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BOUNDEDNESS AND OSCILLATORINESS
OF SOLUTIONS OF A NONLINEAR DIFFERENTIAL
EQUATION OF THE SECOND ORDER

STEFAN KULCSAR and PAVEL SOLTES, Kogice
(Received October 16, 1980)

In this paper we shall investigate some properties of solutions of the differential
equation

1) a(t) x" + b(1) g(x, x') + f(t, x) h(x') = r(2),
or
(1) a(t) x” + b(1) g(x, x’) + [1 + (D] ¢, x) h(x") = r(),

where 0 < a(t) e C'(lp), 0 < b(t) € CIy), c(t) e C'(I,), g(x,y)e C(Ry), f(t,x) €
e C(D), —g{—e C(D), 0 < h(y) e C(R)), I, = {ty, ), tg € Ry = (—0, oo),- R, =

= R, xR, and D = I, X R;.

In the first part of this paper there are introduced some sufficient conditions
for a solution x(#) of equation (1) or (1’), which satisfies in #, a certain condition,
to be bounded o1 bounded together with its first derivative. In the second part of
this paper there are introduced theorems, which deal with the oscillatoriness of
solutions of the equation (1), where r() = 0 for every ¢ € I,. The results introduced
in this paper generalize, or complete some results of [1]—[8].

I
We introduce the following notation:

F(t, x) = 5 f,5)ds, HG)=[~ds, H = min{lim H), lim H)}
0 o h(s)

y—= o )y -®
and
_Je®)  for o(1) >0,
{e@}, = {0 for ¢(t) £0.
We have
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Theorem 1. Let the following conditions hold;

1.a'(t) £ 0 for every tel,;

2. there exists a constant k > 0 such that yg(x, y) h(y) 2 ky* for every (x, y) € R,;

3. for every continuously differentiable function u(t) on {ty, T) where T £ oo,

which is unbounded for t — T _, there exists a sequence {tp}n=15>t, — T_ for n — o,
such that

oF(t, u(t)) F(t, u(t,)

ot ar -

fort, £tst,

and
lim F(t,, u(t,)) = Fy,

with F-l < oo independent of u(t).
If in addition
0) | ’b((s)) ds = K < oo,

then every solution x(t) of (1) which satisfies the inequality

, K
3) Ko = a(to) H(x'(t0)) + F(to, x(t5)) + % <Fo
is bounded on its domain.
Proof. Let a solution x(¢) of (1) be defined on {¢,, T). Suppose that it satisfies

the condition (3) and lim sup | x(f) | = co. Multiplying (1) by ——"— x'(t) and arrang-
t-T_ h(x (t))

ing we get
a(t)—:?H(x M) + —;—F(t, X(1) + kb(t )[ h? (3))]
x'(t) _ OF(t, x())
h(x') ~ o0t

Using the fact, that for arbitrary real numbers a, b and x, if @ > 0 then

- ()

2

2
> e —
ax® + bx = 3a’

from the last inequality we have

)< (X (1) + <= F( xp) < FEx@) | L r®

ot 3k b(t)
Integrating the last inequality from #, to ¢ € (fo, T) we obtain
dF (s, x(s))

@  a@®H'@®)+ F(t, x(1)) < Ko + _f 75 ds + j'a’(s) H(x'(s)) ds.
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‘Since lim sup | x(f) | = oo, there exists a sequence {t,}nxy, t, = T for n = oo,
t-T-

such that
OF(t, x(1) _ OF(t, x(t,)
ot = - 0t

for to§t§tu

and lim F(fo, x(t,)) = F,. Using the assumptions of theorem from (4) we get

" OF(s, x(5)) ds
Os

F(t,, x(t)) S Ko + | = Ko + F(t,, x(t,)) — F(to, x(t,)),

hence for n = o© we have
lim F(to, x(t,,)) = F; £ Ky,

n— o -
which contradicts the assumption (3). This completes the proof.
Theorem 2. Let the hypothicses of Theorem I hold with the exception of assumption 3

instead of which we assume that for any sequences {t,}o-1, {Xa}n=, Such that for
n— o, t, >, |Xx,| > o and

(5) lim F(t,, x,) = F,.

n—> o

If in addition

F
® dF(t, x)

T <0  for every (t,x)eD,
then every solution x(t) of (1) which satisfies the inequality
@) Ky < F,

is bounded on its domain.
Furthermore if

(8) alt) Zay >0, f(t,x)x =20 for every tel, and (t, x) € D,
then the first derivative of an arbitrary solution x(t) of (1) which satisfies the inequality

