Archivum Mathematicum

Štefan Kulcsár; Pavol Šoltés
Boundedness and oscillatoriness of solutions of a nonlinear differential equation of the second order

Archivum Mathematicum, Vol. 19 (1983), No. 1, 43--56
Persistent URL: http://dml.cz/dmlcz/107154

Terms of use:

© Masaryk University, 1983
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

BOUNDEDNESS AND OSCILLATORINESS OF SOLUTIONS OF A NONLINEAR DIFFERENTIAL EQUATION OF THE SECOND ORDER

STEFAN KULCSÁR and PAVEL ŠOLTÉS, Košice
 (Received October 16, 1980)

In this paper we shall investigate some properties of solutions of the differential equation

$$
\begin{equation*}
a(t) x^{\prime \prime}+b(t) g\left(x, x^{\prime}\right)+f(t, x) h\left(x^{\prime}\right)=r(t) \tag{1}
\end{equation*}
$$

or

$$
a(t) x^{\prime \prime}+b(t) g\left(x, x^{\prime}\right)+[1+c(t)] f(t, x) h\left(x^{\prime}\right)=r(t)
$$

where $0 \leqq a(t) \in C^{1}\left(I_{0}\right), 0<b(t) \in C\left(I_{0}\right), c(t) \in C^{1}\left(I_{0}\right), g(x, y) \in C\left(R_{2}\right), f(t, x) \in$ $\in C(D), \frac{\partial f}{\partial t} \in C(D), 0<h(y) \in C\left(R_{1}\right), I_{0}=\left\langle t_{0}, \infty\right), t_{0} \in R_{1}=(-\infty, \infty), R_{2}=$ $=R_{1} \times R_{1}$ and $D=I_{0} \times R_{1}$.
In the first part of this paper there are introduced some sufficient conditions for a solution $x(t)$ of equation (1) or (1^{\prime}), which satisfies in t_{0} a certain condition, to be bounded ol bounded together with its first derivative. In the second part of this paper there are introduced theorems, which deal with the oscillatoriness of solutions of the equation (1), where $r(t) \equiv 0$ for every $t \in I_{0}$. The results introduced in this paper generalize, or complete some results of [1]-[8].

I.

We introduce the following notation:

$$
F(t, x)=\int_{0}^{x} f(t, s) \mathrm{d} s, \quad H(y)=\int_{0}^{y} \frac{s}{h(s)} \mathrm{d} s, \quad H=\min \left\{\lim _{y \rightarrow \infty} H(y), \lim _{y \rightarrow-\infty} H(y)\right\}
$$

and

$$
\{\varphi(t)\}_{+}= \begin{cases}\varphi(t) & \text { for } \varphi(t)>0 \\ 0 & \text { for } \varphi(t) \leqq 0\end{cases}
$$

We have

Theorem 1. Let the following conditions hold:

1. $a^{\prime}(t) \leqq 0$ for every $t \in I_{0}$;
2. there exists a constant $k>0$ such that $y g(x, y) h(y) \geqq k y^{2}$ for every $(x, y) \in R_{2}$;
3. for every continuously differentiable function $u(t)$ on $\left\langle t_{0}, T\right)$ where $T \leqq \infty_{\text {, }}$ which is unbounded for $t \rightarrow T_{-}$, there exists a sequence $\left\{t_{n}\right\}_{n=1}, t_{n} \rightarrow T_{-}$for $n \rightarrow \infty$, such that

$$
\frac{\partial F(t, u(t))}{\partial t} \leqq \frac{F\left(t, u\left(t_{n}\right)\right)}{\partial t} \quad \text { for } t_{0} \leqq t \leqq t_{n}
$$

and

$$
\lim _{n \rightarrow \infty} F\left(t_{0}, u\left(t_{n}\right)\right)=F_{1}
$$

with $\dot{F_{1}} \leqq \infty$ independent of $u(t)$.
If in addition

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{r^{2}(s)}{b(s)} \mathrm{d} s=K<\infty \tag{2}
\end{equation*}
$$

then every solution $x(t)$ of (1) which satisfies the inequality

$$
\begin{equation*}
K_{0}=a\left(t_{0}\right) H\left(x^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, x\left(t_{0}\right)\right)+\frac{K}{4 k}<F_{1} \tag{3}
\end{equation*}
$$

is bounded on its domain.
Proof. Let a solution $x(t)$ of (1) be defined on $\left\langle t_{0}, T\right)$. Suppose that it satisfies the condition (3) and $\limsup _{t \rightarrow T_{-}}|x(t)|=\infty$. Multiplying (1) by $\frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)}$ and arranging we get

$$
\begin{gathered}
a(t) \frac{\mathrm{d}}{\mathrm{~d} t} H(x(t))+\frac{\mathrm{d}}{\mathrm{~d} t} F(t, x(t))+k b(t)\left[\frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)}\right]^{2}- \\
-r(t) \frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)} \leqq \frac{\partial F(t, x(t))}{\partial t}
\end{gathered}
$$

