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INTRODUCTION

Charles Wells characterizes in paper [10] among others locally finite trees with
the transitive action of monoids of their local automorphisms (i.e. isotone trans-
formations restrictions of which onto bounded inervals are order isomorphisms)
and automorphism groups (Theorem 1) on the supports of these trees. By a non-
trivial locally finite tree (a forest in more convenient terminology), is meant at
least a two-element partially ordered set whose all dual principal ideals are well
ordered having the ordinal number at most w (i.e. the ordinal of the set N of all
positive integers). This paper, using results of papers [5], [6], [10] and [11], is
concerned with certain algebraic and topological characterizations of locally
finite and lower forests with transitively acting local automorphism monoids on
their carrier sets. The significance of main theorems also consists in the fact that
they show that under assumption of the transitive action of local automorphism
monoids on locally finite forests these can be endowed by topologies of Alexandroff
[2], [3] (i.e. quasi-discrete in the sense of [4] chapt. V.) such that the local auto-
morphism monoid of the forest coincides with the monoid of all local homeo-
morphisms or with the monoid of all closed continuous selfmaps of the space in
question. Moreover for any pair of different points there are topologies with the
above mentioned properties semiseparating these points,

1. PRELIMINARIES

The terminology concerning trees used in literature (from the various points
of view) is not unique—cf. [7], [10]. In accordance with [10] we say that an
ordered set (7, <) is an upper locally finite forest if every its dual principal ideal
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is well ordered with the ordinal at most w. An ordered set (I, <) is said to be
a lower locally finite forest if (T, < ~") is an upper locally finite forest. A connected
upper (lower) locally finite forest is called an upper (lower) locally finite tree. Thus
an upper locally finite tree is an ordered set which is an upper semilattice whose
all bounded intervals are finite chains. The root of an upper (lower) tree is the
greatest (least) element of this tree. We say that a forest is antirooted of none of
its maximal trees has a root. By Max (7T, £) (Min (7, £)) we denote the set of all
maximal (minimal) elements of (7, £). The principal (dual) ideal of (T, <)
generated by an element x € T is denoted by (x]< or (x] ([x)< or [x)). Interval
with the initial element s and the terminal element ¢, i.e. the set {x|s < x < ¢t}
is denoted by [s, ¢]; s < ¢ means [s,¢] = {5, 1}.

An isotone selfmap f of a forest (tree) (7, <) is said to be a local automorphism
of (T, £) if for any pair of elements 5, t€ T, s < t the restriction f| [s, ¢] is an
isomorphism of the chain [s, t] onto the chain [f(s), f(t)]. The monoid of all
local automorphisms of (7, <) will be denoted by LA(T, <). As usually a monoid S
(with the unity e) is said to be acting on a set X if there is given a mapping,
n:SxX - X such that n(e, x) = x, n(s;s,, x) = n(s,, n(s,, x)) for all xeX,
5,,5,€S8. For a submonoid F of the symmetric monoid (X%,.) of X we put
n(f, x) = f(x) for fe F, x € X. The monoid F acts transitively on X if for any pair
of elements x,, x, € X there is f€ F such that f(x,) = x,.

Let f be a transformation—i.e. a selffmap—of a set T. The monoid C(f) =
= {geT"|fg = gf} is called a centralizer of the transformation f (in the
symmetric monoid (77, .)). In the agreement with [6] we define a binary opera-
tion o on a locally finite tree (7, <) as follows: Suppose (7, <) is an upper locally
finite tree. For s,7e€ T we put (s, t) = card [¢, sup {s, t}]—card [s, sup {s, 1}]
(both cardinals on the right hand are finite). Then we put s o t = ¢t* (where t* is the
successor of t) if i(s, t) 20 and ¢t ¢ max (7, <). If ¢ is the greatest element of (T,
<)thens =rand we put sof = t. Further, s o t = s* whenever (s, 1)< 0. If (T, <)
is a lower locally finite tree we consider the tree (7, <~ ') and the multiplication
of its elements is defined with respect to the ordering < ~! which creats the structure
of an upper tree on 7. The endomorphism monoid of the groupoid (7T, o) will
be denoted by End (T, o).

