jcm+i = xt for each ieN - {0}. Now, if 
there is i0e N - {0} such that (p(x0) # (p(xio)9 then ((p(xt))ieN £ J?00 by (a), thus 
<p(x) = (p(xm) e B™ which is a contradiction. Therefore, (p((xt)ieN) = <K*o) which 
implies, <p(x) =-= <f>(x0) = <K*m) = <l>(x) £ J5°°. Similarly we can prove that cp(x') = 
= <p(x) because, by the above, (p(x)££°°. Thus, cp(x) = <p(x) = <p(*')- Since x' 
has been selected arbitrary, we have (p(A"°) = q>(x). 

(c) Suppose on the contrary that there is xeA°° such that (p(x)^B'x>. Then 
^(A00) = (p(x) by (b), thus | (p(A^)\ = 1 which is a contradiction. Therefore 
9(v4°°) s B™. 

3.8. Lemma. Let -4 = (A,f), B = (£, g) be calgebras, (p e G(A9 B). Then the 
following assertions hold: 
(a) If x2e[xx\A$f)9 S(B9g)(q>(xx)) = S(B9 g) (<p(x2)) ± oo, then <p(Xl) = q>(x2). 
(b) If x2 e [Xl;/], then S(B9 g) (<p(xx)) £ S(B9 g) (<p(x2)). 
(c) Let xeAbe such that S(AJ) (x) e Ord - {0} and S(A9f) (x) > S(B, g)(<p(x)). 

Then there exists x' ef~%(x) having the property <p(x') = (p(x). 
Proof. 
(a) From 2.4., 3.2. and 1.3. it follows that <p(x2) e [q>(xx)\Bt9r

 I f 9(*i) * 
# q>(x2)9 then S(B,g)(q>(xx)) # S(B9 g) (<p(x2)) by the assumption, 2.14, 2.15. 
and 2.17. which is a contradiction. Thus <p(xt) = <p(x2). 

(b) By 2.5. there is k e N such that xx e dom/* and /*(*i) = x2. If k = 0. 
then the assertion holds trivially. Let k e N - {0}. Then <p(x2) e [q>(xx); g] by 3.2, 
and 1.3. If S(B, g) (<p(xx)) e {ool5 oo2} then the assertion follows from 2.5., 2.13., 
2.11.(a), 2.12. and [2], 2.10. 

If S(B9g) (<p(xt)) e WHAtf)9 then the assertion follows from 2.5., 2.14., 2.15. 
and [2], 2.26.(a). 

(c) Let S(A,f) (x) = 1. Then S(B, g) (cp(x)) = 0 and, by 2.10, 2.15. and 3.5.(a), 
<p(x') = q>(x) for each X' ef~l(X). Let S(A,f) (x) e Ord - {0, 1} and S(A,f) (x) > 
> S(B, g) (<p(x)). We denote by « the ordinal number S(A9f)(x). Suppose that the 
assertion holds for each x' e A with the property S(A9f)(x') < a. By 2.16.(a), 
S(A,f)(f"1(x)) < a. Assume first that there is x'ef~1(x) with the property 
S(A,f) (x') > S(B9 g) (<p(x')). Now, the induction hypothesis implies that there 
exists x0ef~x(x') with the property y(x0) *- <p(x% thus <p([x0;f]) » <p(x0) = 
= <p(x') by 3.4.(c). Hence q>(x) = <p(f2(Xo)) - <P(x') by 2.5. and 2.3.(c). Let 
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S(A,f)(x') ^ S(B,g)(q>(x')) for each x'sf-^x)* By (b) and 2.5. we obtain 
S(B, g) (<p(x')) S S(B, g) (<p(x)) for each x'ef* (x). If there exists x'ef~ x(x) such 
that S(B, g) (<p(x)) = S(B, g) (<p(x% then <f>(x) = <p(x') by the assumption, (a) and 
2.14. Finally we prove that S(B, g) (?>(*')) < S(B, g) (<p(x)) for each x'ef~l(x) 
cannot occur: in this case, S(A,f) (x) > S(B, g) (cp(x)) > S(B, g) (<p(x')) ^ 
^S(A,f)(x') for each x'ef'^x), thus S(A,f)(f~x(x)) < S(B,g) (<p(x)) and 
from 2A6.(b) it follows that S(A,f) (x) <; S(B, g) (<p(x)) which is a contradiction 
to the assumption that S(A,f) (x) > S(B, g) ((p(x)). 

3.9. Lemma. Let A = (A;f), B = (B; g) be c-algebras, q> e G(A, B) and xe A be 
such that S(A,f) (x) > S(B, g) (cp(x)). Then q>([x;f]) =-= <p(x). 

Proof. By 1.1.(4), 2.10., 2.13. and 2.15. the following cases can occur: 
(1) S(B, g) (<p(x)) = oot. Then S(A,f) (x) = oo2 and the assertion follows from 

2.5., 3.5.(c) and [2], 2.10. 
(2) S(B,g)(<p(x))eOrd. 
(a) If S(A,f) (x) e {cOi, oo2}, then the assertion follows from 2.5., 2.8., 2.10., 

2.11.(a), 2.12., 2.13., 2A4., 3.7.(b) and from [2], 2.10., 2.15.(a). 
(b) If S(A,f) (x) e Ord, then S(A,f) (x) ^ 0 by the assumption, from 3.8.(c) 

it follows that there is x' €f1(x) with the property <p(x') = q>(x) and the assertion 
follows from 3.4.(c). 
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