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TRANSITIVELY ACTING MONOIDS 
OF LOCAL AUTOMORPHISMS 
OF LOCALLY FINITE TREES 

JAN CHVALINA, LUDMILA CHVALINOVA, Brno 
(Received June 30,1981) 

INTRODUCTION 

Charles Wells characterizes in paper [10] among others locally finite trees with 
the transitive action of monoids of their local automorphisms (i.e. isotone trans­
formations restrictions of which onto bounded inervals are order isomorphisms) 
and automorphism groups (Theorem 1) on the supports of these trees. By a non-
trivial locally finite tree (a forest in more convenient terminology), is meant at 
least a two-element partially ordered set whose all dual principal ideals are well 
ordered having the ordinal number at most <o (i.e. the ordinal of the set N of all 
positive integers). This paper, using results of papers [5], [6], [10] and [11], is 
concerned with certain algebraic and topological characterizations of locally 
finite and lower forests with transitively acting local automorphism monoids on 
their carrier sets. The significance of main theorems also consists in the fact that 
they show that under assumption of the transitive action of local automorphism 
monoids on locally finite forests these can be endowed by topologies of Alexandroff 
[2], [3] (i.e. quasi-discrete in the sense of [4] chapt. V.) such that the local auto­
morphism monoid of the forest coincides with the monoid of all local homeo-
morphisms or with the monoid of all closed continuous selfmaps of the space in 
question. Moreover for any pair of different points there are topologies with the 
above mentioned properties semiseparating these points. 

1. P R E L I M I N A R I E S 

The terminology concerning trees used in literature (from the various points 
of view) is not unique—cf. [7], [10]. In accordance with [10] we say that an 
ordered set (T, g ) is an upper locally finite forest if every its dual principal ideal 
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is well ordered with the ordinal at most co. An ordered set (J, <0 is said to be 
a lower locally finite forest if (T, % ~l) is an upper locally finite forest. A connected 
upper (lower) locally finite forest is called an upper (lower) locally finite tree. Thus 
an upper locally finite tree is an ordered set which is an upper semilattice whose 
all bounded intervals are finite chains. The root of an upper (lower) tree is the 
greatest (least) element of this tree. We say that a forest is antirooted of none of 
its maximal trees has a root. By Max (T, S) (Min (T, <0) we denote the set of all 
maximal (minimal) elements of (T, ^ ) . The principal (dual) ideal of (T, <;.) 
generated by an element x e T is denoted by (x]^ or (x] ([x)^ or [*)). Interval 
with the initial element s and the terminal element /, i.e. the set {x | s g x g /} 
is denoted by [s, / ] ; s -< / means [s, / ] = {s, / } . 

An isotone selfmapfof a forest (tree) (T, ^ ) is said to be a local automorphism 
of (J, ^ ) if for any pair of elements s, / e T, s < t the restriction f\ [s, / ] is an 
isomorphism of the chain [s, / ] onto the chain [f(s),f(/)]. The monoid of all 
local automorphisms of (J , _^) will be denoted by LA(F, :§), As usually a monoid S 
(with the unity e) is said to be acting on a set X if there is given a mapping, 
n : SxX-+ X such that n(e, x) = x, n(sts2, x) = n(st, n(s2, x)) for all xeX, 
sx,s2eS. For a submonoid F of the symmetric monoid (Xx, .) of X we put 
n(f x) = f(x) for fe F, x e X. The monoid F acts transitively on X if for any pair 
of elements xi, x2 e X there is fe F such that f(xt) = x2. 

Let f be a transformation —i.e. a selfmap~of a set T. The monoid CT(f) = 
= {geTT\fg = gf} is called a centralizer of the transformation f (in the 
symmetric monoid (TT, .)). In the agreement with [6] we define a binary opera­
tion o on a locally finite tree (T, g ) as follows: Suppose (T, :g) is an upper locally 
finite tree. For s, t e T we put S(s, t) = card [/, sup {s, /}] —card [s, sup {s, /}] 
(both cardinals on the right hand are finite). Then we put s o / = / + (where /+ is the 
successor of /) if 5(s, t) ^ 0 and / $ max (T, g ) . If / is the greatest element of (T, 
^ ) then s = / and we put so/ = /, Further, s o / = s+ whenever <5(s, / ) < 0. If (J , < ) 
is a lower locally finite tree we consider the tree (T, ^ _ 1 ) and the multiplication 
of its elements is defined with respect to the ordering g ~1 which creats the structure 
of an upper tree on T The endomorphism monoid of the groupoid (Tt, o) will 
be denoted by End (Tn o). 

