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SOME RESULTS ON THE OSCILLATORY
AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF NONLINEAR DELAY DIFFERENTIAL
INEQUALITIES

PAVOL MARUSIAK, Zilina
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We consider the following nonlinear delay differential inequality

(@) {10 C..(r2(0) (ry (@) Y @)Y ..) + p(@) f(¥(®), y[A(®)]D} sgn y[A(®)] < O,

where n = 2.

The following conditions are always assumed:

i) rieC[<0,®),(0,0)],i=1,2,....,n—1,

(i) he C[<0, ), R], h(t) < t for ¢t = 0 and lim A(f) = oo,

100

(i) p e C[(0, ), €0, )] and p is not identically zero in any neighborhood

O(),

(iv) fe C[R?, R], yf(x, ) > O for xy > 0 and nondecreasing in x(> 0), y(> 0).

We introduce the notation: )

(Dy) D°(y) =y, D'(y; r)=ry, D(y;ry, ..., r) =r(D7 (s vy, rimy)s
i=23,...,n withr, = 1.

Morec;ver, if D'(y;ry,...,r) is defined as a continuous function on (T, o),
then the function y is said to be i-times continuously r-differentiable on (T, ).

Then in view of (D) we can rewrite the inequality (r) as follows:

{D'35 115 vees g, ) () + p() f(0(0), y[AO]} sgn y[A(D)] < 0;
(D) F)=max {r(s):¢/2 S s<t},i=1,2,...,n~ 17 = max {F,s):
2"73i"1 < s < t}, where je {1,...,n — 1};
Ri®) = FOF1() ... Fiy®,j = i + 1,...,n = 1, R)®) = R®);
t 1 si 1

Jt, s, 1y ooy Tpey) = ."- r‘(s‘/2""_l, ! T ree2(8,-2/2) "

Sn-2

dsu =1

———ds,_, ... ds;, i=12,..,n-1,
s rn-l(s —-l) 2 '
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t

L(t,tg,ryy-ooyti) = ——L_(s, to,r; ..., 07;)ds,
k 0 " 11) ',‘; ".',,(S) k l( (] i -1 i;)

we{l,2,...,n -1}, ke{l,2,....,n — 1},

(D3) y(t) = sup {s = 0; h(s) < t} for t = 0.
Denote by W the set of all solutions y(¢) of (r) which exist on a ray {t,, ) <
< (0, o) and satisfy
sup {| ¥ |:s 2 1} > 0
for every t = t,.
A solution y(¢) € W is called oscillatory if it has arbitrarily large zeros. Otherwise
the solution y(¢) e W is called nonoscillatory.

Definition 1. We shall say that the inequality (r) has the property A, if every
solution y(7) € W is oscillatory for n even, while for n odd is either oscillatory or
| Di(y;ryy...,r)(®||0ast} oo (i=0,1,...,n—1).

Definition 2. We shall say that the inequality (r) has the property A, if every
solution y(r)e W is either oscillatory or | Di(y;ry,...,r) ()1} 0 as 1 o
(i=0,1,....,n—2).

In this paper we shall prove sufficient conditions for the inequality (r) to have
either the property 4 or A,. The oscillatory properties of solutions of functional
differential equations of n-th order, involving general differential operators of the
form (D,) are studied for example in [3, 4, 6—9].

To obtain our results, we shall need the following lemmas which are extensions
of two lemmas due to Kiguradze [1], [2].

Lemma 1. Let r;: {(T,, ©0) = (0, ©),i = 1, ..., k be continuous functions and

< de .
m . IW=OO’ i=12..,k-1.

»

Let u(s# 0) be k-times continuous r-differentiable function on {T,, o). If
0] ou(t) D*u; ry, ..., r) (@) £0,(6 = +1)  for ¢t = T,

and not identically zero in any neighborhood O(), then there exists an integer
le{0,1,..., k}, with k + / odd (even) if 6 = 1(6 = —1) and a t, > T, such that

B3) u@)D'(u; 7y ...,r) (@ >0 on {Ly,0) - fori=0,1,...,1
@ (=D u@ D'u;ry, ... r)(®) >0 on {ty,0) fori=1+1,....,k —1,

This Lemma generalizes the well-known lemma of Kiguradze [1] and can be
proved similarly.