Using the fact, that for arbitrary real numbers a, b and x, if $a>0$ then

$$
a x^{2}+b x \geqq-\frac{b^{2}}{4 a}
$$

from the last inequality we have

$$
a(t) \frac{\mathrm{d}}{\mathrm{~d} t} H\left(x^{\prime}(t)\right)+\frac{\mathrm{d}}{\mathrm{~d} t} F(t, x(t)) \leqq \frac{\partial F(t, x(t))}{\partial t}+\frac{1}{4 k} \frac{r^{2}(t)}{b(t)} .
$$

Integrating the last inequality from t_{0} to $t \in\left(t_{0}, T\right)$ we obtain
(4) $\quad a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0}+\int_{t_{0}}^{t} \frac{\partial F(s, x(s))}{\partial s} \mathrm{~d} s+\int_{t_{0}}^{t} a^{\prime}(s) H\left(x^{\prime}(s)\right) \mathrm{d} s$.

Since $\limsup _{t \rightarrow-}|x(t)|=\infty$, there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}, t_{n} \rightarrow T_{-}$for $n \rightarrow \infty$, such that

$$
\frac{\partial F(t, x(t))}{\partial t} \leqq \frac{\partial F\left(t, x\left(t_{n}\right)\right)}{\partial t} \quad \text { for } t_{0} \leqq t \leqq t_{n}
$$

and $\lim _{n \rightarrow \infty} F\left(t_{0}, x\left(t_{n}\right)\right)=F_{1}$. Using the assumptions of theorem from (4) we get

$$
F\left(t_{n}, x\left(t_{n}\right)\right) \leqq K_{0}+\int_{t_{0}}^{t_{0}} \frac{\partial F(s, x(s))}{\partial s} \mathrm{~d} s=K_{0}+F\left(t_{n}, x\left(t_{n}\right)\right)-F\left(t_{0}, x\left(t_{n}\right)\right),
$$

hence for $n \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} F\left(t_{0}, x\left(t_{n}\right)\right)=F_{1} \leqq K_{0},
$$

which contradicts the assumption (3). This completes the proof.
Theorem 2. Let the hypothcses of Theorem 1 hold with the exception of assumption 3 instead of which we assume that for any sequences $\left\{t_{n}\right\}_{n=1}^{\infty},\left\{x_{n}\right\}_{n=1}^{\infty}$ such that for $n \rightarrow \infty, t_{n} \rightarrow \infty,\left|x_{n}\right| \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(t_{n}, x_{n}\right)=F_{2} . \tag{5}
\end{equation*}
$$

If in addition

$$
\begin{equation*}
\frac{\partial F(t, x)}{\partial t} \leqq 0 \quad \text { for every } \quad(t, x) \in D, \tag{6}
\end{equation*}
$$

then every solution $x(t)$ of (1) which satisfies the inequality

$$
\begin{equation*}
K_{0}<F_{2}, \tag{7}
\end{equation*}
$$

is bounded on its domain.
Furthermore if

$$
\begin{equation*}
a(t) \geqq a_{0}>0, f(t, x) x \geqq 0 \quad \text { for every } t \in I_{0} \text { and }(t, x) \in D \text {, } \tag{8}
\end{equation*}
$$

then the first derivative of an arbitrary solution $x(t)$ of (1) which satisfies the inequality

$$
\frac{K_{0}}{a_{0}}<H,
$$

is bounded on its domain, too.
Proof. Using assumptions from (4) we get

$$
\begin{equation*}
F(t, x(t)) \leqq K_{0} . \tag{9}
\end{equation*}
$$

Let the solution $x(t)$ of (1) satisfy the condition (7) and $\lim \sup |x(t)|=\infty$, where $\left\langle t_{0}, T\right)$ is the domain of $x(t)$. Suppose that $T=\infty$. Then there exists
a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that, for $n \rightarrow \infty, \mathbf{t}_{n} \rightarrow \infty$ and $\lim _{n \rightarrow \infty}\left|x\left(t_{n}\right)\right|=\infty$. From (9) $t=t_{n}$ we have

$$
F_{2}=\lim _{n \rightarrow \infty} F\left(t_{n}, x\left(t_{n}\right)\right) \leqq K_{0},
$$

contrary to (7).
Now let $T<\infty,\left\{t_{n}\right\}_{n=1}^{\infty}$ be a sequence such that for $n \rightarrow \infty, t_{n} \rightarrow T_{-}$and $\lim _{n \rightarrow \infty}\left|x\left(t_{n}\right)\right|=\infty$. Define a sequence $\left\{\tau_{n}\right\}_{n=1}^{\infty 11}$ such that for all $n t_{n} \leqq \tau_{n}$ and $\lim _{n \rightarrow \infty} \tau_{n}=\infty$.
Using the assumption (6) from (9) we obtain

$$
F\left(\tau_{n}, x\left(t_{n}\right)\right) \leqq F\left(t_{n}, x\left(t_{n}\right)\right) \leqq K_{0}
$$