The notion of (finite) tree algebra was introduced by Ladislav Nebesky in [8]. 
The generalization of this notion for the case of infinite supports is investigated. 
by Bohdan Zelinka in [11] where among others he characterizes tree algebras 
realized by (unoriented) tree graphs. We recall first some necessary terms from [11]. 
A tree algebra s# = (T, P) is an algebra with the support T and with one ternary 
operation P which satisfies the following conditions for arbitrary elements /, u, 
v, w of T : 

1. P(t,t,u) = /, 
2. P(t, u, v) = P(u, /, v) = P(r, v, u\ 
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3. P(P(t, u, v), u/w) = P(t, u, P(v, u, w)), 
4. P(t, u, w) # p(u, v, w) # P(t, v, w) => P(t, u, w) = P(t, v, w). 

LsXst = (r , P) be a tree algebra, t,ueT. The bounded segment of s& determined 
by t and u is the set S(t, u) = {xe T | P(t, w, x) = x}. Let x0, xt, x2, ... be an 
infinite sequence of pairwise different elements of T with these properties: 
S(x0, xf) c S(x0, x i+1) for each positive integer i and for each yeT there exists 

00 

a positive integer /such that x($ S(x0,y). Then the set DXQ = U£(*o>*i) is 

called an unbounded segment ofs/ with the initial element x0. A tree algebra J / 
is called discrete if the segment S(u, v) in s/ for any two elements t, u of its support 
is finite. Theorem 12 from [11] says that there is one-to-one correspondence 
between exactly discrete tree algebras and tree graphs G = (T, H) given by the 
rule: P(t, u, v) is the (single) common vertex of the path in G connecting t and w, 
the path in G connecting t and v and the path in G connecting u and v. 

Let (T, <0 be a locally finite forest in the sense of the above definitiojn. Denote 
by (T, Qz) the reflexion of an orientated graph (in the category of orientated 
graphs and homomorphisms) determinated by the symmetrization, i.e. tg^s iff 
/ £ s or s £ t. If {(Tt, g ) 11 e/} is the family of all maximal trees of (T, S) 
then bys/ t = (Tt,Pt), for / e /, we denote the discrete tree algebra corresponding 
to the (unorientated) tree graph (Tt, Q^). Suppose si = (T,P) contains at least 
one unbounted segment Dt and denote by E(Dt) the end of s/ determined by Dt, 
i.e. the set of all unbounded segments of s/ such that the intersection of each of 
them with Dt is also an unbounded segment. Define on E(Dt) a ternary operation P* 
in this way: P*(DU, Dv, Dw) = Du n Dv n Dw for any triad Du, Dv, Dw of elements 
from E(Dt). It is easy to verify that (E(Dt),P*) is a tree algebra—called an end 
tree algebra determined by the unbounded segment Dt of the algebra st — 
isomorphic to the algebra si; the corresponding isomorphism q>: (T,P)-+ 
-• (E(Dt), P*) is defined by q>(x) = Dxe E(Dt) for any x e T. 

Concerning the retract theory for general ordered sets see [9] and the other 
papers quoted in the bibliography of [9]. A subset Q of an ordered set (S, S) 
is a retract of (S, g ) if there is an order preserving map g : (S, g ) -» (Q, g ) 
(called a retraction) which is the identity map on Q. In the agreement with this 
notion an ordered subset (A, ^ ) of a locally finite forest (T, g ) is said to be an 
hkrretract of (T, ^ ) if there is a local automorphism g : (T, ;g)-* (A, ^ ) — 
called an LA-retraction — such that g \ A = idA. It is to be noted that some results 
from the retract theory of ordered sets are transferable onto the considered case, 
e.g. every maximal chain of a locally finite tree is its LA-retract (cf. [9], p. 104). 
The minimality of an LA-retract means the minimality with respect to the natural 
ordering by set inclusion. 

By an Alexandroff topological space (called also quasi-discrete), we mean 
in the agreement with [2], [3] a pair (X, x) where X is a set and T is a completely 
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additive topological closure operation on X. Quasi-discrete To-spaces were 
investigated more in detail probably for the first time in [1]; from here it follows 
the utility of the notion of continuous closed mappings (simplicial mappings) 
of such spaces. The monoid of all closed deformations (i.e. closed continuous 
selfmaps) of a topological space (X, x) with the usual composition of mappings 
as the multiplication is denoted by S(X, T). A mapping / of (X, T) into (Y, a) is 
called a local homeomorphism if for any point x e X there exists a T-neighbourhood 
Ox of x such that the restriction f\ Ox is a homeomorphism of Ox onto f(Ox). 
The monoid of all local homeomorphisms of (X, T) into itself will be denoted 
by LH(X, T). Points x, y of a topological space are called semiseparated ([4]) 
if there are neighbourhoods Ox, Oy of x, y respectively such that y$Ox and 
x$ Oy. If moreover Ox n Oy = 0 then points x, y are called separated. A topo­
logical space is said to be perfect if it does not contain isolated points. 

