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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XVIII: 101—110. 1982 

UNIFORM NORMALITY OF TOPOLOGICAL 
GROUPS AND /-GROUPS 

BOHUMIL ŠMARDA, Brno 
(Received February 2, 1981) 

1. Introduction 

The topological space of a topological group is a completely regular space. The 
question about normality of that topological space was solved in the negative by 
A. A. Markov. He has proved that every completely regular topological space is 
a closed subspace of the topological space of a suitable topological group. 

In this paper there are investigated some questions concerning a normality of 
topological groups and topological /-groups, namely, some kind of separability 
called uniform separability. 

Now, we introduce some preliminary notes and definitions. A topological space 
(G, T) is a non empty set G with a topology T in the sense of Kuratowski (T^-space). 
A closure of a set P s G is denoted by P. A topological group (G,T) has an additive 
group operation and a topology x(l) defined by a complete system E of (open) 
neighbourhoods of zero. A topological /-group (G, Z) (shortly t/-group) is a lattice-
ordered group (/-group), G being a topological group and topological lattice in 
the topology x(I) at the same time. N denotes the set of all positive integers. 
Further, we denote A + B = {a + b :aeA, b € B}, A — B ~ {a — b : a e A, be B}, 
A v B =-= {a v b : a e A, b e B}, A A B = {a A b : a e A, b e B} for a sum, a differ­
ence, a supremum, an infimum of every subsets A, B in a group or in a lattice* 
respectively. 

1.1. Definition. Let (G, x) be a topological space and P , g c C . Then we say 
that sets P, Q are separable (in the topology x) if there exist open sets A, B in G 
such that A 2 P, B 2 Q and A n B =- 0. 

1.2. Definition. Let (G, I) be a topological group and P,QQ G, Then we say 
that sets P, Q are uniformly separable (in the topology x(I)) if there exists a neigh­
bourhood Ue I such that (P + U) n (Q + U) « 0. 

1.3. Definition. A topological space (G, x) is said to be normal if each pair of 
disjoint closed subsets in G is separable. Let (G, I) be a topological group. 
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A topological space (G, T(Z)) is said to be uniformly normal if each pair of disjoint 
closed subsets in G is uniformly separable. 

Remark. Uniform normality on a topological group is stronger than normality 
(see 3.7 Example). 

Finally, we sum up the main results of this paper: 
1. Let (G, I) be a topological group. Then the following assertions are equivalent -

1. The topological space (G, z(I)) is uniformly normal. 
2. The sum of any two closed subsets in G is a closed subset in G. 
3. The difference of any two closed subsets in G is a closed subset in G. 

2. A compact topological group is uniformly normal. 
3. Let (G, I) be a //-group and P, Q c G. If A j p - Q | ^ 0, or A | P - Q | does 

not ex ist, then P, Q are uniformly separable sets. 
4. The linearly ordered additive group of real numbers (or rational numbers) is 

not uniformly normal in the interval topology. 
5. Let (G, I) be a linearly ordered f/-group with the interval topology. If the topo­

logical space (G, T(I)) is uniformly normal, then it holds: 
1. G is totally non-archimedean, i.e., for every element g e G, g ?- 0 there exists 

an element h e G, h ^ 0 such that \ g\ > n \ h |, for every ne N. 
2. If M is a closed subset in G and V M (A M) exists, then the set M has the 

greatest (smallest) element. 
3. T(I ) = T(rt), where Zt is the set of all non-zero convex subgroups in G. 
4. (G, T(2)) is a totally disconnected topological space. 
5. There exists no strongly decreasing (strongly increasing) sequence in G 

having an infimum (a supremum) in G. 

2. Uniform separability in topological groups 

2.1. Proposition. If(G, I) is a topological group and A c G, J = A, g e G, g $ A, 
then {g} and A are uniformly separable sets. 

Proof. Consider the set P = A — {g}. Then P = P, 0 non e P and there exists 
a neighbourhood Uel such that Or\P = 0, because any topological group is 
a regular space. Now, if we take a neighbourhood VeS with the property 
- F + K £ 17, then (V + {g}) n {V + A} = 0 . Namely, if there exist elements 
vt, v2 e V, ae A such that vx -F g = v2 -F a, then ~v2 -F t^ = a — g and 
( - F + F) n (A: - {g}) £ (7 n P = 0, a contradiction. 