hence for $n \rightarrow \infty$

$$
F_{2} \leqq K_{0},
$$

which is again a contradiction.
Furthermore we suppose that (8) holds. Then from (4) we get

$$
a(t) H\left(x^{\prime}(t)\right) \leqq K_{0} .
$$

If for the solution $x(t)$ in t_{0} the inequality $K_{0}<a_{0} H$ holds and $x^{\prime}(t)$ is unbounded, then there exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that

$$
H=\lim _{n \rightarrow \infty} H\left(x^{\prime}\left(t_{n}\right)\right) \leqq \frac{K_{0}}{a_{0}},
$$

which is a contradiction. This completes the proof.
Remark 1. If $r(t) \equiv 0$ and $h(y)=1$, then from Theorem 1, or Theorem 2 we get Theorem 1, or Theorem 4 in [3]. Furthermore, if $b(t) g(x, y) \equiv 0$, then Theorem 1 gives Theorem 1 in [2].

Corollary 1. Let the hypotheses of Theorem 2 hold. If $H=\infty$, then every solution $x(t)$ of (1), which satisfies the inequality (7), is bounded on $\left\langle t_{0}, \infty\right.$) together with its first derivative. If $H<\infty$, then every solution $x(t)$ of (1) which satisfies the inequality

$$
K_{0}<\min \left\{a_{0} H, F_{2}\right\},
$$

is bounded on $\left\langle t_{0}, \infty\right)$ together with its first derivative.
Proof. From Theorem 2 it follows that $x(t)$ and $x^{\prime}(t)$ are bounded on $\left\langle t_{0}, T\right)$. Hence by the theorem of the extension for the solution it follows that $T=\infty$.

Theorem 3. Let $a(t)>0, a^{\prime}(t) \geqq 0, f(t, x) x \geqq 0$ for every $t \in I_{0}$ and $(t, x) \in D$. Moreover, suppose that the assumption 2 of Theorem 1 and the assumptions (2) and (6) hold. Then the first derivative of an arbitrary solution $x(t)$ of (1) which
satisfies the inequality

$$
\frac{K_{0}}{a\left(t_{0}\right)}<H
$$

is bounded on its domain.
If in addition

$$
\lim _{t \rightarrow \infty} a(t)=a_{1}<\infty
$$

and (5) holds, then every solution $x(t)$ of (1) which satisfies the inequality

$$
\frac{a_{1} K_{0}}{a\left(t_{0}\right)}<F_{2}
$$

is bounded on its domain.
Proof. From (4) by the assumptions of theorem it follows

$$
a(t) H\left(x^{\prime}(t)\right) \leqq K_{0}+\int_{t_{0}}^{t} a^{\prime}(s) H\left(x^{\prime}(s)\right) \mathrm{d} s
$$

By Bellman's lemma the last inequality then yields

$$
H\left(x^{\prime}(t)\right) \leqq \frac{K_{0}}{a\left(t_{0}\right)}
$$

from which analogously as in the proof of Theorem 2 the boundedness of $x^{\prime}(t)$ follows.

Furthermore from (4) it follows

$$
F(t, x(t)) \leqq K_{0}+\int_{t_{0}}^{t} a^{\prime}(s) H\left(x^{\prime}(s)\right) \mathrm{d} s
$$

too; hence

$$
F(t, x(t)) \leqq K_{0}+\frac{K_{0}}{a\left(t_{0}\right)}\left(a(t)-a\left(t_{0}\right)\right) \leqq a_{1} \frac{K_{0}}{a\left(t_{0}\right)}
$$

The further process is analogous to that of Theorem 2.
If we assume that $a(t)>0$ and (6) holds, then the relation (4) can be arranged as follows

$$
\begin{gathered}
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0}+\int_{t_{0}}^{t}\left\{a^{\prime}(s)\right\}_{+} H\left(x^{\prime}(s)\right) \mathrm{d} s \leqq \\
\leqq K_{0}+\int_{t_{0}}^{t} \frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)}\left\{a(s) H\left(x^{\prime}(s)\right)+F(s, x(s))\right\} \mathrm{d} s
\end{gathered}
$$

hence

$$
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0} \exp \int_{t_{0}}^{t} \frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)} \mathrm{d} s
$$

It is obvious that the following theorem holds.

Theorem 4. Let the hypotheses of Theorem 2 hold with the exception of the assumption 1 instead of which we assume that $a(t)>0$ for every $t \in I_{0}$ and

$$
\int_{i_{0}}^{\infty} \frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)} \mathrm{d} s=K_{1}<\infty .
$$

Moreover, suppose that for every $(t, x) \in D$ it is $f(t, x) x \geqq 0$. Then every solution $x(t)$ of (1) which satisfies the inequality

$$
K_{0} \exp K_{1}<F_{2},
$$

is bounded on its domain.
If in addition (8) holds and

$$
\frac{K_{0}}{a_{0}} \exp K_{1}<H
$$

then $x^{\prime}(t)$ is bounded on its domain, too.
Remark 2. The assumption (6) in the previous theorems can be replaced by the assumption:
there exists a continuous function $\varphi(t)$ such that

$$
\frac{\partial F(t, x)}{\partial t} \leqq \varphi(t) F(t, x) \quad \text { for every } t \in I_{0} \quad \text { and } \quad(t, x) \in D
$$

with

$$
\begin{equation*}
\int_{t_{0}}^{\infty}\{\varphi(s)\}_{+} \mathrm{d} s=K_{2}<\infty \tag{10}
\end{equation*}
$$