Ends of proofs are denoted by the symbol • . 

2. CHARACTERIZATIONS OF THE TRANSITIVE ACTION 

Main results of this paper are formulated in this paragraph. 

2.1. Theorem. Let (T, = ) be a locally finite upper or lower forest, {(Tt, ^)\ iel} 
be the family of all maximal trees of(T, g) . The following conditions are equivalent: 

1° The monoid LA(T, ^ ) acts transitively on the set T. 
2° The ordered set (T, _ )̂ has no maximal or minimal elements. 
3° For any lei and each element t of the discrete tree algebra stft = (T%, Pt) 

there exist ^-comparable elements x9 ye Tt, x ^ t # y such that Pt(x, y,t) = t. 
4° For any i e I and any element t e Tt there exist at least two different end tree 

algebras (E(Dt), P*), (E(Dt), P*) such that Dt u Dt is the minimal LA-retract of 
the tree (Tt, = ) . 

5° For any tel, (Tt,o) is a simple groupoid with the property End(J'<, o) = 
= LA(r„ =g). 

2.2. Theorem. Lets/ = (M, P) be a discrete tree algebra, _ be an ordering on the 
set M such that (M, ^ ) is an upper or lower semilattice. The automorphism group 
Aut(M, g) acts transitively on M iff the following two conditions are satisfied: 

(i) For any element t e M there exist -^-comparable elements x, ye M, x ^ t ^ y 
such that P(x, y,t) = t. 

(ii) For any pair of elements t,ue M we have card{x | x -< t} = card {x | x -< u} 
if(M, S) is an upper semilattice, or card {x \ t •< x} = card {x\u < x} if(M, = ) 
is a lower semilattice. 

2.3. Theorem. Let (T, g ) be a locally finite upper or lower antirooted forest, 
{(Tt, £)\ iel} be the family of all maximal trees of(T, = ) . The following condi­
tions are equivalent: 
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1° The monoid LA(T, S) acts transitively on the set T. 
2° There exists a perfect Alexandroff topology % on the set T such that 

LA(T, £ ) = S(T, T). 

3° For any pair of different elements a, b e T there exists a perfect Alexandroff 
topology tab on the set T such that LA(T, <i) = S(T, xa>b) and points a, b are semi* 
separated in the space (T, Tab). 

4° There exists an Alexandroff topology a on the set T such, that LA(T, 2g) =-
= LH(T, a) and the cardinality of the o-closure of any nonempty subset of T is 
infinite. 

5° For any pair of different elements a, b e T there exists an Alexandroff topology 
o0tb on T having the properties from the conditions 4° and such that points a, b 
are semiseparated in the space (T, oab). 

2.4. Remark. The monoid of local homeomorphisms LH(r, a) from condi­
tions 4°, 5° of Theorem 2.3 can be replaced by the monoid of open deformations 
(i.e. open continuous selfmaps of the considered space) and assertions remain 
valid. We show now that Theorem 2.3 is justified, i.e. used notions-as closed 
deformation, open deformation, local homeomorphism do not coincide in the 
case of Alexandroff—i.e. quasi-discrete spaces. 

Consider the set of all nonnegative integers N and the left order topology T~ on 
N; thus closures of singletons {n} cz N are sets T~{«} = {n, n + 1, n -f- 2, . . .} . 
Define a mapping f: N -» N by putting f(0) = 1, f(ri) = n for n > 1. Evidently 
fe S(N, T~), f<£ LH(N, T~) andfis not an open deformation of the space (N, T~) 
as well. But on the other handfis an open deformation of the dual space (N, T + ) , 
f$ S(N, T+ ) and simultaneuloslyf^ LH(N, T + ) . Further, put g(n) = n 4- 1 for each 
neN. The mapping g is a topological embedding of the space (N,T~) into itself, 
hence ge LH(N,T~) n L H ( N , T + ) . However g is not an open deformation of the 
space (N, T~) and g<£S(N, T + ) as well. 

3. PROOFS OF CHARACTERIZATION T H E O R E M S 

Proofs of theorems introduced in the previous paragraph will be divided into 
the sequence of proofs of auxiliary assertions. 

3.1. Lemma. Let (T, <̂ ) be an upper or lower locally finite forest. The monoid 
LA(T, <£) acts transitively on the set T iff Max (T, <£)u Min (T, <0 = 0. 