The notion of (finite) tree algebra was introduced by Ladislav Nebesky in [8].
The generalization of this notion for the case of infinite supports is investigated.
by Bohdan Zelinka in [11] where among others he characterizes tree algebras
realized by (unoriented) tree graphs. We recall first some necessary terms from [11].
A tree algebra o/ = (T, P) is an algebra with the support T and with one ternary
operation P which satisfies the following conditions for arbitrary elements ¢, u,
v,wof T:

1. P(t,t, u) =1,

2. P(t,u,v) = P(u, t,v) = P(t, v, u),

1
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3. P(P(t, u, v), usw) = P(t, u, P(v, u, w)),

4. P(t,u, w) # P(u, v, w) # P(t,v, w) = P(t, u, w) = P(t, v, w).
Let &/ = (T, P) be a tree algebra, ¢, u € T. The bounded segment of & determined
by t and u is the set S(t,u) = {xe T| P(t, u, x) = x}. Let xo, X, X5, ... be an
infinite sequence of pairwise different elements of T with these properties:
S(xo, x;) = S(xo, x;+,) for each positive integer i and for each y e T there exists

a positive integer i such that x;¢ S(xo, y). Then the set D, = {J S(xo, x;) is
i=1

called an unbounded segment of &/ with the initial element x,. A tree algebra &/
is called discrete if the segment S(u, v) in &/ for any two elements ¢, u of its support
is finite. Theorem 12 from [11] says that there is one-to-one correspondence
between exactly discrete tree algebras and tree graphs G = (7, H) given by the
rule: P(t, u, v) is the (single) common vertex of the path in G connecting ¢ and u,
the path in G connecting.¢ and » and the path in G connecting u and v.

Let (T, £) be a locally finite forest in the sense of the above definition. Denote
by (T, ¢<) the reflexion of an orientated graph (in the category of orientated
graphs and homomorphisms) determinated by the symmetrization, i.e. tocs iff
t<sors<tlIf {(T,, £)|tel} is the family of all maximal trees of (7, <)
then by &, = (7,, P,), for 1 € I, we denote the discrete tree algebra corresponding
to the (unorientated) tree graph (7, ¢<). Suppose &/ = (T, P) contains at least
one unbounted segment D, and denote by E(D,) the end of ./ determined by D,,
i.e. the set of all unbounded segments of &7 such that the intersection of each of
them with D, is also an unbounded segment. Define on E(D,) a ternary operation P*
in this way: P*(D,, D,, D,)) = D, n D, n D,, for any triad D,, D,, D,, of elements
from E(D,). It is easy to verify that (E(D,), P*) is a tree algebra—called an end,
tree algebra determined by the unbounded segment D, of the algebra . —
isomorphic to the algebra &; the corresponding isomorphism ¢: (7, P) -
— (E(D,), P*) is defined by ¢(x) = D, € E(D,) for any xe T.

Concerning the retract theory for general ordered sets see [9] and the other
papers quoted in the bibliography of [9]. A subset Q of an ordered set (S, <)
is a retract of (S, <) if there is an order preserving map g : (S, £) - (Q, =)
(called a retraction) which is the identity map on Q. In the agreement with this -
notion an ordered subset (4, <) of a locally finite forest (7, <) is said to be an
LA-retract of (T, £) if there is a local automorphism g : (T, £)— (4, £)—-
called an LA-retraction—such that g| A = id,. It is to be noted that some results
from the retract theory of ordered sets are transferable onto the considered case,
e.g. every maximal chain of a locally finite tree is its LA-retract (cf. [9], p. 104).
The minimality of an LA-retract means the minimality with respect to the natural
ordering by set inclusion.

By an Alexandroff topological space (called also quasx-dlscrete), we mean
in the agreement with [2], [3] a pair (X, t) where X is a set and 7 is a completely
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additive topological closure operation on X. Quasi-discrete T,-spaces were
investigated more in detail probably for the first time in [1]; from here it follows
the utility of the notion of continuous closed mappings (simplicial mappings)
of such spaces. The monoid of all closed deformations (i.e. closed continuous
selfmaps) of a topological space (X, 1) with the usual composition of mappings
as the multiplication is denoted by S(X, ). A mapping f of (X, 7) into (Y, o) is
called a local homeomorphism if for any point x € X there exists a t-neighbourhood
O, of x such that the restriction f| O, is a homeomorphism of O, onto f(O,).
The monoid of all local homeomorphisms of (X, 7) into itself will be denoted
by LH(X, 7). Points x, y of a topological space are called semiseparated ([4])
if there are neighbourhoods O,, O, of x, y respectively such that y¢ O, and
x ¢ O,. If moreover O, N O, = ¥ then points x, y are called separated. A topo-
logical space is said to be perfect if it does not contain isolated points.
Ends of proofs are denoted by the symbol O.