In the following part we investigate sums and differences of open or closed 
subsets in topological groups. 

2.2. Proposition. 1. If (G, E) is a topological group and A is a set of all open 
subsets in T(Z), then it holds: A, B e A => A 4- B e A, - A e A. 

102 



2. If (G, I) is a tl-group, then it holds: 

A, BeA=>AvBeA,AABeA. 

Proof. We prove only the implication: A, BeA=>AhBeA, in a t/-group 
(G, I): If xe A A B, then x = a A b for suitable elements ae A, be B, and a neigh­
bourhood Ue £ exists such that a + U s -4, b + U ^ B. From this x + U = 
= (a A b) + U ^ (a + U)A(b+ U) c A A 1? follows, i.e., A[ A 5 € A. 

2.3. Proposition. Let (G, I) be a tl-group (a topological group) and o e 
e { + , —, V, A} (O e { + , —}) an operation and let A, B e G, geG hold. Then 
it holds: 

\. AoB = Ao B, 2. AoB = Ao B, 3. A o {g} = J o {g}. 
Proof. 1. If x 6 Z o J5 then x = ao b for suitable elements a e A, b e B. If we 

choose an arbitrary neighbourhood U el then from continuity of the operation o 
there follows the existence of a neighbourhood Vel such that (aob) + Us 
2 (a + V) o (b + V). It means that there exist elements vi, v2 e V such that 
a + vxe A, b + v2e B and thus (a + v{) o (b + v2) e A o B and (a + vt) o 
o (b + v2) = (ao b) + u = x + u for a suitable element ueU. Finally, we have 
x e A o B. 

2. АоВяАоВ&АоВ = АоВ=>АоВ = АоВ. 

3a. We have A + {g} c A + {g} by 1. and thus A + {g} = (A + {g} - {g}) + 

+ {g} =• .4 + {g} - {g} + {g} = A + \g}. We can prove similarly that A -

- {g} = A~M7}. 
3b. First, M V 0 = M v 0, for every set M c G (see [2], the proof of Prop. 4) 

and from this A V {g} = [(A - {g} V 0] + {g} = (-4 - J * } v {0}) + {g} = 

= (A - {g} + {g})v {g} = A - {g} + {g} V {g} = AV {g}, by 1. We can prove 

similarly that AT A {g} = A A {g}. 

2.4. Proposition. //* (G, X) is a topological group then — A =- — A. /or every 
A c G. 

Proof. If xe —A then * = -y for a suitable y€^4, i.e., (y + U) n A ^ 0 
for every neighbourhood Ue _£. It implies the existence of ue U and ae A such 
that ^ + u = a and from this x = —(a — u) = u — a, —u + x=- —a. It means 
(- U + x) n (-A) ^ 0. Now, we have an arbitrary Vel and choose UeZ 
such that — U c V thus ( F + x) n ( - A ) # 0, i.e., x e ^A. Thus - A [ c Z34. 
The converse inclusion follows putting — A instead of A in the preceding proof. 

2.5. Proposition. Lei* (G, I) be a topological group and let x e G, A, B c G 
ho/d. Then we have: 

x e A - B\ (A - B) o 0 e A - Bt \ (A - jffj), where .5t = x + B. 
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Proof. First, xnon e A - Bo0 none A - B ~ xoOnon e A - (x + B) = 
= iJ - Ui • Now for every U e r a) to e) are equivalent: a) x e A — 5, b) (U + x) n 
n (A - 5) # 0, c) There exist elements ueU,axe A and bxe B such that w + x = 
* aj - bx (or equivalent^ w = ax - (x + bx)), d) U n[A - (x + B)] # 0, 
e ) O e T : : T l . 

2.6. Proposition. If (G, I) is a topological group then A-B~n{A-B--
- U : U el} for every A, B s G. 

Proof. If x e A - B then (x + U) n (A - B) ^ 0 for every Uel. It means 
that elements ueU, ax e A, bxe B exist such that x + u = ax + bX9 i.e., JC = 
= ax + bx - ueA - B - U. Finally l ^ l g n {^ - B - U : Uel}. 