Lemma 2. Let r;: {T,, ©0)—>(0,©), i=1,...,n — 1 be continuous func-
tions and
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< dt

) IT.'(?)—:OO’

i=12,...,n—2.

Let u(+0) be an n — 1-times continuously r-differentiable function on the interval
(Ty, o). If forevery t = T,

6) u(@) D"~ Hus rys ey raoy) () > 0,

) u(t) D"(usry,...sry-y, (@) 0

and not identically zero on any neighborhood O(w), then there exist ¢, = T,
and an integer /€ {0, 1,...,n — 1}, n + [ odd, such that (3),

4" (=D u@ D'us ryy oo r) () >0 on  (fo, )
fori=1I+1,....,n—1

hold, and
(3) | Dius ryy o, r) (277D 2
n—1 .
> gt . |D"" “(u;ry, ""-rn—l)(:z:—z for t = 2" 1y,
Fao1(8) Py p(12) ... Fiy y (22 )
where
5= (n=i=1)32 .
a;-':m, l=l,l+l,...,n'—1.
1-i .
© IDi(u;rl,...,ri)(t)Ié(%) D37, -2, 1))
(I = )Py (1) ... Fi(D)

for ¢t = 2¢,, i=01..,1-1,
t"—l—l an—l(u; 7'1, ceey rn—l)(t)l

Fae (D) P a(#/2) o F(2/27 717 Y) LU Py (127701
2~(n—1)(n2+1)
for t22""'ty, where A="———"n, i=0,1..,1
[(n —1)!]
Proof. By Lemma 1 in view of (6), there exist z, = T, and an integer /, /€
€{0,1,...,n — 1}, with / + n — 1 even such that (3) and (4") hold.
Without loos of generality, we assume that u(f) > O for every ¢ = t,. Next
by virtue of (4’) and (7) we obtain

(10) | DXusry, ..., )] 2 4

t n—1,
D gy ) (D) 2 f T e O
12 T-1(5)

g Dn—l(u; Fiseees rn°—1) (t) Jn—-l(t, t/z’ rn—l)! t g 2t0$

j‘ Dn—2(u; SR rn—Z)(s/2)ds >
t/2 2r,_5(s/2) =

Dn_l(“; Tys ey rn—l)(t)‘}n—z(t’ t/2a Th-2> ru—l)’ t % 4to:

Dn—3(u; Fiyeees rn-3)(t/4) ; -

1

>
=2
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(=) 7 Dy, L ) (2T 2
S (=t j. D*Yusry, .o, ris ) (5277 ds >
&= 2n—i—2 12 rl+l(s/2n—i-2) .

1 -
> mz D ’(u Fiyeens r,,_l)(t)JH,l(t, 1/2, r,~“, ceey rn_l),

t= 2" il

From the last inequalities we get

D" Nusry, o Ty 1)(')
2(n—i—l)1/2-. (t/zn i- 2)

(11) (—1)""'.-10"(14;rl,’...,r,-)(t/Z"_"l)g

; I —Siy2
x | L Jia(Sis2s U2, Py s P ) dSi = 2
2 Tipp(Sie2/2" 3) P ' n
D" Yusry,...,rp_) (D L (-5 it

> - ds,
T 2T (2 () 2 (n— i = D)

for t =2 i Yy, i=1...,n—1.

The inequality (8) follows from (11).
Next, in view of (3) and (4’) we have

t nl.
) SO LA CLL TRITL IO
to rl(s)

2 D’(u; Fiyoes ) () 1(2 ty, 1Y),
t pl-1, .
D2 ry, ey r) (2 [ 2T 1) ) s

fo ri-1(s)
2 D'usry,....r) () I(t, tg, riy, 1),

i LD Y usry, .,y
Digusry, oy ) (0 2 | 2 ;f“(s) IO

2 Dusry, e, ) DDt to, Figs ooy 1),
for i=0,1,...,1 — 1,1t = 2t,.
The last inequaljty implies (9).

If we put #/27~1-1 i place of ¢ in (9) and use the monotomcnty of the function
D¥u;ry, ..., 1) (1), we obtain