2. CHARACTERIZATIONS OF THE TRANSITIVE ACTION

Main results of this paper are formulated in this paragraph.

2.1. Theorem. Let (T, <) be a locally finite upper or lower forest, {(T,, <) | 1€ I}
be the family of all maximal trees of (T, <). The following conditions are equivalent:

1° The monoid LA(T, £) acts transitively on the set T.

2° The ordered set (T, <) has no maximal or minimal elements.

3° For any leI and each element t of the discrete tree algebra &/, = (T,, P,)
there exist <-comparable elements x,yeT,, x # t # y such that P(x, y,t) = t.

4° For any 1€ I and any element t € T, there exist at least two different end tree
algebras (E(D,), P*), (E(D;), P*) such that D] u D, is the minimal LA-retract of
the tree (T,, <).

5° For any 1€l, (T,, o) is a simple groupoid with the property End(T,, o) =
= LA(Tn é)

2.2. Theorem. Let &/ = (M, P) be a discrete tree algebra, < be an ordering on the
set M such that (M, <) is an upper or lower semilattice. The automorphism group
Aut(M, <) acts transitively on M iff the following two conditions are satisfled:

(i) For any element t € M there exist <-comparable elements x,ye M, x # t # y
such that P(x, y,t) = t.

(ii) For any pair of elements t, u € M we have card{x | x < t} = card {x | x < u}
if (M, £) is an upper semilattice, or card {x |t~ x} = card {x | u < x} if (M, £)
is a lower semilattice.

2.3. Theorem. Let (T, <) be a locally finite upper or lower antirooted forest,
{(T,, £)| 1€} be the family of all maximal trees of (T, £). The following condi-
tions are equivalent:

74



1° The monoid LA(T, <) acts transitively on the set T.

2° There exists a perfect Alexandroff topology t on the set T such that
LA(T, £) = S(T, 7).

3° For any pair of different elements a, b € T there exists a perfect Alexandroff
topology 1, , on the set T such that LA(T, £) = S(T, 1,,,) and points a, b are semi-
separated in the space (T, 1, ;).

4° There exists an Alexandroff topology o on the set T such, that LA(T, £) =
= LH(T, o) and the cardinality of the o-closure of any nonempty subset of T is
infinite.

5° For any pair of different elements a, b € T there exists an Alexandroff topology
a,,, on T having the properties from the conditions 4° and sych that points a, b
are semiseparated in the space (T, o, ).

2.4. Remark. The monoid of local homeomorphisms LH(7, ¢) from condi-
tions 4°, 5° of Theorem 2.3 can be replaced by the monoid of open deformations
(i.e. open continuous selfmaps of the considered space) and assertions remain
valid. We show now that Theorem 2.3 is justified, i.e. used notions-as closed
deformation, open deformation, local homeomorphism do not coincide in the
case of Alexandroff —i.e. quasi-discrete spaces.

Consider the set of all nonnegative integers N and the left order topology ¢~ on
N; thus closures of singletons {n} = N are sets t {n} = {n,n + 1,n + 2, ...}.
Define a mapping f: N - N by putting f(0) = 1, f(n) = n for n > 1. Evidently
feS(N,t7), f¢ LH(N, t7) and f is not an open deformation of the space (N, t7)
as well. But on the other hand fis an open deformation of the dual space (N, t+),
f¢ S(N, *) and simultaneulosly f¢ LH(N, t*). Further, put g(n) = n + 1 for each
n e N. The mapping g is a topological embedding of the space (N,t7) into itself,
hence ge LH(N,77) n LH(N,t*). However g is not an open deformation of the
space (N,77) and g¢ S(N, t*) as well.

3. PROOFS OF CHARACTERIZATION THEOREMS

Proofs of theorems introduced in the previous paragraph will be divided into
the sequence of proofs of auxiliary assertions.

3.1. Lemma. Let (T, £) be an upper or lower locally finite forest. The monoid
LA(T, £) acts transitively on the set T iff Max (T, £) u Min (T, £) = 0.