If x e n { ^ ? - i ? - U : U e I } then x = ax — ft, - u, for suitable aA e A, 
bxe B, ueU thus x + u = at + bx implies (x + U) n(A — B) # 0 for every 
Uel. It means that xe A — B holds. 

2.7. Proposition. If (G, I) is a topological group and A, B s G then A - B s 
S A [ - - 6 = v 4 - i 5 r fto/ds. 

Proof. The facts A - 5 s A - J5 and A - i? s vf - B are clear. Consider 
an arbitrary element xe A — B. Then for every Uel there exist neighbourhoods 
V, U0, Uj e I such that Ux - J7X S U0, U0 ~ tf0 s V, - V S U. Then 
(JC + UO r\ (A — B) ^ 0, i.e., JC + w = ax — ft, for suitable ueUx, axe A, 
bxe B. Further U2 e l exists such that U2 s Ux and -JC + U2 + x s Ux. We 
have (U2 + ax) n A( # 0, (U2 + bx) n 5 # 0 and therefore wt, t*2 e U2, a e >4, 
6 coexist such that ux + ax = a,w2 + ft, = ft. This implies x + u = (—«t + a) — 
— (-~i*2 + b) => JC = —«! + (a — ft) + u2 — w => ux + x = (a — b) + u2 — u. 
We have Wj + x = x + w3 for suitable element w3 e Ux because ux + xeU2 + 
+ x S x + Ux. Now JC + u3 = ux + x = (a - b) + u2 - u, i.e., JC = (a — b) + 
+ u2 - u r- u3 e (a - b) + U2 - Ux - Ux ^ (a - b) + (Ux - Ux) ~ U, s 
S (a - b) + U0 - Ux s (a - ft) + U0 - U0 = (a - ft) + V S (a - ft) - U. 
Finally, JC = (a — ft) — W, for a suitable element weU there holds x + w = 
« a - ft and (JC + U) n (_4 - B) # 0 for every Uel. The inclusion A - B s 
S -4 - B is proved. 

2.8. Proposition. If (G, I) is a topological group and A, B s G, then it holds: 

A-B = A-BoA + B = A + B. 

Proof. => :A + B = At - (-J?) = ^ - ( - 5 ) = A - ( - 5 ) =- A + B. 
<=:A-B = ~A + (-B) = A + (-B) = A -- 5; see 2.4. 

2.9. Theorem. Lei" (<?, T) &e a topological group and A, B £ G. 7%t?« the following 
assertions are equivalent: 

\.T^1=A-B. 

104 



2. A n B = 0 => r/tere exists Ve I such that 

(V+ A)n(V + J ) = 0. 

3. Afn5 = 0=>O non e A - B. 
Proof. 1 =** 2: We have: I n J - - 0 - > O non e A - 5 => 0 non € n{ii - B — 

- U : Uel} (see 2.6) -> there exists Uel such that 0 noneAf - B - U** 
=> >?n (U + 5) = 0 for this U. Then there exists neighbourhood Vel such 
that - V + V s Uand (V + v?) n (V + J!) = 0. Namely, the existence of elements 
vi9v2e V9ae A9be B such that vx + a = v2 + b implies a*=—vi+v2 + beAn 
n ( - V + V + 5) s A[ n (U + B)9 a contradiction. 

2 => 1: If x eA - B\(A - B) then x e A - J - U for every Uel (see 2.6). 
Further, if we denote Bt = x + B then it holds 0 non e A — Bl9 i.e., Z n Bv = 0 
(see 2.6). With regard to the assumption there exists a neighbourhood Vel 
exists such that (V + A) n (V + 5j) = 0. If we choose Ue I such that U c V 
and x + U — x c V then x = a — b — u for suitable w € U, ae A and ft € B. 
From this a = x + u + b e x + U + 5 c K + x + 5 thus 0 # ^ n ( V + x + 
+ 5 ) e ( V + ^ T ) n ( V + Bt)9 a contradiction. 

2-=>3:AfnJ5 = 0=>O non eA~B^A-B. 
3 => 2: If A n 5 = 0 and (V + A[) n (V + 5) # 0 holds for every Ve T then 

vj -f a = v2 + b for suitable elements a e l , i e 5, vl9v2eV9 i.e., a — 6 = 
= — t?j + v2 e — V + V. It means that for every Uel and a suitable neighbour­
hood Vel such that - V + V s U we have a - b e U and U n (/f - 5) # 0, 
which contradicts 0 non € A — 5. 