(12 Diu;ry,...,r) (1) 2 Di(usry, .., r) ¢/ 2
! D'u;ry, ...,r)(@/2"""Y
T @Y = D A2 R
Combining (1) with (8) for i = /, we get (10).
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Remark. If we use (D,), the inequality (10) can be rewritten to the following
form:

(10 I Dusry, )@ 2 4

IDn—l(u; iy oeny rn-—l)(t)l tn"'i—l
R,_y(1)
for t = 2" '4,,i=0,1,...,1.

Further, we assume that

° dt .

(13) [} r,(t)=00’ i=1,2,..,n-2
holds.

Lemma 3. Let (i) —(iv), (13) hold.

a) If

©dt

4 8

(1 ) J rn—l(t) o

then conditions (6) and (7) are satisfied for every nonoscillatory solution y(t) e W
of (r).
b) If for every T = ¢,

t

» | P(s) ds
(15) L —

; Fp- l(t)
then conditions (6) and (7) hold for every nonoscillatory solution y(¢) of (r) with
lim y(t) # 0.
t— 00
- Proof. Let y(¢) be a nonoscillatory solution of (r). Without loss of generality
we suppose that y(f) > 0 for every ¢ = t,, since the substitution y = —u transforms

(r) into an equation of the same form subject to similar assumptions.
Next by (ii) there exists a t; = #, such that y[A(f)] > O for every ¢ 2 t,. Thus
from (r), in view of (iv) we have

(16) D" psres ey ) @) = =pOf(0, Y[AOD =0, 21,

Moreover, since p(f) is not identically zero in a:ny neighborhood O(0),
the same holds for (D" '(y;ry,...,r,-;) (©))’ and consenquently either
Dl ysry, ooy lymy) () >0, or D" Yysry, ..., 1-y) (©) <O for all large (?).

We shall prove that the last assumption cannot hold in both cases, provided
that in case b) we have lim y(f) # 0 as t — oo.

a) We assume that for some 7, = ¢, we have

Dnul(y; rl, ceey r,,_.l) (tz) = K < 0.
The inequality (16) yields

Dn—l(y;rl’---’rn—l)(t)éDnTl(J’;rl""’ n 1)(’2) K<O t%‘Z,
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and consenquently
ra-1(t2) K __K
ra-1(1) ra-1()

Integrating the last inequality from ¢, to ¢ (¢, < f), we obtain

(D"_Z(y; Fis ooy "n—z)(t))l ..S—

n- n-— y ds
D2y ryy oy T (@) S D" 2(ps 1y ooy Tasg) (1) + Ky | ——.
t2 rn—l(s)

Then, in view of (14), we have

lim D" 2(y; ryy ooy Faep) () = — 00

t— 0

which contradicts the positivity of y. This contradiction proves the case a).
To prove b) we remark that the assumption lim y(f) > 0 implies the existence

t— 0

of a constant L > 0 and ¢, 2 ¢, such that y(r) 2 L, y[h(f)] = L for every t 2 t;.
Then by (iv) we have

SOOAOD 2 AL L) =M >0  for t 2 t,.
This, by (r), leads to the inequality

(D" (95 Fyy oo Faet) () S Mp(t)  for ¢ 2 15
Integrating the last inequality from T (T = t3) to ¢, we get

t
D My;r, s - ) (S =M [ p(s)ds,  tZT,
T

and consenquently

(D23 71y o T ) O S~ 5 | [ p(s) ds.

Integrating again from 7 to ¢ (= T), with regard to (15) we have

lim D" 2(y; 1y, ooy 1y_g) () = — 0,

t— o0
which contradicts the positivity of y.
The proof of Lemma 3 is complete.