Proof. The assertion follows immediately from [10]—assertion (a) of
Theorem 1. O

3.2. Lemma. Let {(T,, <) |t eI} be the family of all maximal trees of a locally
finite forest (T, £). The following conditions are equivalent:
(i) Max (T, £) u Min (T, =) = 4.
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(ii) For any 1€ I and each element t of the discrete tree algebra o, = (T,, P,)
there exist <-comparable elements x,ye T,, x # t # y such that P,(x, y,1) = t.

(iii) For any 1€ I and any element t € T, there exist at least two different end
tree algebras (E(D,), P*), (E(D;), P*) such that D; U D, is the minimal LA-retract
of the tree (T,, <).

Proof. Implication (i) = (ii) follows immediately from the definition of the
discrete tree algebra &7, realized by the trée (7,, <); condition (ii) says in other
words that any element of the tree algebra &7, is an internal element of a suitable
bounded segment which is a chain with respect to the ordering <.

(ii) = (iii): Let 1 € I be an arbitrary index, t € T, be an arbitrary element. Condi-
tion (ii) implies that the degree of the vertex t of the tree graph (T}, g,) is at least 2
and moreover x < t < y for a suitable notation. Using the mathematical induction
we construct chains D,, D; of the type w, w* respectively such that D; U D, is
a chain (with respect to <) of the type w* + , hence tree algebras (E(D,), P¥),
(E(Dy), P*) are different. For any element x € T, denote by f(x) the unique element
of D; U D, such that (x, f(x)) = 0. Then f: T, » D, u D, is an LA-retraction
and D; U D, is evidently a minimal LA-retract of the tree (7,, <).

(iii) = (i): We prove this implication for an upper forest. The proof for the
case of a lower forest is similar. Admit first Max (T, <) # 0. For aeMax (7T, £)
denote by (T}, <) the tree the greatest element of which is a. According to (iii)
the tree (7,, <) contains at least two different infinite chains D,, D, (of the type
o*) each of which is an LA-retract of (7,, £) (the corresponding retractions
are defined similarly as above). Hence D, u D, can not be a minimal retract.

Now admit Max (7, £) = 0 and Min (7, £) # 0. Let be Min (T, £) be an
arbitrary element and 1 € I an index such that b € T;. By (iii) there exist two different
unbounded segments D,, D; of the tree algebra &, = (T, P,) such that D; u D,
is @ minimal LA-retract of (7,, <). Then D; u D, has no upper bound. Since in
the opposite case, if ¢ denotes-an arbitrary upper bound of D, u D, then any
local automorphism g assigning to an element x > g an element g(x) e D; U D,,
is not an LA-retraction. Since D, U D, is unbounded (as a subset of (7,, £)),
exactly one of segments D,, D, —say D, is a chain of the type w. Since D, # D;,
the set D, n Dj is finite. Denote by d the greatest element of D, n D, and put
R = (D,+Df) u {d} (where + means the symmetric difference of sets). Since
(R, £) is a chain of the type w* + o, it is an LA-retract of (7,, £). But RS
f D; u D,, which is a contradiction. Therefore min (7, £) u max (T, £)=60. O

3.3. Lemma. Let (T, £) be a locally finite forest. Then max (T, £) U min (T, £) =
= 0 iff for every maximal tree (T,, <) of (T, £) the groupoid (T,, o) is simple and
End(T,, o) = LA(T,, £).

Proof. (We consider the case of an upper forest only; for the case of lower
forests the proof is quite similar).
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Suppose Max (T, £) U Min (T, <) = 0. Let (T,, <) be an arbitrary maximal
tree of (T, <), A # 0 be a both-side ideal of the groupoid (7, o). Admit T, \ A # @
and toe T, \ A. Since t, is not a minimal element of (7,, <), there is ¢, € T,,
such that t; =ty and ¢, ¢ A (for t, o, = t,). Since tot = t* for each element
te T, we have A is a dual ideal of the ordered set (T',, <), thus ¢, < a for some
acA. Thenaot, =t oa = ty¢ A, a contradiction. Hence 4 = T,.