From (4) we have

$$
\begin{gathered}
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq \\
\leqq K_{0}+\int_{t_{0}}^{t}\left[\frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)}+\{\varphi(s)\}_{+}\right]\left[a(s) H\left(x^{\prime}(s)\right)+F(s, x(s))\right] \mathrm{d} s
\end{gathered}
$$

i.e.

$$
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0} \exp \int_{t_{0}}^{t}\left[\frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)}+\{\varphi(s)\}_{+}\right] \mathrm{d} s
$$

If the solution $x(t)$ of (1) is defined on $\left\langle t_{0}, \infty\right)$, then we can easily prove e.g. the following theorem.

Theorem 4'. Let the hypotheses of Theorem 4 and (10) hold. Then every solution $x(t)$ of (1) which satisfies the inequality.

$$
K_{0} \exp \left(K_{1}+K_{2}\right)<F_{2}
$$

is bounded on $\left\langle t_{0}, \infty\right)$.

If in addition (8) holds and

$$
\frac{K_{0}}{a_{0}} \exp \left(K_{1}+K_{2}\right)<H
$$

then $x^{\prime}(t)$ is bounded on $\left\langle t_{0}, \infty\right)$, too.
Remark 3. Evidently, if $F_{1}=\infty$, then under the assumptions of Theorem 1 every solution $x(t)$ of (1) is bounded. Analogously if $F_{2}=H=\infty$, then under the assumptions of Theorems $2-4^{\prime}$ every solution $x(t)$ of (1) is bounded or is bounded together with its first derivative.

Analogously as for the equation (1) it can be easily shown that for equation (1') it holds:

$$
\begin{aligned}
a(t) H\left(x^{\prime}(t)\right)+ & {[1+c(t)] F(t, x(t)) \leqq K_{0}^{\prime}+\int_{t_{0}}^{t}[1+c(s)] \frac{\partial F(s, x(s))}{\partial s} \mathrm{~d} s+} \\
& +\int_{t_{0}}^{t} c^{\prime}(s) F(s, x(s)) \mathrm{d} s+\int_{t_{0}}^{t} a^{\prime}(s) H\left(x^{\prime}(s)\right) \mathrm{d} s
\end{aligned}
$$

where

$$
K_{0}^{\prime}=a\left(t_{0}\right) H\left(x^{\prime}\left(t_{0}\right)\right)+\left[1+c\left(t_{0}\right)\right] F\left(t_{0}, x\left(t_{0}\right)\right)+\frac{K}{4 k}
$$

If we assume that $1+c(t)>0$ for every $t \in I_{0}$ and that (6) holds, then from the last inequality it follows:

$$
\begin{aligned}
& a(t) H\left(x^{\prime}(t)\right)+[1+c(t)] F(t, x(t)) \leqq \\
& \leqq K_{0}^{\prime} \exp \int_{t_{0}}^{t}\left[\frac{\left\{c^{\prime}(s)\right\}_{+}}{1+c(s)}+\frac{\left\{a^{\prime}(s)\right\}_{+}}{a(s)}\right] \mathrm{d} s .
\end{aligned}
$$

By the last inequality it can be easily proved e.g. the following theorem.
Theorem 5. Let the hypotheses of Theorem 4 be fulfilled and suppose that $1+c(t) \geqq$ $\geqq k_{1}>0$ for every $t \in I_{0}$, where k_{1} is a constant. If $F_{2}=H=\infty$ and

$$
\int_{t_{0}}^{\infty} \frac{\left\{c^{\prime}(s)\right\}_{+}}{1+c(s)} \mathrm{d} s=K_{3}<\infty
$$

then every solution $x(t)$ of $\left(1^{\prime}\right)$ is bounded on $\left\langle t_{0}, \infty\right)$ together with its first derivative.
Remark 4. Theorem 5 generalizes Theorem 8 and Theorem 21 in [3].
Theorem 6. Suppose that the following assumptions are fulfilled;