2.10. Corollary. If (G91) is a topological group, then the following assertions are 
equivalent: 

1. The topological space (G, x(I)) is uniformly normal. 
2. The sum of two closed sets in G is a closed set in G. 
3. The difference of two closed sets in G is a closed set in G. 
Proof follows from 2.8 and 2.9. 

2.11. Corollary. If(G, I) is a uniformly normal topological group and H is a closed 
normal subgroup in G, then the factor group (GjH, IH) is uniformly normal. 

Proof. If a topological factor group (GjH, IB) is not uniformly normal, where 
IH = {(u + H)/H : Uel}, then there exist sets A, B c GjH such that A = A9 

B = B, A n B = 0 and A, B are not uniformly separable sets in x(IH). It holds 
0HeA — B according to Theorem 2.9 and it means that UH n (A — B) & 0 
for every UHeIH. Further, there exists a neighbourhood Uel and closed sets 
A09 B0 in (G, I) such that UH = (U + H)/H9 A = A0\H, B = B0jH. It follows 
that for every Uel there exists an element ueU such that u + H g= A0 — J?0, 
i.e., there exist elements a e A09 beB0 such that w = a - 6 e A 0 ~ - B 0 . Finally 
0 e A0 - B09 A0 = Al0, Bo -» B09 A0r\ B0 = 0 which, according to Theorem 2.9., 
means that sets Af0, B0 are not uniformly separable in (G91). 
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2.12. Theorem. Every compact topological group is a uniformly normal space. 
Proof. Let (G, I) be a compact topological group. Suppose that there exist 

closed sets P, Q in G such that P n Q = 0 and 0 e P — Q. It means that U n 
^ (-P ~ 0•¥* ® for every Uel and thus there exist elements ueU, peP, qeQ 
such that u ~ p — q. From this p = u + q, i.e., P n (U + Q) ^ 0. We consider 
the system {P n (U + Q): Uel) and we prove that it is a collection of closed 
sets satisfying the finite intersection condition. Namely, an arbitrary finite system 
{P n (Uf + Q): Ut el, i = 1, 2,...., k) has the property 0 ^ P n (V + Q) c 
c n{Pn(U* + Q): Uf- e I , i = 1, 2 , . . . , fc}, where Vel, Vcn{Uf: / = 
= 1,2,... ,*}. It follows n { P n ( U T Q ) : Uel} = P n n { U + 0 : Uel}. 
Therefore x e P and x e U + Q for every Ue I . If Ve £ such that - V + V c U 
then x e V + Q, i.e., ( V + x ) n ( V + 0 ^ 0 which implies the existence of 
elements xx, v2 e V, q e Q such that vt + x = v2 + q. We have x = — vx + t?2 + 
+ # e ( - V + V ) + Q£U+Q for every Ue£. Now, we choose arbitrary 
neighbourhoods Uel and Vel such that - V c U. Then elements ve V, qe Q 
exist such that x = v + q, i.e., q = - v + x e ( - V + x) n Q £ (U + x) n Q. 
It means x e Q, which contradicts P n Q = 0. 

3. Some results on topological 1-groups 

Now we attempt to include into investigating uniform separability of closed 
sets in f/-groups also lattice operations and the lattice order. 

3.1. Proposition. Let (G, I) be a tl-group and P, Q c G. If A | P - Q \ ^ 0, 
or A | P — Q | does wo/ ex/s/ then P, 5 #>*£ uniformly separable sets. 

Proof. According to Theorem 2.9 it is sufficient to prove 0 noneP — Q. 
WehavePng = 0<->Onone | P - g | .Now,ifA|P - Q\ ¥ 0thenA|P - Q\ = 
= m > 0 . If A | P — Q\ does not exist then g e G exists such that | p — q \ *> g, 
for every p eP,qeQ, and g > 0 or g || 0. In the case g \\ 0 we consider the element 
gt a j v 0 and then | P - # | ^ g V 0 = g t > 0 f o r every peP, qeQ. In both 
cases there exists a positive (non zero) lower bound m of | P — Q\. If OeP — Q 
then by means of contradiction then U n (P — Q) ¥ 0 for every Uel. We choose 
a neighbourhood Vel such that V £ U, Vv-VcU. Then t?0 - P - q for 
suitable elements v0e V,peP,qeQ and from this \p - q\ = (P - q)V (q - P) = 
= t>0 V -t;0 e VV - V s U. If we choose Ue £ such that m > | M | or m || I w |, 
for every ue U (see [4], 2.2) then we have a contradiction with | v0 | = | p - q \ js£ 
;> m and »0'e U. 