Theorem 1. Suppose that (i), (iii), (iv), (13) are satisfied and, in addition, suppose
that"

(v) he C'[<0, @), R], h(1) £ t, K'(®) Z 0 for ¢t = 0, lim h(f) = oo,
< dt
a7 I <
If
© h(t) n 2
(18) 120 ] 7 % 41 = oo,
T u 1( )
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for every T : y(T) = t,, then
o) under the condition (14) the inequality (r) has the property 4.
B) under the condition (15) the inequality (r) has the property A,.
Proof. Let y be a nonoscillatory solution of (r) with lim y(¢) # 0. Without loss

t— o0
of generality we assume that y[A(f)] > O for r 2 t, = t,. From this, by (r) and
(1), (iii) it follows that '

D" Yy;ryy ety ) (@)Y €0 fort=t,.

This last function is not identically zero in any neighborhood O(w0). Now, under
the one of the conditions (14), (15) we have by Lemma 3

D 'yiryyeistao) (>0 fort 2t 2t,.
By Lemma 1 there exists a r; 2 1, such that either |
D'(y;r)(t) >0, or D'(y;r)(t) <0 for t = t,.
Further we shall use the analogous method as in the proof of Theorem 1 in [10].

Case 1. Let D'(y; r,) (1) > 0 on (t;, ). Let z be the function defined by the
formula

i C WY PR ds
19) 20 = =D 0ir, o ) Of B 1706 mep * 2"

We obviously have
(20) z2() £ 0 on {3, 00).
From (19), in view of (r) we get
, ' [KT" K (s)
= , y[h ds —
02 10J00 D] Z RGO 00. D
_ D Mys 1y, s 1) () [R)]VTPH()
R,_[h()] f(y(2), y[R()D

Since the function f, y are nondecreasing and D"~ !(y; r,, ..., r,~) is nonincreasing,
we have

t n—2p7/
202 pt) | LT A0 6 -

_ DNy 1y, s T ) (B()) [RO]T2H(R)
R,-[h()] f Y[R, y[A(®)])
Thus applying (10°) for i = 1, u = y, h(f) in place of ¢ and using r,[A()] <
< R,[A(9)], we obtain
p 5 (AT 2K (s) ds — 1 D'(y; ry) (h(t)) ' (1)
“O02 /0] "R "ol © T A RIROISGTHOT, TOD >

for t = t;.
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S SN B 1, 0) LIO)
200 Rom & T A 7O THOD

Integrating the last inequality from ¢, to ¢ (= t,) and taking into account (17) and
(18), we obtain lim z(f) = co, which contradicts (20).

t—+ o

fort =1, =t;.

Case 2. Let D'(y; ry) (f) < 0 on (t;, ). Let w be the function defined by the
formula

n—21-/
QD) wi)= -—D"_l(y;r,,...,r,,nl)(t)f [h(s)] [:(s()s])d‘, t2ts.

We obviously have

(22) w(it) <0 on {t;, ©).
From (21), in view of (r) and the monotonicity of D"~ '(y; r,,..., r,_,), we have
' [h()]" ™ *K (s)
23 = AT T ds —
(23) w'(t) = p(1) f(y(1), y[h(t)])J; R, [h)] ds
_ D"-l(y; rl’ “"yn 1)(h(t)) [h(t)]" Zh (t)
R,-1[h(1)]

Moreover, since y[h(f)] > O for ¢ = t,, there exists a positive constant C such
that

fO), y[h®]) =2 C  for t = t5.

From (23), by applying (8) with / =0, i = 1, h(¢) in place of ¢ and using
ri[h(H/2"~*] £ R[h(D)], we get

M e iax Y TRORTITHG)
vz Cp(t)h(!;) n-—l(x) a

Integrating the last inequality from 7, to ¢ (2 t,), by (18) and the fact that the
solution y is bounded, we obtain lim w(f) = oo, which contradicts (22).

t— o0
We have just proved that for every nonoscillatory solution y of (r) lim y(f) = 0

t— o
and y(¢) y'(1) < O for all large ¢. If condition (14) is satisfied, then by Lemma 3
and Lemma 2 » must be odd.
Moreover, as it is easy to see, lim y(f) = 0 implies that

t— o0

for t > t,.

ina) | Di(y;ryy...,r)®1}0 asttoo fori=01,...,n—1,and

inp) | Di(y;rys..,r)@®1}0  asttoo  fori=0,1,...,n—2.