1. $b(t) \geqq 0$ and $g(x, y) y \geqq 0$ or $b(t) \leqq 0$ and $g(x, y) y \leqq 0$ for every $t \in I_{0}$ and $(x, y) \in R_{2}$;
2. there exist non-negative numbers m and M such that

$$
\frac{|y|}{h(y)}=m+M H(y)
$$

for every $y \in R_{1}$;
3. $M|r(t)|+a^{\prime}(t) \leqq 0$ for every $t \in I_{0}$. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty}|r(s)| \mathrm{d} s=K_{4}<\infty \tag{11}
\end{equation*}
$$

and the assumption 3 of Theorem 1 holds, then every solution $x(t)$ of (1) which satisfies the inequality

$$
K_{0}^{*}=a\left(t_{0}\right) H\left(x^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, x\left(t_{0}\right)\right)+m K_{4}<F_{1},
$$

is bounded on its domain.
Proof. From (1) we get

$$
\begin{aligned}
a(t) \frac{\mathrm{d}}{\mathrm{~d} t} H\left(x^{\prime}(t)\right) & +\frac{\mathrm{d}}{\mathrm{~d} t} F(t, x(t))+\frac{b(t) g\left(x(t), x^{\prime}(t)\right) x^{\prime}(t)}{h\left(x^{\prime}(t)\right)}= \\
& =\frac{\partial F(t, x(t))}{\partial t}+r(t) \frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)}
\end{aligned}
$$

hence by the assumptions of theorem, integrating from t_{0}, to $t \in\left(t_{0} T\right)$, we get

$$
\begin{gather*}
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0}^{*}+\int_{t_{0}}^{t} \frac{\partial F(s, x(s))}{\partial s} \mathrm{~d} s+ \tag{12}\\
+M \int_{t_{0}}^{t}|r(s)| H\left(x^{\prime}(s)\right) \mathrm{d} s+\int_{t_{0}}^{t} a^{\prime}(s) H\left(x^{\prime}(s)\right) \mathrm{d} s
\end{gather*}
$$

i.e.

$$
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0}^{*}+\int_{t_{0}}^{t} \frac{\partial F(s, x(s))}{\partial s} \mathrm{~d} s
$$

The further process is analogous to that in the proof of Theorem 1.
By analogy with Theorem 2 we can prove the following theorem.
Theorem 7. Let the hypotheses of Theorem 6 hold with the exception of the assumption 3 of Theorem 1 instead of which we assume that (5) holds.

If (6) holds, then every solution $x(t)$ of (1) which satisfies the inequality

$$
K_{0}^{*}<F_{2},
$$

is bounded on its domain.

If in addition (8) holds, then even the first derivative of an arbitrary solution $x(t)$ of (1) for which

$$
\frac{K_{0}^{*}}{a_{0}}<H
$$

is bounded on its domain.
Theorem 8. Let (5), (6), (11) and the assumptions 1 and 2 of Theorem 6 hold. Moreover, suppose that for every $(t, x) \in D$ it is $f(t, x) x \geqq 0$.

If

$$
\int_{t_{0}}^{\infty} \frac{M|r(s)|+\left\{a^{\prime}(s\}_{+}\right.}{a(s)} \mathrm{d} s=K_{5}<\infty,
$$

then every solution $x(t)$ of (1) which satisfies the inequality

$$
K_{0}^{*} \exp K_{5}<F_{2}
$$

is bounded on its domain.
If in addition (8) holds then even the first derivative of an arbitrary solution $x(t)$ of (1) for which

$$
\frac{K_{0}^{*}}{a_{0}} \exp K_{5}<H
$$

is bounded on its domain.
Proof. From (12) it follows

$$
\begin{gathered}
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0}^{*}+ \\
+\int_{i_{0}}^{t} \frac{M|r(s)|+\left\{a^{\prime}(s)\right\}_{+}}{a(s)}\left[a(s) H\left(x^{\prime}(s)\right)+F(s, x(s))\right] \mathrm{d} s,
\end{gathered}
$$

i.e.

$$
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \leqq K_{0}^{*} \exp K_{5} .
$$

Now, the proof can be completed exactly as the proof of the previous theorems.
Remark 5. If we replace (1) by (1^{\prime}), Theorems $6-8$ remain to be valid.
The following theorems deal with the unboundedness of solutions $x(t)$ of (1). We have

Theorem 9. Let for the equation (1) $a(t)>0, b(t)<0$ for every $t \in I_{0}$ (instead of $b(t)>0$) and let the assumption 2 of Theorem 1 be fulfilled.

If for every $t \in I_{0}, x \in R_{1}$ and $(t, x) \in D$ it is

$$
a^{\prime}(t) \geqq 0, \quad f(t, x) x \leqq 0, \quad \frac{\partial F(t, x)}{\partial t} \geqq 0,
$$

then every solution $x(t)$ of (1) defined on $\left\langle t_{0}, \infty\right)$ such that

$$
a\left(t_{0}\right) H\left(x^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, x\left(t_{0}\right)\right)+\frac{1}{4 k} \int_{t_{0}}^{\infty} \frac{r^{2}(s)}{b(s)} \mathrm{d} s=K_{0}>0
$$

is unbounded for $t \rightarrow \infty$.
Proof. Multiplying (1) by $\frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)}$ and arranging we get

$$
\begin{gathered}
a(t) \frac{\mathrm{d}}{\mathrm{~d} t} H\left(x^{\prime}(t)\right)+\frac{\mathrm{d}}{\mathrm{~d} t} F(t, x(t))+k b(t)\left[\frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)}\right]^{2}- \\
-r(t) \frac{x^{\prime}(t)}{h\left(x^{\prime}(t)\right)} \geqq \frac{\partial F(t, x(t))}{\partial t} .
\end{gathered}
$$