_I_<_2<H’
ao

is bounded on its domain, too.
Proof. Using assumptions from (4) we get
) F(t, x(1) £ Ko-
Let the solution x(¢) of (1) satisfy the condition (7) and limsup | x(f) | = oo,

t-T.
where (ty, T) is the domain of x(¢f). Suppose that T = oo. Then there exists
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a sequence {t,},°., such that, for n - oo, t, = 00 and lim | x(t,) | = 0. From (9)

t = t, we have
FZ = lim F(tna X(t,,)) é KO’

contrary to (7).
Now let T < oo, {t,},=; be a sequence such that for n - o, t, - T_ and
lim | x(t,) | = co. Define a sequence {r,}7., such that for all n ¢, < t, and

| Sad" <]
limt, = co.
| Sudl- o}

Using the assumption (6) from (9) we obtain

F(t,, x(1,)) S F(t,, x(t,)) £ Ko,
hence for n - o
F, £ K,,
which is again a contradiction.
Furthermore we suppose that (8) holds. Then from (4) we get

a(t) Hx'(?) £ K.

If for the solution x(¢) in ¢, the inequality K, < ayH holds and x'(¢) is unbounded,
then there exists a sequence {¢,},=, such that

= lim H(x'(t,)) < 5—-
ao

n—aow
which is a contradiction. This completes the proof.

Remark 1. If r(t) = 0 and A(y) = 1, then from Theorem 1, or Theorem 2 we
get Theorem 1, or Theorem 4 in [3] Furthermore, if b(¢) g(x, y) = 0, then
Theorem 1 gives Theorem 1 in [2].

Corollary 1. Let the hypotheses of Theorem 2 hold. If H = oo, then every
solution x(¢) of (1), which satisfies the inequality (7), is bounded on {fy, ®)
together with its first derivative. If H < oo, then every solution x(f) of (1) which
satisfies the inequality

K, < min {a,H, F,},

is bounded on {¢,, o) together with its first derivative.

Proof. From Theorem 2 it follows that x(¢) and x'(¢) are bounded on {75, T).
Hence by the theorem of the extension for the solution it follows that 7 = co.

Theorem 3. Let a(t) > 0, a’'(t) 2 0, f(t, x) x = 0 for every te I, and (t, x) € D.
Moreover, suppose that the assumption 2 of Theorem 1 and the assumptions (2)
and (6) hold. Then the first derivative of an arbitrary solution x(t) of (1) which
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satisfies the inequality
Ko
—<H
a(to)
is bounded on its domain.
If in addition
lima(t) =a, < ©

t= o0

and (5) holds, then every solution x(t) of (1) which satisfies the inequality

is bounded on its domain.
Proof. From (4) by the assumptions of theorem it follows

a() H(x'(t)) £ Ko + f a'(s) H(x'(s)) ds.

By Bellman’s lemma the last inequality then yields

K,
a(to) ’

from which analogously as in the proof of Theorem 2 the boundedness of x'(r)
follows.
Furthermore from (4) it follows

H(x'() s %

F(t,x(t)) S Ko + f q'(s) H(x'(s)) ds,

too; hence
. K,

F(t, x(t)) S Ko + a(ty)

a(l ) (a(t) a(to)) é a
The further process is analogous to that of Theorem 2.

If we assume that a(f) > 0 and (6) holds, then the relation (4) can be arranged
as follows

a(t) H(x'(t)) + F(t, x()) < K, + j {a'(9)}+H(x'(s))ds <

{a (3)} +

<K, + j —>32 {a(s) H(x'(s)) + F(s, x(s))} ds;

. hence

a(t) H(X (t)) + F(t, X(t)) < Ko exp I {a ((s))}+ ds.

It is obvious that the following theorem holds.
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Theorem 4. Let the hypotheses of Theorem 2 hold with the exception of the as-
sumption 1 instead of which we assume that a(t) > 0 for every t e I, and

{a (9)}+ -
,{ o

Moreover, suppose that for every (t, x) € D it is f(t, x) x = 0. Then every solution x(t)
of (1) which satisfies the inequality

K; < 0.

Kyexp K, < F,,
is bounded on its domain.
If in addition (8) holds and

Ko expK; <H,
ao
then x'(t) is bounded on its domain, too.
Remark 2. The assumption (6) in the previous theorems can be replaced by the

assumption:
there exists a continuous function ¢(¢) such that

aFg, x)éfp(t)F(t,x) forevery tel, and (1, x)eD,

with
(10) ]?{qo(s)}+ ds = K, < 0.