Remark. If the functions r; (i = 1,2,...,n — 1) are nondecreasing, then the
condition (18) can be replaced by

@® h(t) n—2

s
[P0 T oo &=

T
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Theorem 2. Let the conditions (i) —(iv) (13) be satisfied. Let

(24) | fg(t) u, g(1) v) | = G(g(D)) | f(u, v) | for u.v >0,
where g € C[(0, ©)(0, K)], G € C[(0, K), (0, «0)] and

13 <o

o G(s) '

If
0 tn—l [h(t)]n—l )l

2 = ’
) §0 1 (£ i) 4=

then ) under the condition (14) the inequality (r) has the property A.
B) under the condition (15) the inequality (r) has the property A,.
Proof. Let y(f) be a nonoscillatory solution of (r) with lim y(f) # 0. W€ assume,

t— o0

without loss of generality that

(26) lim y(¢) > 0.
t— o0
Then, in view of (ii), we can choose ¢, such that y[h(t)] > 0 for ever¥ t > ¢,.
Similarly as in the proof of Theorem 1 we have D" !(y;r,,...,r,_,) () > 0 for
t=2t, 2t,. Then by using Lemma 2 for u = y, from (8) with i =/ =0 and
from (10’) with i = 0 < I, we get

- _y DMy, e 1) (D) -
n=1y 5 n—1 s Il s ‘'n—1 n—1 .
(27) y(t/2 ) = aOt Rn_.‘(t) ’ t g 2 to = t3
and
n—1 .
(28) y(t)gAt”‘l D (y:rl’“',rn—l)(t) t> t3'

R,-4(t) ’ B
Integrating (r) from ¢ (= ¢,) to o0, we obtain |
29) 0 > D" piry, s ramq) () 2 B(D), t2t,,
where 0(1) = { p(5) f((s), yH(S)]) ds.
Then, with 'regard to the monotonicity of D"~ (y;r,, ..., n-1), We have
29" D" Y(y;r, seves Fa-1) (M) = D(F) for every t Z i, = ¥(¢,).
I.Let /e {1,2,...,n — 1}. Then (28) and . '

n—=1c., ‘ : i
) [0 2 ApoY ! e DOOL g g
hold.

From (28) or (28'), in view of (29) or (29°), we get,
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" o(1)

(30) A m for t = T = max {I_‘ , 14},
n—1
or
n—1
(30" y[h()] = A LhT' " "o(r) for t = T, respectively.

Rn - l[h(t)]

In view of the monotonicity of the function £, (30), (30’) and (24) we have

"oy, [h(D]" o)
(31) (@), y[h(t)])zf(A R .0 A R,_i[A(D] )z

1n—1 [h(t)}n-l )
R,—1()" R,—y[h()] )"

Multiplying both sides of (31) by p(#)/G(A ®(t)) and then integrating from T to ¢,
we obtain

fp(s)f( s [”“’]"—) < [ =P (00, yTHs)]) ds =

2 G(4®() f (

R,1(5) " R,_,[h(s)] 3 G(Ad(s))
t ®'(s) __1—0(,4@(1)) du l K du
~ o) © = A by G =4 Gy <

which contradicts (25).
H. Let / = 0. Then (27) implies with regard to (26)

w1 DTNy, o) (D)

W)z —20 ey > Mt

T oy@2nh - R,_1(1) ’
where M, = mf{ 0 n }a
rzto [ y(1/2°77)
Further, using the analogous method as in the case I, we get a contradiction

with (25).

If (14) holds and / = 1, then in view of (3), (26) is fulfilled. In all other cases
(i.e. either (14) holds and / = 0, or (15) holds and / > 0) we have to assume that (26)
is satisfied. But, as shown above, this leads to a contradiction with (25). Then
lim y(¢) = 0 for every nonoscillatory solution y(f) e W. Hence it follows that in

1o
@) | Dp;rys.eistno) (@]} 0astt 0,i=0,1,...,n — 1, and in
B I D;ry,..cira-) (]} 0ast1t 0,i=0,1,...,n — 2.

The proof of Theorem 2 is complete.
Theorem 2 is extension of Theorem 1 in [5].
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