Using the fact, that for arbitrary real numbers a, b and $x, a<0$ implies

$$
a x^{2}+b x \leqq-\frac{b^{2}}{4 a}
$$

the last inequality yields, integrating from t_{0} to $t \in\left(t_{0}, \infty\right)$,

$$
\begin{gathered}
a(t) H\left(x^{\prime}(t)\right)+F(t, x(t)) \geqq a\left(t_{0}\right) H\left(x^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, x\left(t_{0}\right)\right)+ \\
+\frac{1}{4 k} \int_{t_{0}}^{\infty} \frac{r^{2}(s)}{b(s)} \mathrm{d} s+\int_{t_{0}}^{t} a^{\prime}(s) H\left(x^{\prime}(s)\right) \mathrm{d} s .
\end{gathered}
$$

Therefore for every $t \in\left\langle t_{0}, \infty\right)$ it is

$$
a(t) H\left(x^{\prime}(t)\right) \geqq K_{0}+\int_{t_{0}}^{t} \frac{a^{\prime}(s)}{a(s)} a(s) H\left(x^{\prime}(s)\right) \mathrm{d} s
$$

By Bellman's lemma the last inequality then yields

$$
a(t) H\left(x^{\prime}(t)\right) \geqq K_{0} \exp \left[\ln a(t)-\ln a\left(t_{0}\right)\right]=K_{0} \frac{a(t)}{a\left(t_{0}\right)}
$$

Therefore for every $t \in\left(t_{0}, \infty\right)$ it is

$$
\begin{equation*}
H\left(x^{\prime}(t)\right) \geqq \frac{K_{0}}{a\left(t_{0}\right)}>0 \tag{13}
\end{equation*}
$$

Since $H(y) \in C\left(R_{1}\right)$, there exists $x_{0}^{\prime}, \operatorname{sgn} x_{0}^{\prime}=\operatorname{sgn} x^{\prime}\left(t_{0}\right)$, such that $H\left(x_{0}^{\prime}\right)=\frac{K_{0}}{a\left(t_{0}\right)}$. From (13) it follows, that for every $t \in\left\langle t_{0}, \infty\right)$ it is $x^{\prime}(t) \neq 0$, j.e. $x^{\prime}(t)$ does not change its sign. Let $x^{\prime}\left(t_{0}\right)>\dot{0}$, then it is $x^{\prime}(t)>0$ for every $t \in\left\langle t_{0}, \infty\right)$. Therefore it is

$$
\frac{\mathrm{d}}{\mathrm{~d} y} H(y)=\frac{y}{h(y)}>0
$$

for $y=x^{\prime}(t)$, i.e. $H\left(x^{\prime}(t)\right) \geqq H\left(x^{\prime}\left(t_{0}\right)\right)$. Hence $x^{\prime}(t) \geqq x_{0}^{\prime}$, from where $\lim _{t \rightarrow \infty} x(t)=\infty$ follows.

Now let $x_{0}^{\prime}<0$. Then it is $x^{\prime}(t)<0$ for eveny $t \in\left\langle t_{0}, \infty\right)$ and therefore $\frac{\mathrm{d} H(y)}{\mathrm{d} y}<$ <0 for $y=x^{\prime}(t)$. From $H\left(x^{\prime}(t)\right) \geqq H\left(x^{\prime}\left(t_{0}\right)\right)$ it follows that $x^{\prime}(t) \leqq x_{0}^{\prime}$. This means that $\lim _{t \rightarrow \infty} x(t)=-\infty$. This completes the proof.

Theorem 10. Let the assumption 2 of Theorem 6 be fulfilled. Moreover, suppose that the following assumptions hold:

1. $b(t) \geqq 0, g(x, y) y \leqq 0$
or
$b(t) \leqq 0, g(x, y) y \geqq 0$
for every $t \in I_{0}$ and $(x, y) \in R_{2}$;
2. $a^{\prime}(t)-M|r(t)| \geqq 0, f(t, x) x \leqq 0, \frac{\partial F(t, x)}{\partial t} \geqq 0, a(t)>0$
for every $t \in I_{0}$ and $(t, x) \in D$.
If (11) holds, then every solution $x(t)$ of (1) defined on $\left\langle t_{0}, \infty\right)$ such that

$$
K_{0}^{*}=a\left(t_{0}\right) H\left(x^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, x\left(t_{0}\right)\right)-m K_{4}>0
$$

is unbounded for $t \rightarrow \infty$.
Proof. Analogously as in the proof of Theorem 9 from the assumptions of Theorem we get

$$
a(t) H\left(x^{\prime}(t)\right) \geqq K_{0}^{*}+\int_{t_{0}}^{t} \frac{a^{\prime}(s)-M|r(s)|}{a(s)} a(s) H\left(x^{\prime}(s)\right) \mathrm{d} s .
$$

Therefore for $t \in\left\langle t_{0}, \infty\right)$ it is

$$
H\left(x^{\prime}(t)\right) \geqq \frac{K_{0}^{*}}{a\left(t_{0}\right)} \exp \left(-\frac{M K_{4}}{a\left(t_{0}\right)}\right)>0
$$

The further process is analogous to that in the proof of Theorem 9.