.

From (4) we have
' a(t) H(x'(1) + F(1, x() =

<K, + tj [{a ((s))}+ + {p(s)}+ ][a(s) H(x'(s)) + F(s, x(s))] ds

i.e.
a(s)

If the solution x(r) of (1) is defined on <¢,y, o0), then we can easily prove e.g. the
following theorem.

a(t) H(x'()) + F(t, x(1)) £ K, exp j [ {a®)}s + {o(s)} + ]

Theorem 4'. Let the hypotheses of Theorem 4 and (10) hold. Then every solution
x(¢) of (1) which satisfies the inequality

K, exp (K; + K3) < F,
is bounded on {ty, ).
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If in addition (8) holds and

%exp(Kl + K,)<H,
0

then x'(t) is bounded on {t,, ), too.

Remark 3. Evidently, if F; = oo, then under the assumptions of Theorem 1
every solution x(¢) of (1) is bounded. Analogously if F, = H = oo, then under
the assumptions of Theorems 2—4’ every solution x(¢) of (1) is bounded or is
bounded together with its first derivative.

Analogously as for the equation (1) it can be easily shown that for equation (1")
it holds:

oF (s x(s))

a(®) H(x'(t)) + [1 + c(t)] F(t, x()) < K + j [1+ c(s)] ds +

+ j c'(s) F(s, x(s)) ds + j a'(s) H(x'(s)) ds,

where
Ko = a(to) H(x'(t)) + [1 + c(to)] F(to, x(to)) + %

If we assume that 1 + ¢(¢) > 0 for every t € I, and that (6) hoids, then from the
last inequality it follows:

a(t) HX'(9) + [1 + c(®)] F(t, x(1)) <

O} P CAO)
< Koexpj' [1 o) + 2G) :Ids.

By the last inequality it can be easily proved e.g. the following theorem.

Theorem 5. Let the hypotheses of Theorem 4 be fulfilled and suppose that 1 + ¢(f) =
= ky > O for every t €1y, where k, is a constant. If F, = H = oo and

2 {G)} .

g (s)ds K; < oo,

then every solution x(t) of (1') is bounded on {t,, ) together with its first derivative.
Remark 4. Theorem 5 generalizes Theorem 8 and Theorem 21 in [3].

Theorem 6. Suppose that the following assumptions are fulfilled;

1.b6(t) 20 and g(x,y)y = 0 or b(t) £ 0 and g(x,y)y < 0 for every te I, and
(x, ) € Ry;
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2. there exist non-negative numbers m and M such that

—ll—’—= m + MH(y)

»
for every y e Ry;

3.M|r(t)| + a'(f) S 0 for every tel,.
If

an flr(s)|ds = K, < 0
to
and the assumption 3 of Theorem 1 holds, then every solution x(t) of (1) which
satisfies the inequality
K3 = a(to) H(x'(t)) + F(to, x(t5)) + mK, < Fy,
is bounded on its domain. ‘

Proof. From (1) we get

d ., d b(t) g(x(t), (1)) X"
o) ) + 57 e x0) + HOLELZO0
x'(¢)

h(x'(1)

hence by the assumptions of theorem, integrating from ¢y, to te€ (t,T), we get

_ 3F(t{,3 :c(t)) +r(t)

12) a(t) H(x'(t) + F(t, x(1)) < K% + ; BI;Es, x(s)) ds +

+ M } | 7(s) | H(x'(s))ds + _tf a'(s) H(x'(s)) ds,
ie.

a(t) H(x'(t)) + F(t, x(t)) < K§ + f _@f%lsf_(i))_ ds.

The further process is analogous to that in the proof of Theorem 1.
By analogy with Theorem 2 we can prove the following theorem.

Theorem 7. Let the ‘hypotheses of Theorem 6 hold with the exception of the as-
sumption 3 of Theorem I instead of which we assume that (5) holds.
If (6) holds, then every solution x(¢) of (1) which satisfies the inequality

K< F,,

is bounded on its domain.
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If in addition (8) holds, then even the first derivative of an arbitrary solution x(t)
of (1) for which
Koy
— < H,
ao

is bounded on its domain.
Theorem 8. Let (5), (6), (11) and the assumptions 1 and 2 of Theorem 6 hold.
Moreover, suppose that for every (t, x) € D it is f(t,x) x 2 0.