Proof. The assertion follows immediately from [10]—assertion (a) of 
Theorem 1. D 

3.2. Lemma. Let {(Tt, g ) | / el} be the family of all maximal trees of a locally 
finite forest (T, <0. The following conditions are equivalent: 

(i) Max (T, <i) u Min (J, 50 = 0. 
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(ii) For any i e I and each element t of the discrete tree algebra s#t == (Tt,Pt) 
there exist ^-comparable elements x,yeTt, x & t ^ y such that Pt(x,y, t) = t. 

(iii) For any t e / and any element t e Tt there exist at least two different end 
tree algebras (E(Dt), P*), (E(D't), P*) such that Dt u Dt is the minimal LA-retract 
of the tree (Tt, £ ) . 

Proof. Implication (i)=>(ii) follows immediately from the definition of the 
discrete tree algebra ^ realized by the tree (Tt, £); condition (ii) says in other 
words that any element of the tree algebra si\ is an internal element of a suitable 
bounded segment which is a chain with respect to the ordering ^ . 

(ii) => (iii): Let i e / be an arbitrary index, t e Tt be an arbitrary element. Condi­
tion (ii) implies that the degree of the vertex t of the tree graph (Tt, Qt) is at least 2 
and moreover x < t < y for a suitable notation. Using the mathematical induction 
we construct chains Dt, D't of the type co, co* respectively such that Dt u Dt is 
a chain (with respect to ^ ) of the type co* + co, hence tree algebras (E(Dt), P*), 
(E(D't)9P*) are different. For any element x e Tt denote byf(x) the unique element 
of D't u Dt such that S(x,f(x)) =- 0. Then / : Tt-> D'tu Dt is an LA-retraction 
and D't u Dt is evidently a minimal LA-retract of the tree (Tt, < )̂. 

(iii)==>(i): We prove this implication for an upper forest. The proof for the 
case of a lower forest is similar. Admit first Max (T, S) ¥> ®. For aeMax(r , ^ ) 
denote by (Tt, :g) the tree the greatest element of which is a. According to (iii) 
the tree (Tt, S) contains at least two different infinite chains Da, D'a (of the type 
co*) each of which is an LA-retract of (Tt, S) (the corresponding retractions 
are defined similarly as above). Hence D'a u Da can not be a minimal retract. 

Now admit Max(r, = ) = 0 and Min(J, S) # 0. Let beM'm(T, ^ ) be an 
arbitrary element and i e /an index such that beT^ By (iii) there exist two different 
unbounded segments Db, D'b of the tree algebra st% = (Tt, Pt) such that D'b u Db 

is a minimal LA-retract of (Tt, g) . Then Db u Db has no upper bound. Since in 
the opposite case, if c denotes an arbitrary upper bound of D'b u Db then any 
local automorphism g assigning to an element x > a an element g(x) e DbKj Db, 
is not an LA-retraction. Since D'b u Db is unbounded (as a subset of (Tt, <i)), 
exactly one of segments Db, D£-say Db is a chain of the type co. Since Db ^ D'b, 
the set Db n D'b is finite. Denote by d the greatest element of Db n D'b and put 
R -= (Db + Db) u {d} (where ~ means the symmetric difference of sets). Since 
(R, g ) is a chain of the type co* + co, it is an LA-retract of (Tt, ^ ) . But R% 
% D'b\j Db, which is a contradiction. Therefore min(r, g ) u max(r, ^ ) = 0 . D 

3.3. Lemma. Let (T, S)bea locally finite forest. Then max (T,<L)v min (T, <:) = 
= 0 ifffor every maximal tree (Tt, £)of(T, ^ ) the groupoid (Tt, o) is simple and 
End(ri,o) = LA(r i ,g). 

Proof. {We consider the case of an upper forest only; for the case of lower 
forests the proof is quite similar). 
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Suppose Max (J, g ) u Min (J, <£) = 0. Let (J4, <*) be an arbitrary maximal 
tree of (J, £),A * 0 be a both-side ideal of the groupoid (J4, o). Admit Tt\ A &B 
and f0 e J4 \ .4. Since t0 is not a minimal element of (J4, ^) , there is tx e J4, 
such that t* = t0 and tj $ A (for tt o tx = t0). Since t o t = t+ for each element 
/ e J, we have .4 is a dual ideal of the ordered set (J4, <0, thus t0 < a for some 
a e A. Then a o tx = tt o a = t0 $ A, a contradiction. Hence A = J4. 