3.2. Lemma. Let (G, I) be a tl-group and P, g s G. Thew if Ao/ds: 

0 є Р - ß = > 0 є | . Р - ß | = > л | Р - | = 0 . 
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If x(I) is a locally convex topology then 0 e | P — Q\ => 0 e P — Q holds. 
Proof. 1. If OeP - g then for every Uel there exists Vel and elements 

ve V, peP, qeQ such that Vv-VcC/, V £ £/ and v = p ~- q. It implies 
- v = ?-p , i .e.,t;V - v = (p - q) V (q - p) = |p - q \ e (VV - V) n | P - Q \ s 

c U n | P - g |. Finally 0 e | P - g |. 

2. Now, suppose 0 e | P - Q \ and assume (by the way of contradiction) that 
A I P - Q I = 0 is not true. As above (see the proof of Prop. 3.1), there exists 
a lower bound m of the set | P — Q | with w > 0. With regard to [4], 2.2 there 
exists a neighbourhood Uel such that | u \ < m or | u \ || w, for every ueU. 
The fact Oe j P — Q | implies the existence of elements px eP, qt e g , ule U 
such that ux = \px — qx |. But I pi — qi I = ui < m or |p i — qi I = wt || w, 
a contradiction. 

3. Now, if x(I) is a locally convex topology and Oe | P — Q | then for every 
Uel there exists a convex neighbourhood Vel such that ± V S U and Vn 
n | P — g | # 0. There exist elements ve V,peP,qe Q such that v = | p — # | ^ 
§: p - q and - v = ~ | p - q | = (# - p) A (p - #) <; p — #. Finally, — i? <; 
g p - # <; t;, i.e., p - qeVc U, Un (P - Q) # 0 and 0 e P - g. 

3.3. Corollary. //* (G, T) is a tl-group and P, Q ^r^ disjoint closed subsets in G 
which are not uniformly separable, then it holds: 

L O e P - e , 2 . 0 e | P - " Q T , 3. A | P - Q \ = 0. 
Proof. Follows from Theorem 2.9 and Lemma 3.2. 
Now, let us investigate linearly ordered //-groups with the interval topology in 

connection with uniform separability. It is known (for example see [1]) that this 
topological space is normal. 

3.4. Theorem. Let (G, I) be a linearly ordered tl-group. Then sets P, Q in G are 
uniformly separable if and only if there exists an element me G such that w > 0 
and | p — q \ _• w, for every peP, qeQ. 

Proof. =>: If there exists no element m e G such that w > 0 and \p - q \ 2; w 
for every peP, qeQ, then A {| p - q \: p e P, q e Q] = 0. It means that for every 
Uel and every me G,m > 0 there exist elements p eP,qeQ such that | p — q | < 
< w, i.e., (P - Q) n ( -w , w) # 0. Therefore there exists an element me G 
such that w > 0 and U 3 (~w, w). We have (P - g) n J7 # 0, i.e., 0 e P - g, 
a contradiction. 

<=: We have | P - g | n ( -w, w) = 0. It follows that 0 non eP - g and 
thus P, g are uniformly separable (see Theorem 2.9). 

3.5. Definition. We say that an /-group G is dense if for every g^heG such that 
h > g there exists an element k e G such that h > k > g. 

3.6. Lemma. A linearly ordered tl-group with the non-discrete interval topology 
is dense. 
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Proof. If elements x9y e G exist such that there exists no element zeG with 
the property x > z > y9 then the open intervals (y9 x) and (0, m) are empty sets, 
where m « x — y. Further (m, 2m) =-= 0 and thus (0,2m) = {m}. It follows that 
x(I) is the discrete topology, a contradiction. 