Now we prove the equality LA(T,, £) = End(T,, o). Suppose fe LA(T,, =),
a,beT, If 5(a,b) < Owe haveao b = a*, f(aob) = f(a*). Put ¢ = aV b. Then
card [ f(a), f(c)] = card [a, c] = card [b, ¢] = card [f(b), f(c)], thus 5(f(a), /(b)) S
< 0 and from here f(a) o f(b) = (f(a))*. Since f maps the two-element chain
[a, a*]isomorphically onto the two-element chain [ f(a), f(a*)], we have (f(a))* =
= f(a*), thus f(a o b) = f(a) o f(b), i.e. LA(T,, __) < End (7, o). Suppose now
feEnd(T,,0), a,beT,, a<b. Let ty,<t;, <..<t, be a chain such that
teT, to=a,t,=b, t;,, =t} fori=0,1,....,n— 1. Then tyoty, = tg =t,,
consequently f(t,) = f(to o 1) = f(to) o f(to) = (f(to))*. From here we get that
the interval [a, b] of the tree (7,, <) is isomorphic with the interval [ f(a), f(5)],
hence feLA (T}, £), i.e. End(T,, o) « LA(T,, £). Therefore LA (T,, £) =
= End (T,, o)

Now admit Min (7,, <) # @ for some maximal subtree of the forest (7, <).
Suppose t, € Min (T,, <) and put 4 = T, \ {t,}. Then for every pair of elements
teT,ae Awehavetoae A, aote A, which means that 4 is a proper ideal of the
groupoid (T,, o), which contradicts the assumption. Hence Min (7}, <) = 0.
Admit the tree (T,, <) has the greatest element s. By the assumption LA (T,, £) =
= End (7}, o) and s o 5 = &, consequently f(s) = f(s 0 5) = f(s) o f(s), i.e. f(s) = s
for every local automorphism f of the tree (7,, <). Since Min (T,, <) = 0, the
tree (T,, <) contains a decreasing chain of the type w* with the greatest element s,

s=1y>t; > ..Putg(t) =1t,,fori=12,..,andg(t) = g(t,) for any element
te T; with the property 8(¢;,¢t) = 0. Then ge LA (T,, <), but g(s) =1, # s,
a contradiction. Hence Max (7, ) u Min (T, £) = 0. O

3.4. Lemma, Let (T, <) be a locally finite upper (lower) forest. If Max (T, <) =
(Min (T, £) = 0) then there exists a transformatwn feTT with the property .
Cr(f) = LA(T) S).

Proof. A locally finite upper forest (7, <) without maximal elements is
a functional graph of some transformation f of the set T (without fixed points).
For any element ¢ € T we have f(t) = t*. Suppose g € C1(f), t€ T. Then (g(t))* =
= f(g(?)) = g(f(t)) = g(t*). Using the mathematical induction we get that for
every pair t,,t, €T, t, < t, the restriction g| [#;, £.] is an order isomorphism
of the interval [1,, ¢,] onto the interval [g(t,), 8(t2)]. If g € LA(T, £), t€ T, then
£g) = (g(O)* = g(t*) = g(f(t)), thus g e Cy(f). Therefore we have C(f) =
= LA(T, £) in the case of an upper forest. If (T, <) is a lower forest then each
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of its elements has at most one predecessor. For t € T \ Min (T, <) we putf(t) = s,
where s* = ¢; if e Min (T, <) we put f(t) = t. The other part of the proof is
similar to the above one. 0o

3.5. Remark. With respect to Lemma 3.4 we get easily the following assertion:
If (T, <) is an upper locally finite forest, f : T — T'is a mapping such that f(t) = ¢+
for every t € T\ Max (T, £) and f(¢) = ¢ for ¢t € Max (7, <) then C(f) = LA(T, <)
iff Max (T, £) = 9.

3.6. Lemma, Let (T, <) be a locally finite tree without maximal and minimal
elements. For every pair of different elements a,be T there exists a perfect
Alexandroff topology t,,, on T such that LA(T, £) = S(T, 1, ) and points a, b are
semiseparated in the space (T, 1,,;).

Proof. If (T, £)is an upper locally finite tree, we put f<(x) = x* for any x € T;
if (T, <) is a lower tree, we put f<(x) = x** where x** is a successor of x with
respect to the ordering < ~! (inverse to <). Thus we can suppose without lose of
generality that (T, £) is an upper locally finite tree. In what follows we write
only f instead of f.