Now we prove the equality LA(J4, g ) = End(J4, o). Suppose fe LA(J4, <J), 
a,freJ4. If <5(a, 6) g 0 we have a o .6 = a+,f(aob) =/ (a+ ) . Putc = a V 6. Then 
card [/(a), /(c)] = card [a, c] = card [b, c] = card [/(*), /(c)], thus S(f(a),f(b)) £ 
<; 0 and from here /(a) o/(6) = (/(a))+. Since / maps the two-element chain 
[a, a+] isomorphically onto the two-element chain [/(a), / (a+)] , we have (/(a))+ = 
= /(a+), thus /(a o *) = /(a) o/(6), i.e. LA (J4, <0 c End (J4, o). Suppose now 
/eEnd(J4 ,o) , a,beTt, a < b. Let t0 < tx < ... < t,, be a chain such that 
ti e J;, to = a, t„ = *, tl+1 = t,+ for i = 0, 1, . . . , « - 1. Then t0 o t0 = t0 = tls 

consequently f(tt) =/(r0 o t0) =f(t0) o/(t0) = (/(to))+- From here we get that 
the interval [a, 6] of the tree (J4, g ) is isomorphic with the interval [/(«),/(*)]» 
hence / e L A ( J f , g), i.e. End(J4,o) <z LA(J4, g). Therefore LA(J4, £) = 
= End(J4,o). 

Now admit Min(J4, <0 7* 0 for some maximal subtree of the forest (J, g) . 
Suppose t0 € Min (J4, g ) and put A = J4 \ {t0}. Then for every pair of elements 
t e T, a e A we have t oae A,a o te A, which means that v4 is a proper ideal of the 
groupoid (J4, o), which contradicts the assumption. Hence Min(J4, g ) = 0. 
Admit the tree (J4, g ) has the greatest elements. By the assumption LA (J4, <) = 
= End (Tt, o) and s o s = s, consequently/(?) = f(s o s) = f(s) of(s)9 le.f(s) = s 
for every local automorphism / of the tree (J4, g). Since Min(J4, g ) = 0, the 
tree (J4, ^) contains a decreasing chain of the type <o* with the greatest element s9 

s = t0 > tx > ... Putgfo) = ti+1 for 1 = 1, 2, . . . , andg(t) = g(tf)for any element 
te ^ with the property 5(ti91) = 0. Then geLA(J4 , £), but gfc) = tx ¥> s9 

a contradiction. Hence Max (J, g ) u Min (J, g ) = 0. D 

3,4. Lemma. Xet (J, S)bea locally finite upper (lower) forest. If Max (J, S) «-fl 
(Min (J, 5*) = 0) tAew t/tere exists a transformation fe TT with the property 
Cr(/) = LA(J,X^). 

Proof. A locally finite upper forest (J, ^) without maximal elements is 
a functional graph of some transformation / of the set T (without fixed points). 
For any element t e T we have/(t) = t+. Suppose g e CT(f), t e J. Then (g(t))+ «-
=/(#(*)) ** g(f(0) = g(t+). Using the mathematical induction we get that for 
every pair tt,t2e J, tx < t2 the restriction g\ [tl9 t2] is an order isomorphism 
of the interval [tX9 t2] onto the interval [g(tx\ g(t2)}. Ifge LA(J, ^) , t e J, then 
/(ffO) * (g{t)y - g(t*)~ g(f(t)% thus geCrif). Therefore we have ( W ) =» 
= LA(J, £) in the case of an upper forest. If (J, ^) is a lower forest then each 
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of its elements has at most one predecessor. For t e T\ Min (F, = ) we putf(t) = s, 
where s+ = t; if / e Min (T9 £) we put f(l) = t. The other part of the proof is 
similar to the above one. D 

3.5. Remark. With respect to Lemma 3.4 we get easily the following assertion: 
If (F, = ) is an upper locally finite forest,f: T -• Fis a mapping such thatf(0 = t+ 

for every / e T \ Max (T9 = ) andf(r) = t for t e Max (J, = ) then C r(/) = LA(r, g ) 
iff Max (r , ^ ) = 0. 

3.<f. Lemma. JLef (T, S) be a locally finite tree without maximal and minimal 
elements. For every pair of different elements a9 b e T there exists a perfect 
Alexandroff topology Ta%b on T such that LA(F, = ) = S(F, Ta>b) and points a9 b are 
semiseparated in the space (T9 Tafb). 

Proof. If (J, ^ ) is an upper locally finite tree, we putf^(x) = x+ for any xe T; 
ifJT, = ) is a lower tree, we putf^(x) = x+* where x+* is a successor of x with 
respect to the ordering ^ _ 1 (inverse to _0. Thus we can suppose without lose of 
generality that (T9 S) 1s an upper locally finite tree. In what follows we write 
only / instead of f ^ . 