If

? M|r(s)| + {a'Cs

}+
ds = K5 < o0,
to a(s) s

then every solution x(t) of (1) which satisfies the inequality

KsexpKs < F,
is bounded on its domain.

If in addition (8) holds then even the first derivative of an arbitrary solution x(t) of
(1) for which

*
Eﬁexp Ks <H,
o

is bounded on its domain.
Proof. From (12) it follows
a(t) H(x'(t)) + F(t, x(1)) < Kg +

t MRS | + {26}
+! a(s)

[a(s) H(x'(s)) + F(s, x(s))] ds,!
i.e.
a(t) H(x'(t)) + F(t, x(t)) < Kg exp Ks.

Now, the proof can be completed exactly as the proof of the previous theorems.

Remark 5. If we replace (1) by (1'), Theorems 6-8 remain to be valid.

The following theorems deal with the unboundedness of solutions x(z) of (1).
We have

Theorem 9. Let for the equation (1) a(t) > 0,'b(t) < 0 for every t eI, (instead
of b(t) > 0) and let the assumption 2 of Theorem 1 be fulfilled.
If for every tel,, xe R, and (t, x)e D it is

OF(t,%) o

a@)z0, flt,x)x=0, TR
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then every solution x(t) of (1) defined on {t,, ) such that

a(to) H(x'(t,)) + F(to, x(to)) + alk_ ‘}’ 2 ((s)) ds = Kq > 0,

is unbounded for t - .
x'(t)
h(x'(2))
d , d x'(t) ]2
a(t) =—— H(x'(t)) + — F(¢t, x(t)) + kb(t)| ——— | —
O-2 (e (0) + < F(t,x(0) <)[h(x,m)
x'(t) > OF(t, x(t)).
h(x'(r)) ~ Ot
Using the fact, that for arbitrary real numbers a, b and x, a < 0 implies

b2
< ——
2+ bx a5

Proof. Multiplying (1) by and arranging we get

- r®)

the last inequality yields, integrating from ¢, to ¢ € (¢, ),
a(f) Hx'(1)) + F(1, x(9)) 2 a(to) H(x (1)) + F(to, X(to)) +

1 ® Z(S)

+ 75 _[ N0} ——ds + fa(s)H(x(s))ds

Therefore for every t € (t,, ©) it is

a() H(x'(t)) = K, + jf a( ) a(s) H(x'(s)) ds.

By Bellman’s lemma the last inequality then yields

a() H(x'(t)) =2 K, exp[In a(t) — In a(te)] = Ko -5 tzgt))

Therefore for every ¢ € (¢, o0) it is

(13) H(x'(t)) 2 (t ) > 0.

Since H(y) € C(R,), there exists X}, sgn x, = sgn x'(,), such that H(x(,) = afto) .
0

From (13) it follows, that for every e <{t,, 00) it is x'(f) # 0, i-€. X'(¢) does not
change 1ts sign. Let x'(t,) > 0, then it is x'(f) > O for every ¢ € (fo, ®). Therefore

it is

H(y) = h(y) >0

fory = x'(¢), i.e. H(X'(¢)) = H(x (to)). Hence x'(f) = xj, from where lim x(r) = oo
follows. e
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dH(y)

Now let x; < 0. Thenitis x'(¢) < 0 for eveny ¢ € {t,, ©) and therefore O <
<0 for y = x'(t). From H(x'()) = H(x'(¢,)) it follows that x'(f) < x;. This
means that lim x(¢f) = —oco. This completes the proof.

t—> o0

Theorem 10. Let the assumption 2 of Theorem 6 be fulfilled. Moreover, suppose
that the following assumptions hold:

1L.b(t) 20, gx,»)y <0

or

b(1) =0, glx,9)y 20
Jfor every t € I, and (x, y) € R,;
0F(t, x)

2.4 -M|r(t) |20, f(t,x)x £0, T

=0,a()>0

for every t e I, and (, x) € D.
If (11) holds, then every solution x(¢t) of (1) defined on {t,, ®) such that

Ky = a(ty) H(x'(ty)) + F(to, x(t,)) — mK, > 0,

is unbounded for t - .

Proof. Analogously as in the proof of Theorem 9 from the assumptions of
Theorem we get

a(t) H(x () 2 K3 + [ = ©- (1;4) | 7(s)|

a(s) H(x'(s)) ds.

Therefore for ¢ € {t,, c0) it is

. K3 MK
H(x'()) = a(tz) exp(——a(t—ai) > 0.