II.

In this part we shall investigate the oscillatory properties of solutions of a nonlinear differential equation (1), where $r(t) \equiv 0$ for every $t \in I_{0}$, i.e. of the equation

$$
\begin{equation*}
a(t) x^{\prime \prime}+b(t) g\left(x, x^{\prime}\right)+f(t, x) h\left(x^{\prime}\right)=0 \tag{14}
\end{equation*}
$$

We shall assume that $a(t)>0, b(t) \geqq 0$ for every $t \in I_{0}$. We have
Theorem 11. Let $g(x, y) x>0$ for $x \neq 0, f(t, x) x \geqq 0$ for every $x \in R_{1},(t, x) \in D$ and $(x, y) \in R_{2}$. Moreover, suppose that $g(x, y)$ is increasing in x for every y.

If

$$
\begin{equation*}
\int^{\infty} \frac{\dot{b}(s)}{a(s)} \mathrm{d} s=+\infty \tag{15}
\end{equation*}
$$

then the solution $x(t)$ of (14) which is defined on $\left\langle t_{0}, \infty\right)$ is oscillatory.
Proof. Suppose that a solution $x(t)$ of (14) is defined on $\left\langle t_{0}, \infty\right)$ and let it is not oscillatory. Let e.g. $x(t)>0$ for every $t \in\left\langle t_{1}, \infty\right), t_{1} \geqq t_{0}$. We can easily show that $x^{\prime}(t) \geqq 0$ and $x^{\prime \prime}(t) \leqq 0$ for $t \in\left\langle t_{1}, \infty\right)$.

From (14) we get

$$
a(t) x^{\prime \prime}(t) \leqq-b(t) g\left(x(t), x^{\prime}(t)\right) \leqq-b(t) g\left(x\left(t_{1}, x^{\prime}(t)\right) \leqq-b(t) \min _{0 \leqq y \leq x^{\prime}\left(t_{1}\right)} g\left(x\left(t_{1}\right), y\right) .\right.
$$

By (15) from the last inequality it follows that $x^{\prime}(t) \rightarrow-\infty$ for $t \rightarrow \infty$ which is a contradiction.

If we assume that $x(t)<0$ for $t \in\left\langle t_{1}, \infty\right)$, then the proof is analogous as in the case $x(t)>0$.

Theorem 12. Let

$$
\begin{equation*}
f(t, x) x>0 \quad \text { for } x \neq 0, \quad g(x, y) x \geqq 0 \tag{16}
\end{equation*}
$$

for every $x \in R_{1},(t, x) \in D$ and $(x, y) \in R_{2}$. Moreover, suppose that $f(t, x)$ is increasing for every $t \in I_{0}$ on R_{1}.
If for every $\delta \neq 0$ it is

$$
\begin{equation*}
\operatorname{sgn} \delta \int^{\infty} \frac{f(s, \delta)}{a(s)} \mathrm{d} s=\infty \tag{17}
\end{equation*}
$$

then the solution $x(t)$ of (14) which is defined on $\left\langle t_{0}, \infty\right)$ is oscillatory.
Proof. Let a solution $x(t)$ of (14) is defined on $\left\langle t_{0}, \infty\right)$ and let it is not oscillatory. Suppose, e.g. that $x(t)>0$ for every $t \in\left\langle t_{1}, \infty\right), t_{1} \geqq t_{0}$, i.e. that $x(t)>0$, $x^{\prime}(t) \geqq 0$ and $x^{\prime \prime}(t) \leqq 0$ for every $t \in\left\langle t_{1}, \infty\right)$.
Since $x^{\prime}(t)$ is bounded and $h(y)$ is continuous, there exists $m>0$ such that

$$
m=\min _{0 \leqq y \leq x^{\prime}(t)} h(y) \leqq h\left(x^{\prime}(t)\right)
$$

for every $t \in\left\langle t_{1}, \infty\right)$. Therefore from (14) it follows:

$$
a(t) x^{\prime \prime}(t) \leqq-f(t, x(t)) h\left(x^{\prime}(t)\right) \leqq-m f\left(t, x\left(t_{1}\right)\right),
$$

hence by (17) we get

$$
x^{\prime}(t) \leqq x^{\prime}\left(t_{1}\right)-m \int_{t_{1}}^{t} \frac{f\left(s, x\left(t_{1}\right)\right)}{a(s)} \mathrm{d} s \rightarrow-\infty \quad \text { for } t \rightarrow \infty,
$$

which is a contradiction.
If we assume that $x(t)<0$ for every $t \in\left\langle t_{1}, \infty\right)$, then the proof is analogous as for $x(t)>0$.