3.7. Example. Let R be a linearly ordered additive group of real numbers with 
the interval topology and A = N, B = u{<n — 1 + 1/w, n - l/n>: « € N, n §; 2}, 
where <a, ft> = {ge i?: # <£ g g &}. Then A9 B are disjoint closed subsets in R 
which are not uniformly separable (see Theorem 3.4). 

Remark. It can be proved similarly that a linearly ordered additive group Q 
of rational numbers is not a uniformly normal space. 

3.8. Theorem. If(G91) is a linearly ordered tl-group with the non-discrete topology 
and (G, I) is a uniformly normal space, then it holds: 

1. G is totaHy non-archimedean, i.e., for every element g e G, g ^ 0 there exists 
an element h e G, h # 0 such that \ g\ > n \ h \, for every n e N. 

2. If M is a closed subset of G and V M(A M) exists, then M has the greatest 
(the smallest) element. 

3. x(I) = T(Zt), where Iv is the set of all convex subgroups P of G such that 
P ft {0}. 

4. (G, x(E)) is a totally disconnected topological space. 
5. There exists no strongly decreasing (increasing) sequence in G which has in G 

an infimum (a supremum). 
Proof. 1. If there exists an element g e G such that g > 0 and nh > g9 for every 

h e G, h > 0 and a suitable number n e N, then the convex subgroup <#> generated 
by g in G is archimedean. Namely, <g> = {x e G: 0 <J | x | £ ngfor some n e N}. 
If a e <g>+ is an archimedean element then 0 £ a S >ng, for a suitable number 
m e N/Further, for every h e <g>+ there exists ne Nsuch that nh > g, i.e., mnh > 
> mg ^ a g 0. It means that a is an archimedean element in <g> and <g> is 
a linearly ordered archimedean group. <g>is 1-isomorphic with a subgroup of R 
and because <g> is dense we have that <g> is 1-isomorphic with a dense subgroup 
of R which contains the additive group Q of rational numbers. Further, <g> is 
1-isomorphic with R. Finally, there exists a closed subgroup of G which is 1-iso­
morphic with R9 and which with regard to Example 3.7, contains sets which are 
not uniformly separable, a contradiction. G has no archimedean element and thus G 
is totally non-archimedean. 

2. If P is a closed subset in G and V P non e P then P and Q = {g e G: g ^ VP} 
are disjoint closed sets. With regard to Theorem 3.4 there exists an element me G 
such that m > 0 and V P — p > m, for every p e P, i.e., V P > m + p, for every 
p e P, a contradiction. The second part for A P can be proved similarly. 

3. If Ve It, then Fis a convex subgroup of G, V # {0}. there exists an element 
v e V, v # 0 such that (-t>, v) s V. We have T(.T) <* T(2'1). 
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If UeS then there exists ueU such that ( — w, u) s U If for every geG, 
0 # g € (~M, w) there exists ne/V such that ng > u then we can prove similarly 
as in the first part that the convex subgroup <w> in G is archimedean, a contradic­
tion. It means that there exists g e G such that g > 0, and a convex subgroup <g> 
has a property <g> £ (~w, u)9 i.e., 1(2^) <£ T(I). 

4. It follows immediately frqm 3. 
5. Let {xn} be a descreasing sequence in G and let A {xn: n e N} exist. Then {>>„}, 

where yn = xn - A {*,,: /i e N} for n e N, has the infimum 0. Let us denote A = 
= ^{<-y4n- 3 ? -y4n-2>: « e N } , 5 = u {<-y4n_1 , -y4„>: *€ N}, and prove 
that A, B are disjoint closed subsets in G which are not uniformly separable. 

a) If ae A\ A9 then there exists ne N such that -y4«-2 < a < -y4 f l+i-3 o r 

->>! > a. Then A n [a + ( -g , #)] -* 0 and consequently a non 6 A, a contradic­
tion. Thus A (and similarly 2?) is closed. 

b) A n # = 0 is clear. We shall prove that A[, J? are not uniformly separable. 
For every meG, m > 0 there exists an element seG such that 0 < 2s < m. 
Furthermore, for some neN we have y4n < s, whence for every ae <—y4B~.3> 
-y4n-2 > (£ ><) and every be < -y 4 n - 1 , ~y4„> ($= 5), we have 0 < b - a <* 
<g ->>4„ + y4„-3 < s + s = 2s < m. By Theorem 3.4 A and B are not uniformly 
separable. 
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