Let a9 b be arbitrary elements. Assume a \\ b in (F, = ) . Put TQtb = Tf ([5]) p. 84) 
i.e. TatbX = T ; I - - I U (J /*(*) f o r a ny s u b s e t x o f T- s i n c e M i n (T> £) = 

2£k<& 
= {x | f~l(x) = 0} = 0, the space (T9 T0fb) does not contain isolated points and 
points a9 b are separated (e.g. their Tafft-neighbourhoods formed by principal 
ideals (#]<;, ( i ]^ are disjoint) and thus semiseparated. By Lemma 3.4 we have 
CT(f) = LA(F, = ) and by [5] Theorem 3.3 the equality CT(f) = S(F, Tafb) holds. 
Hence LA(F, g ) = S(F, Tfl>ft). Now suppose a, b are comparable. Assume a < 6 
(the case b < a is similar). If 0+ = b9 we put Tflfc = Tf again. Since the least 
Ta^-neighbourhood Ob = (6] \ {* | x -< 6} of the point b does not contain the 
point a9 these points are semiseparated. Assume n = 2, a -< at < a2 < ... *"< 
a,,,! -< 6. We put Taib = #> ([5] p. 84), i.e. TfX = Xu U /*(*) for.any 
subset Z of F. Since the least neighbourhood of an arbitrary point x of the space 
(T9Tf) is the set Ox = {t\fk(t) = x, fceN \ {1, 2, ...,«}}, we have a£0*> 
hence points a, b are semiseparated in the space (T9 Tf). Further, Min (T, £) = #> 
consequently the space (T9 tf) is perfect. 

Now we prove the equality CT(f) = S(F, Tf). Suppose g e Cr(f), te T. We 
have gtf{t} » (g/*(t) | * » 0,» + 1, » + 2,...} « {f*g(0 I * = 0, n + 1, *.+ 2,...} * 
- t f {g(r)} and thus *#>* = g(Tf U {t}) = g( (J T<?> {*}) * \J xf{g(t)} * 

- 4"' U {g (')} = 4 *W- Evidently £T<r>0 = 4">s(0), thus g e S(r, -<?>). HW** 
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If we admit the existence of an element s e tfin+i(t))s such that g(s) e [/"+ xg(t))s \ 
\ (lf+igf(t))* u isf"(t)}\ we get gtf{f(t)} # tf\gf(t)}. But card [[ /"+ 1(0) s \ 
\ [f2n+1(t))S] = "> c a r d ttfn+ig(t))i X (lf+1gf(t))* u {gfn(0}) = " + 
+ card {xe T|T,+1g(0 ^ < gf(t)} = » + 1, a contradiction. Thus for any 
element t e T the quality 

(1) gfV) <- fg(t) 

holds. Suppose gT(0 =/"+1g(t). Since g(*) e {f"+1g(0} <J lf2"+2g(t))z for each 
jce[/2"+ 1(0) s , we have g[fn+l(t), f2n(t)l - [f"+2g(t), f2"+1g(0]- Consider the 
element gf+1(t). Since f2n+2g(t)$ xf{gfn+1(t)}, simultaneously {T + 1g(0} u 
u [f2n+2S(0)s <= ^f2"+1(t))s >f2"+2S(0 < S(*) for any x e lf2n+2(t))s, we have 
gf2"+1(0 =f2n+2g(t)- Therefore we get the inclusion 

(2) g[f"+1(0)Sc:[/"+2g(0)g. 

Further, f+1g(t)exf{g(t)}, geS(T,xf) thus for some element xex^{t) it 
holds g(x) =fn+1g(t), which contradicts the inclusion (2) for tf{t} = {t} u 
u[f"+1(0)g. 

Suppose gf"(t)e[/g(0,/"_1g(t)]. Let we T be an element such that/(M) = *•. 
Admit g(u)<g(t). Since/ng(t)eTi-"

){g(H)}, we have *" V"*(0)^r/"+1(0)i # « , 
further i e T,f+i(t) g * implies g(x)<£ [/g(t),/"g(t)], hence g(0 < g(«), a con­
tradiction. The assumption gf(t) < g(t) leads to a contradiction again. Indeed: 
Admit gf(t)<g(t). Then /"g(0 e ^{gf^O}, thus there exists x0 6 T<">{/"(0} 

such that g(x0) =fg(t). But jr06T(
r"

){r} for f2n+1(t) < x0 and simultaneously 
g(*o) = fg(t) $ tf{g(t)}, a contradiction. 