Remark 6. Theorem 12 is a generalization of Theorem 23 of [3].
Theorem 13. Let (16) hold and suppose that for every $\delta>0, \alpha<1$ it is

$$
\int^{\infty} \frac{s^{\alpha}}{a(s)} \inf _{\delta \leq|x|<\infty} \frac{f(s, x)}{x} \mathrm{~d} s=\infty .
$$

Then the solution $x(t)$ of (14) which is defined on $\left\langle t_{0}, \infty\right)$ is oscillatory.
Proof. We can show analogously as in the previous Theorems the following: for a non-oscillatory solution $x(t)$ of (14) there exists $t_{1} \in I_{0}$ such that $x(t)>0$, $x^{\prime}(t) \geqq 0$ and $x^{\prime \prime}(t) \leqq 0$ or $x(t)<0, x^{\prime}(t) \leqq 0$ and $x^{\prime \prime}(t) \geqq 0$ for every $t \in\left\langle t_{1}, \infty\right)$. Let $x(t)>0, x^{\prime}(t) \geqq 0$ and $x^{\prime \prime}(t) \leqq 0$ (for $x(t)<0, x^{\prime}(t) \leqq 0$ and $x^{\prime \prime}(t)>0$ the proof is quite analogous). Define a function

$$
v(t)=t^{\alpha} \frac{x^{\prime}(t)}{x(t)} \quad \text { on }\left\langle t_{1}, \infty\right)
$$

Then by (14) we get

$$
\begin{gather*}
v^{\prime}(t)+\frac{1}{t^{\alpha}} v^{2}(t)-\frac{\alpha}{t} v(t)= \tag{18}\\
=-\frac{t^{\alpha}}{x(t)} \frac{b(t)}{a(t)} g\left(x(t), x^{\prime}(t)\right)-\frac{t^{\alpha}}{x(t)} \frac{f(t, x(t))}{a(t)} h\left(x^{\prime}(t)\right) .
\end{gather*}
$$

Using the fact that for arbitrary real numbers a, b and $x, a>0$ implies

$$
a x^{2}+b x \geqq-\frac{b^{2}}{4 a},
$$

from (18) by the assumptions of theorem we obtain

$$
\begin{equation*}
v^{\prime}(t) \leqq \frac{\alpha^{2}}{4} \frac{1}{t^{2-\alpha}}-m \frac{t^{\alpha}}{a(t)} \inf _{x(t) \leq x<\infty} \frac{f(t, x)}{x} \tag{19}
\end{equation*}
$$

for every $t \in\left\langle t_{1}, \infty\right)$, where $t_{1}>0$ and $m=\min _{0 \leqq y \leq x^{\prime}\left(t_{1}\right)} h(y)$. Integrating (19) from t_{1} to $t \in\left\langle t_{1}, \infty\right)$ we get

$$
v(t) \leqq v\left(t_{1}\right)+\frac{\alpha^{2}}{4} \int_{t_{1}}^{t} \frac{1}{s^{2-\alpha}} \mathrm{d} s-m \int_{i_{1}}^{t} \frac{s^{\alpha}}{a(s)} \inf _{x\left(t_{1}\right)<x<\infty} \frac{f(s, x)}{x} \mathrm{~d} s,
$$

hence for $t \rightarrow \infty$ we have $v(t) \rightarrow-\infty$ (because for $\alpha<1$ the first integral is finite), which is a contradiction. This completes the proof.

REFERENCES

[1] J. R. Graef, P. W. Spikes, Asymptotic behaviour of solutions of a second order nonlinear differential equation, Journal of Differential Equations 17, (1975), 461-476.
[2] I. T. Kiguradze, Zametka ob ograničennosti rešenij differencialnych uravnenij, Trudy Tbilisskogo gosudarstvennogo universiteta, t. 110, (1965), 103-107.
[3] P. Soltés, On certain properties of the solutions of a nonlinear differential equation of the second order, Scripta Fac. Sci. Mat. UJEP Brunensis, Arch. Math. 2, VII, (1971), 47-63.
[4] P. Šoltés, Boundedness and oscillatoriness of solutions of the equation $y^{\prime \prime}+a(x) g\left(y, y^{\prime}\right)+b(x)$ $f(y) h\left(y^{\prime}\right)=0$, Annales Polonici Mathematici XXVIII, (1973), 291-296.
[5] P. Soltés, Oscillatoriness of solutions of a nonlinear second order differential equation, Math. Slovaca 26, No. 4, (1976), 337-342.
[6] P. Waltman, Some properties of solutions of $u^{\prime \prime}+a(t) f(u)=0$, Monatshefte für Mathematik 67, (1963), 50-54.
[7] J. S. Wong, Boundedness theorems for certain general second order nonlinear differential equations, Monatshefte für Mathematik 71, (1967), 80-86.
[8] J. S. Wong, T. A. Burton, Some properties of solutions $u^{\prime \prime}+a(t) f(u) g\left(u^{\prime}\right)=0$, Monatshefte für Mathematik 69, (1965), 368-374.

S. Kulcsár, P. Šoltés
Komenského 14
04154 Košice
Czechoslovakia