The further process is analogous to that in the proof of Theorem 9.

II.

In this part we shall investigate the oscillatory properties of solutions of a non-
linear differential equation (1), where r(¢) = O for every ¢ € I, i.e. of the equation

(14) a(®) x" + b(®) g(x, x) + f(t, x) h(x") = 0.
We shall assume that a(¢) > 0, b(¢) = O for every ¢t € I,. We have

Theorem 11. Let g(x, y) x > 0 for x # 0, f(t, x) x = 0 for every xe R, (t,x) e D
and (x, y) € R,. Moreover, suppose that g(x, y) is increasing in x for every y.
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1If

(15) T ”8 ds = +oo,

then the solution x(f) of (14) which is defined on {to, ®) is oscillatory.

Proof. Suppose that a solution x(¢) of (14) is defined on {#,, ) and let it is
not oscillatory. Let e.g. x(r) > 0 for every re {t;, ®), t;, 2 t,. We can easily
show that x'(f) = 0 and x"(r) < 0 for € {¢,, ).

From (14) we get

a(®)x"(t) £ —b(1) g(x(1), x'()) = —b(2) g(x(t;, x'(N) < - b(t) n;m( g(x(t,), y)-

0Sysx'(t1)
By (15) from the last inequality it follows that x'(f) - —oo for ¢ = o0 which is
a contradiction.

If we assume that x(¢f) < 0 for t € <¢,, o©), then the pro:)f is analogous as in
the case x(z) > 0.

Theorem 12. Let

(16) fit,x)x>0  for x # 0, glxe,»x =0

for every xe Ry, (t,x)e D and (x,y)e R,. Moreover, suppose that f(t, x) is
increasing for every te€ I, on R, .
If for every 6 # 0 it is

an snéj'f(s 6) = 00,

then the solution x(t) of (14) which is deﬁned on {ty, ) is oscillatory.

Proof. Let a solution x(¢) of (14) is defined on (#4, o) and let it is not oscillatory.
Suppose, e.g. that x(¢) > 0 for every tet;,®), t; = t,, i.e. that x(¢) > 0,
x'(t) 2 0 and x"(r) £ 0 for every ¢ € <{¢,, o).

Since x'(¢) is bounded and A(y) is continuous, there exists m > 0 such that

m= min h(y) < h(x'())

Osy=x'(t1)

for every t € (t,, ©). Therefore from (14) it follows:

a(t) x"(1) = —f(t, x(1)) h(x'(1)) = —mf(s, x(1,)),
hence by (17) we get

X Ex(@)—m j 1, zc()tl)) ds — for t - o,

which is a contradiction.
If we assume that x(f) < O for every t e {t;, ©), then the proof is analogous
as for x(¢) > 0.
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Remark 6. Theorem 12 is a generalization of Theorem 23 of [3].

Theorem 13. Let (16) hold and suppose that for every 6 > 0, o < 1 it is

@ (4

> inf JG, %) L ds=
a(s) 45 |x] <o X
Then the solution x(t) of (14) which is defined on {to, ) is oscillatory.

Proof. We can show analogously as in the previous Theorems the following:
for a non-oscillatory solution x(¢) of (14) there exists ¢, € I, such that x(z) > 0,
x'(t) 2 0 and x"(f) £ 0 or x(¢) < 0, x'(r) < 0 and x"(¢) = O for every ¢t € {t;, ©).
Let x(f) > 0, x’'(!) 2 0 and x"(¢) £ 0 (for x(t) < 0, x'(r) £ 0 and x"(¢) > O the
proof is quite analogous). Define a function

« X'(2)
v(t) =t"—— (t) on (t,, ©).
Then by (14) we get
(18) V(1) +— vz(t) - —v(t) =

* ACE0)]
=30 23 00 = 55 o M)

Using the fact that for arbitrary real numbers a, b and x, a > 0 implies
2

2 > !
ax® + bx = 32’
from (18) by the assumptions of theorem we obtain

o 1 t* f(t, x)
19 v'(t) < — —-m inf —~2—7
(19) O =™ "2 e x

for every t € {t;, ), where t;, > 0 and m = minggy<,,) A(¥). Integrating (19)
from ¢, to te {¢t;, ) we get

inf
151 121 a( ) x(t1)<x <o

v(t)Sv(t1)+ :[ mj WINFICLIPN

hence for ¢ = o0 we have v(f) - —oo (because for @ < 1 the first integral is finite),
which is a contradiction. This completes the proof.
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