We have got up to now that for every element x e T exactly one of the following 
cases occurs: 

1° gf(x) = g(x), 2° gf(x)=fg(x). 

It is to be noted for the sake of completeness that the case gf(n)\\fg(x), i.e. 
gf(x)\\g(x) leads to a contradiction, since Min(r, g ) = 0 thus f+1(y) = x 
for some y e ( x ] i hence/"(x) e xf{y}, x e tf{y}. From here g(x) e tf{g(y)}, i.e. 
gOOttgOO and at the same time gf(x) $ xflgfy)}, which contradicts the fact 
that g is a closed deformation of the space (T, tf). 

Let t e T be an arbitrary element. Suppose 1° holds, i.e. gf(t) = g(0- Consider 
the element/2"(0 =/"(/"(/))• Since the equality gff(t) =f"gf"(0 contradicts the 
assumption g 6 S(J, T<-n)) for /2"(0 e T<">{'} and fgf(t) = fg(t) t tf{g(t)}, we 
have gf2n(t) = g(0- In the same way we g e t gf3n(t) = g(t) and gf*"(0 - g(0 for 
any k £ 1. On the other hand f+ig(t) e T<?>{g(0} thus there exists x0 exf{t} (i.e. 
x0e[f+i(t))^) with the property g(x0) ^f+ig(t). Let A: be a positive integer 
such that/*"(0< x0 <T t + 1 )"(0-Then/-+ 1(x0) </"+1/ (4+1)"(0 =/ ( k + 2 ) B + 1(0, 
thus/»+Hx0) g fk+2>"(t), hence/(*+2)"(0 6 <$>{x0}.- From here g(0 = «t(*+2)"(0 6 
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ex{/y{g(x0)} = i/){f*'¥ig(t)}, a contradiction. Therefore gfn(t) = /"g(0 for every 
element t e T. 

Let g e$(T, T$°) be an arbitrary closed deformation, t e T. We have x(f~%){t} = 
- 4">{r} u {/"(*)}, thus g(r<r*>{;}) = g(T?>{/}) u &/»(/)} - x?{g(t)} u {/"*(*)} = 
= tjT "feW}, hence g(xf"i)X) = t f 1 ^ ! ) for any subset X c T. We get that 
monoids of closed deformations form a chain with respect to the set inclusion: 

S(T, x?) cz S(T, T<T*>) cz ... cz S(T, xf). 

But S(T, xf) = Qr(f) by the above mentioned Theorem 3.3 from [5] which 
implies S(T, xfy) cz CT(f). With respect to the above proved opposite inclusion 
we get the equality. The proof is complete. D 

3.7. Remark. The generalization of Lemma 3.6 for the case of locally finite 
forest is evident, since it follows from the proof of the mentioned lemma that it is 
inessential whether a selfmap of a locally finite tree or a mapping of a tree into 
another one is considered. (All trees are supposed to be without maximal and 
minimal elements). Thus the notion of a tree in Lemma 3.6 can be replaced by the 
notion of a forest and the assertion remains true. 

3.8. Lemma. Let (T, i£) be a locally finite upper (lower) antirooted forest, x be 
a perfect Alexandroff topology on T such that S(T,x) = LA(T, = ) . Then 
Min (T, g ) = 0 (Max (T, S) = 0). 

Proof. Suppose (T, ^ ) is an upper forest. Since Max (J, S) = #> putting 
f(t)**t + for any teT, we have CT(f) = LA(T, g ) by Remajk 3.5. Let 
{(Tt, ££) 116/} be the collection of all maximal subtrees of the forest (T, ^ ) . 
Since CT(/) = S(T, T), by [5] Theorem 4.1 exactly one of the following cases 
occurs: 

1° M i n d ; , ^ ) = 0 for any tel. 
2° tel implies that either (Tt, g ) is a chain of the type co* + o or Tt = 

= Kt u Min(r f , <;), where (Kt, g ) is a chain of the type co* + co and 
Min(r i s ^ ) *-0. 

3° i e / implies that either (Tt, g ) is a chain of the type co* -f co or Tt = 
=* Min (Tt, g ) u r / , where Min (Tt, g ) # 0 (card T/ =- N0) and for every pair 
of elements s e Min (Tt, ^ ) , t e T't it holds s < t. 