Let a, b be arbitrary elements. Assume a || b in (7, <). Put 1, , = 1, ([5]) p. 84)

ie. ,,X=1,X=Xu U f4X) for any subset X of 7. Since Min (7, £) =
25k<o
= {x| f~'(x) = 8} = 0, the space (T, 1,,;,) does not contain isolated points and

points a,b are separated (e.g. their 7, ,-neighbourhoods formed by principal
ideals (a]<, (b]< are disjoint) and thus semiseparated. By Lemma 3.4 we have
Cy(f) = LA(T, £) and by [5] Theorem 3.3 the equality C(f) = S(7, t,,;) holds.
Hence LA (T, £) = S(T, 7,,5)- Now suppose a, b are comparable. Assume a < b
(the case b < a is similar). If a* = b, we put 7, , = 7, again. Since the least
7,,,-neighbourhood O, = (b] \ {x | x < b} of the point & does not contain the
point a, these points are semiseparated. Assume n =2, a<a;, <a, < ..~
@,-y < b. We put 1, =1 ([5] p. 84), i.e. tPX=XuU U f*X) for any

nt1sk<o
subset X of T. Since the least neighbourhood of an arbitrary point x of the space

(T, ) is the set O, = {t|fX¢) = x, keN\ {1,2,...,n}}, we have a¢ O
hence points a, b are semiseparated in the space (7, 7%"). Further, Min (7, £) = %
consequently the space (T, 7$") is perfect.

Now we prove the equality C;(f) = S(T, t{”). Suppose ge Cr(f), teT. We
have gtf{t} = {gfM) | k=0,n+ L, n+2,.}={f'e() | k=0,n+1,n4+2, ..} =
= tP{g(t)} and thus giPX = geP Ut =g(UPEP=UY t?'){g(t)} =

x

te teX teX
=t U {6} = ’g(X). Bvidently ge8 = 1g(6), thus g S(7, ), Hene®
. .

Cr(f) = S(T, ). Now assume g € S(T, 2{"), t e T. Admit f**%g(t) < gfr(r). Sinc®
ef‘f'"{q = tPle()} and gP{f"()} = «P{gf"(r)}, we have g ([fr+ig(t)s |
N e o OD) < U ) \ [ s = [ Ot )5
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If we admit the existence of an element s € [f3"* '(t)) 5 such that g(s) WAREY10) PR
V(L) © &), we get g (D} # <P {gf"(1)}. But card [[f"* (1) \
v[Fr )] = mocard [[rtig@)s N M ()s L {gfO) = n +
+ card {x € T|f"*'gt) < x <gf(t)} 2 M+ 1, a contradiction. Thus for any
element ¢ e T the quality

1) gf"(1) £ f"e(t)

holds. Suppose gf"(t) = f"*'g(¢). since g e{f"*'g()} v [fz"“g(l))g for each
xe[fa+1(e)<, we have g[f"*1(r), f2"(1)] = [f"*2g(t), f>"*'g(t)]. Consider the
element gf**!(¢). Since f2"*2g(r)¢ ™{gf"*1(r)}, simultaneously {f"*'g(t)} u
U [ 2(1) s < gLf" (1)<, 27 2g(t) < g(x) for any x € [f2"*2(¢)), we have
gf"* (1) = f3"*2g(t). Therefore we get the inclusion

) gl @)s = [ 2g()s.

Further, f"*!g(t) e 1(,"){80 )} geS(T, ';(f”)) thus for some element xe t(,"){t} it
holds g(x) = f"*'g(¢), which contradicts the inclusion (2) for t{{t} = {t} U
v [fn“(t))_s_ .

Suppose gf"(t) € [fg(t), f*~'g(t)]. Let u€ T be an element such that f(u) = t.
Admit g(u) < g(t)- Since f"g(t) € 1{g(w)}, we have g~ '(f"g() N[+ ()5 # 9,
further x e T, f*'(¢) < x implies g(x) ¢ [ f2(¢), f"g(t)], hence g(t) < g(v), a con-
tradiction. The assumption gf"(¢) < g(t) leads to a contradiction again. Indeed:
Admit gf"(t) < g(t). Then f"g(t) e t{gf"(t)}, thus there exists x, € T{f"(¢)}
such that g(xo) = f"g(t). But x, e tP{t} for f2"*(t) < x, and simultaneously
g(xo) = fg(t) ¢ 7"{g(t)}, a contradiction. _

We have got up to now that for every element x € T exactly one of the followin
cases occurs:

1° gf"(x) = glx), 2° gf"(x) = f"g(x).