With respect to the above conditions 1°, 2°, 3° and the equality CT(f) = $(T, x) 
we get easily that all components Tt, tel are closed subsets of (T, x). Admit 
Min (Tt, S) # # for some 16 /. Let * 6 Min (Tt, ^ ) be an arbitrary element and 
put X ** Tt \ {f}. If t+ = x+ for some jc6.3f, we define a mapping g : .T-* T 
in such a way: g(t) = x, g(,s) = s for j- e T, s # t. Clearly, g 6 C r( /) = S(T§, T) 
thus xg(X) » f (T^) -« JT, hence JT = xg(X) » TTg(-¥) -*• TX. If the element x # t 
having the property x+ « * + does not exist (i.e. (Tt, g ) is a chain of the type a>) 
we define g : T-+ Tas follows: g(s) « s+ for .se 7;, g(,s) =*- s for J e J \ T.. The 
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assumption t e xX implies (with respect to the fact g e S(T, x) and the T-closedness 
of Tt) that xg(X) = g(xX) = X, i.e. t e xX = X - a contradiction. Hence t £ %X9 

i.e. the set Xis closed. Then {t} is an open subset the existence of which contradicts 
the assumption of the perfectness of the space (T, T). Consequently the set 
Min (Ti9 S) is empty. 

It (J, S) is a lower forest, we define the transformation/using predecessors of 
elements of the forest (T, <0 and the proof of the equality Max (J, ;g) = 0 
coincides with the just previous one. D 

3.9. Lemma. If(T, ^)isa locally finite antirooted forest then S(T, x) = LA(J, g ) 
for some perfect Alexandroff topology x on the set T iff there exists an Alexandroff 
topology a on T such that LH(T, a) = LA(J, g ) and the a-closure of any nonempty 
subset of the set T is infinite. 

Proof. Let x be a perfect topology of Alexandroff on T such that S(T, x) = 
= LA(T, g) . Denote by a the Alexandroff topology dual to T. The least cr-neigh-
bourhood of any point x e T is the T-closure x{x} thus S(T, x) =- LH(J, a). Since 
(T, g ) does not contain any maximal or minimal element and every local auto­
morphism g e LA(T, g ) such that the g-image of T is a chain of the type co* + (o 
is a closed deformation of (T, x), we have x{t} is a chain for each t e T. Further, 
ftt e S(T, x) for each n e N (where/(0 = t+ for t e T) thus x{t} is a cofinal subset 
of (T, g ) (in the case of an upper forest) and coinitial subset of (T, 2g) in the case 
of lower forest. Consequently, <r-closures of singletons are infinite. Now a is 
supposed to be an Alexandroff topology on J satisfying conditions from the lemma. 
Then a* (the dual topology to a) has this property: S(T, a*) = LA(T, g""1) * 
* LA(T, g ) and the space (T, a*) is perfect. —& 

3.10. Lemma. Let (T, ^ ) be a locally finite forest. For any pair of different elements 
a,beT there exists a perfect Alexandroff topology x0tb such that S(T,xah)^ 
= LA(r, ^ ) and points a, b are in the space (T, xatb) semiseparated iff for any pair 
of different elements c,deT there exists an Alexandroff topology aCt4 on Tpossessing 
the following properties: 

(i) LH(r, aCtd) = LA(T, £), 
(ii) card aCtdX ^ K0 for every nonempty subset X e T, 

(iii) points c, d are semiseparated in the space (T, aCt d). 

Proof. Similarly as in the proof of Lemma 3.9 using the dual topology we get 
the equivalence of the above stated conditions. D 

Proof of Theorem 2.1: The scheme of the proof is the following one (I0 —5'°. 
are corresponding conditions): 

/ \ / 
5" 4" 
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The equivalence 1° o 2° is given by Lemma 3.1, implications 2° => 3° => 4° => 2° 
by Lemma 3.2 and the equivalence 2° o 5° is given by Lemma 3.3. D 

Proof of Theorem 2.2 follows from Theorem 2.1 with respect to [10] Theorem 1, 
part (b). D 

Proof of Theorem 2.3: The scheme of implications is as follows: 

2° 

/ \ / 

The implication 1° => 3° follows from Lemma 3.6 with respect to Remark 3.7 and 
Lemma 3.1. The implication 3°=>2° is trivial, 2° => 1° is given by Lemma 3.8 
with respect to Lemma 3.1. The equivalence 3 ° o 4 ° is established in Lemma 3.9 
and the equivalence 3° o 5° in Lemma 3.10. D 

3.11. Remark. Characterizations contained in Theorem 2.3 have been obtained 
under the essential assumption of the antirootedness of considered trees. Characteri­
zations without this assumption or ocassionally with the assumption of existence of 
branches in all trees seem to be an open problem. Another special problem solving 
of which does not follow from the above considerations is the question of the 
readability of local automorphism monoids of finite trees by closed deformations 
of a topological space. 
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