It is to be noted for the sake of completeness that the case gf"(m) || f"g(x), i.e.
gf"(x) || g(x) leads to a contradiction, since Min (7, <) = # thus f"*'()) = x
for some y € (x] ¢ hence f"(x) € P}, xe r_(;'){ y}. From here g(x) € ©P{g()}, i.e.
g(x) g(») and at the same time gf"(x)¢ t{g(y)}, which contradicts the fact
that g is a closed deformation of the space (7, 1:(,"’). .

Let t € T be an arbitrary element. Suppose 1° holds, i.e. gf*(t) = (¢ ). Consider
the element f27(t) = f"(f"(r)). Since the equality gf"f"(t) = S"gf"(t) contradicts the
assumption g e S(T, 7{") for f2"(t)e1P{r} and fgf"(t) = f ng(t) ¢ 1 {g(D)}, we
have gf?"(r) = g(t). In the same way we get gf>(t) = g(¢) and &*'(t) = g(t) for
any k = 1. On the other hand f° e e t(,"){g(t)} thus there exists Xo er‘,"’{t } Gee.
xo € [f"*!(t))<) with the property g(x,) = f"*'g(r). Let k be a positive integer
such that f¥(r) < xo < f&* (). Then pot1(xp) < fr+if*k+vn(t) = fEF204 (),
thus f**1(x,) < f**27(¢), hence f**2"(r) ¢ t9{x,}. From here g =gf** (e
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€ 1{g(x)} = t{’{f**'g(1)}, a contradiction. Therefore gf"'(t) f"g(¢) for every
element t€ T.

Let g € S(T, ©{”) be an arbitrary closed deformation, r € T. We have 7~ D{r} ="
=19t} U {/"(O)}, thus g7~ V{t}) = g(zP{t}) U {gf"(1)} = P {g()} L {f"g(t)} =
= 0" V{g(1)}, hence g(x{'~VX) = 1" Vg(X) for any subset X = 7. We get that
monoids of closed deformations form a chain with respect to the set inclusion:

S(T, ) = S(T, 1§~ Me..cs(T, 7).

But S(7,1,) = C;(f) by the above mentioned Theorem 3.3 from [S] which
implies S(T, %)  Cr(f). With respect to the above proved opposite inclusion
we get the equality. The proof is complete. O

3.7. Remark. The generalization of Lemma 3.6 for the case of locally finite
forest is evident, since it follows from the proof of the mentioned lemma that it is
inessential whether a selfmap of a locally finite tree or a mapping of a treé into
another one is considered. (All trees are supposed to be without maximal and
minimal elements). Thus the notion of a tree in Lemma 3.6 can be replaced by the
notion of a forest and the assertion remains true.

3.8. Lemma. Let (T, £) be a locally finite upper (lower) antirooted forest, t be
a perfect Alexandroff topology on T such that S(T,t) = LA(T, £). Then
Min (T, £) = 9 (Max (T, £) = 9).

Proof. Suppose (T, <) is an upper forest. Since Max (7, £) = 0, putting
f(#) =1t* for any reT, we have Cy(f) = LA(T, £) by Remark 3.5. Let
{(T,, £)lteI} be the collection of all maximal subtrees of the forest (7, <).
Smce C(f) = S(T, 1), by [5] Theorem 4.1 exactly one of the followmg cases
occurs:

1° Min(T,, £) = 0 for any 1€ 1.

'2° 1€l implies that either (7,, <) is a chain of the type w* + w or T, =
= K, U Min (T,, £), where (K,, <) is a chain of the type w* + w and
Min(T,, =) # 0.

3° IEI implies that either (T,, <) is a chain of the type w* + w or T, =
= Min (T,, £) u T/, where Min (T,, <) # 0 (card T} = N,) and for every pair
of elements S€ Mm( s <), te T, itholds s < t.

With respect to the above conditions 1°, 2°, 3° and the equality C(f) = S(7, 1)
we get easily that all components T,, 1€ are closed subsets of (7, 7). Admit
Min (T,, £) # 0 for some 1€ L. Let t € Min (7,, <) be an arbitrary element and
put X =T, \{t}. If t* = x* for some x € X, we define a mapping g : T—> T
in such a way: g(t) = x, g(s) = s for se T, s # t. Clearly, ge Cr(f) = S(T,, 1)
thus 1g(X) = g(tX) = X, hence X = 1g(X) = t18(X) = tX. If the element x # ¢
having the property x* = t* does not exist (i.e. (T,, <) is a chain of the type w)
we define g : T— T as follows: g(s) = s* forseT,, g(s) = sforse T\ T,. The
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assumption f € X implies (with respect to the fact g € S(T, 7) and the z-closedness
of T,) that 1g(X) = g(zX) = X, i.e. te X = X — a contradiction. Hence 7 ¢ tX,
i.e. the set X is closed. Then {t} is an open subset the existence of which contradicts
the assumption of the perfectness of the space (T,t). Consequently the set
Min (T;, £) is empty.

It (T, £) is a lower forest, we deﬁne the transformation f using predecessors of
elements of the forest (T, £) and the proof of the equality Max (T, <) =0
coincides with the just previous one. ]

3.9. Lemma. If (T, <) is a locally finite antirooted forest then S(T, ©) = LA(T, £)
for some perfect Alexandroff topology t on the set T iff there exists an Alexandroff
topology o on T such that LH(T, o) = LA(T, <) and the a-closure of any nonempty
subset of the set T is infinite.

Proof. Let t be a perfect topology of Alexandroff on T such that S(T, 1) =
= LA(T, £). Denote by o the Alexandroff topology dual to . The least s-neigh-
bourhood of any point x € T is the t-closure t{x} thus S(7, ) = LH(T, o). Since
(T, £) does not contain any maximal or minimal element and every local auto-
morphism g € LA(7, £) such that the g-image of T is a chain of the type o* + @
is a closed deformation of (7, t), we have t{t} is a chain for each ¢ € T. Further,
S" € S(T, <) for each n e N (where f(¢t) = t* for t e T) thus {t} is a cofinal subset
of (T, <) (in the case of an upper forest) and coinitial subset of (7, <) in the case
of lower forest. Consequently, o-closures of singletons are infinite. Now o is
supposed to be an Alexandroff topology on T satisfying conditions from the lemma.
Then o* (the dual topology to o) has this property: S(T, 6*) = LA(T, £~%) =
= LA(T, £) and the space (7, ¢*) is perfect. —

3.10. Lemma. Let (T, <) be a locally finite forest. For any pair of different elements
a,be T there exists a perfect Alexandroff topology 1, , such that S(T,<,,) =
= LA(T, £) and points a, b are in the space (T, t,, ) semiseparated iff for any pair
of different elements c, d € T there exists an Alexandroff topology o, on T possessing
the following properties:

(i) LH(T, 0.,4) = LA(T, £),
(u) card o, X 2 N, for every nonempty subset X c T,

(iii) points c, d are semiseparated in the space (T, o, ,).

Proof. Similarly as in the proof of Lemma 3.9 using the dual topology we get
the equivalence of the above stated conditions. m]

Proof of Theorem 2.1: The scheme of the proof is the following one (1°_-5°
are corresponding conditions):

1P = 2° ==>3°

5 «
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The equivalence 1° <> 2° is given by Lemma 3.1, implications 2° = 3° = 4° = 2°

by Lemma 3.2 and the equivalence 2° <> 5° is given by Lemma 3.3. O
Proof of Theorem 2.2 follows from Theorem 2.1 with respect to [10] Theorem 1,
part (b). O

Proof of Theorem 2.3: The scheme of implications is as follows:

P/ 20‘\ /4°

30 L. —, 50

The implication 1° = 3° follows from Lemma 3.6 with respect to Remark 3.7 and
Lemma 3.1. The implication 3° = 2° is trivial, 2° = 1° is given by Lemma 3.8
with respect to Lemma 3.1. The equivalence 3° <> 4° is established in Lemma 3.9
and the equivalence 3° <+ 5° in Lemma 3.10. a

3.11. Remark. Characterizations contained in Theorem 2.3 have been obtained
under the essential assumption of the antirootedness of considered trees. Characteri-
zations without this assumption or ocassionally with the assumption of existence of
branches in all trees seem to be an open problem. Another special problem solving
of which does not follow from the above considerations is the question of the
realizability of local automorphism monoids of finite trees by closed deformations
of a topological space.
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