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0. INTRODUCTION 

A subset of a complete lattice L closed under formation of arbitrary g.I. bounds 
is called a closure system on L and the complete lattice of closure systems on L, 
ordered by inclusion, is denoted by C(L). The following results are obtained. 
A principal filter in (£(/,) is semimodular iff it is meet infinitely distributive. Under 
certain conditions, Ct(L) does not contain the "diamond". An example showing 
that these conditions cannot be omitted is presented and some corollaries concern­
ing lattices of generating systems, called briefly gs-lattices in [4] and [5], are 
formulated. 

For the motivation of the study of gs-lattices the reader may look at [5]. This 
study can be included into the general treatment of lattices of topologies on a $et 
introduced in [9], but the properties of gs-lattices differ essentially from the 
properties of lattices of topologies in the sense of [2]. This fact can be observed 
by comparison of the results from [4] and this paper with those from [7] and [8]. 
An extensive list of results concerning lattices of topologies can be found in [6]. 

1. THE SEMIMODULARITY OF G(L, N) 

The symbol 0 will signify the empty set. For a set A we denote by card(A) the 
cardinality of A and by idA the identity relation on A. 

If P is a poset then the ordering on P will be denoted by £, the covering relation 
by -<, the incomparability relation by || and a <b will abbreviate a <b or 
a = b. As it is usual, (a], [a) will denote the principal ideal, principal filter in P 
generated by a, respectively, and [a, h] the interval [a) n (&] for all a,beP, 
a ^ b. A set Q g P will be called hereditary in P if a e Q9 b ^ a imply be Q. The 
set of hereditary subsets in P will be denoted by H(P) and tHe normal completion 
of P by N(P) or, more exactly, by N(P, £). It is the least subset of H(P)cbntainingP 
as well as all principal ideals in P which is closed under intersection. If A £ P 
then (A"] will denote the least hereditary subset of P containing At, i.e. (A] -» 0 
if A=* 0 and (.4] = \J (a] otherwise. Finally, fcA, a Ab and \/A, a V b will be 



a notation for the g.l. bound of A, {a, b] and the l.u. bound of A, {a, b) in P, 
respectively. 

1.1. Definition. A subset C of a complete lattice L is said to be a closure system 
on L if A-4 e C for each _4 <= C. (A^ is the greatest element in L.) 

We denote by (£(L) the set of closure systehis on L and by Ct(L, N) the set 
{C e <£(L) | N c C} for each N€ C(L). 

1.2. Remark, (i) In the following, both <£(L) and G(L, N) will be considered to be 
complete lattices in which L is the greatest element and the g.l. bound of every 
nonempty subset is its intersection. 

(ii) Important special cases of (£(L, N) are lattices <£(H(P), N(P)), where P is 
a poset, which are called lattices of generating systems and denoted by Gs(P) in 
[3], W, [5]. 

1.3. Definition. If C e Ct(L) then we put q>c(a) = h {b e C \ a ^ b} for each 
aeL. 

1.4. Lemma. If Ced(L) then <pc is an isotone, extensive and idempotent map 
of L into L (a closure operator on L) and C = {a e L | a -= <pc(a)}-

1.5. Lemma. The following assertions hold for all C, D e QL(L). 
(i) C V D -= {c A d | c 6 C and de D}. 

(ii) <PCVD(0) = <Pc(a) A <Pi>(a)for each aeL. 
(iii) C S D -=> <pD(a) g <Pc(a)/0r each aeL. 

1.6. Corollary. aeCv D iffa = <pc(a) A <pD(a) /or a// a e L and C, D e £(L). 

1.7. Definition. We denote by <A> the least Ce&(L) satisfying A g C for any 
complete lattice L and A e L. 

If C e C(L) and {aj, a2, . • •, a„} s L then it is possible to write (C,al9a2, • •, 0„> 
instead of <C u {a t, a2, ..., aw}>. 

1.8. Lemma. Lef L be a complete lattice. Then the following assertions hold. 
(i) <yi> ==. {frB \B<£ A} for each A c L. 

(ii) <C, a> c C u (a]/or a// C6 G(L), a e L . 
(iii) <C, a> - {a} 6 <£(L) /or a// C e C(L), a e L - C. 

1.9. Lemma. If B, CeG(L) and aeL - C then aeBv C implies <pB(a) $ C. 
Proof. aeBv C=> a = <pB(a) A <Pc(a) regarding 1.6. By this and by <pB(a) e C 

we obtain aeC which is a contradiction. 

1.10. Definition. A complete lattice L is said to be 
(i) semimodular if a -< o implies a V x :< A V x for each JCGL 

(ii) meet infinitely distributive if a V ^ 5 = V (a v *) f° r all a e L and i* c L. 
beB 

(iii) upper continuous if a A V ^ — A (a A *) f° r a ' l aeL and all chains B 
inL. 



1.11. Theorem. Let L be a complete lattice and NeCt(L). Then the following 
assertions are equivalent. 

(i) C(L, N± is. ssmimoJuLu^ t , 
(ii) C(L, N) is meet infinitely distributive. 
(iii) C v D - = C u D /or a// C, Z> e <Z(L9 N). 
(iv) [a, <pN(a)] is a chain for each ae L. 
Proof. (i)=>(iii): If (iii) is not true then there exist E9Fed(L9N) and ae 

e(Ev F) - (EKJ F). For b = <pE(a)9 c =- <pF(a) it holds a < b9 a < c and a = 
= b Ac by 1.4, 1.6. If we put 

v B =- <N, ft>, C « <N, c>, v4 = 5 - {6} 

hen A e Ct(L, N) by 1.8 (iii) and by the validity of ft £ N. Indeed, b $ F by 1.9 and 
i V g F , 

It follows by b £ N9 b $ c and C g N u (c], see 1.8 (ii), that beL - C. More­
over, b<£A=>b< <pA(b) e -4£ -££Nu( f t ]=> <pA(b) e N £ C. The last two con­
clusions and 1.9 give b$AvC. Further, N £ E9beE imply ^ £ £ = <N, ft> £ 
£ .£. Then 6 = <p£(a) ;g ^ ( a ) by 1.5 (iii) and this fact together with <pA(a) e 
e A = B - {b} £ (N u (6]) - {ft} imply <pA(a) e N £ C. By this, a £ F 2 C and 
by 1.9 we obtain a£ Av C. As be BV C obviously and ae Bv C according to 
a = b A c, 6 e B9 c e C, it holds {a, 6} £ (B V C) - (Al V C). 

If we denote D = <^ v C, a> then D ^ Bv C and 6 £ Z) regarding D £ 
c (y4 v C) u (a], a < b. Hence Av C <z D <z Bv C and we have not -4 v C j< 
^<BV C. Since Al -< B obviously, (i) does not hold for C(L, N). 

(iii) => (iv): Let us admit that [a, <pN(a)] is not a chain for some a e L. Then there 
exist b9ce [a, <pN(a)] such that b \\ c. If we denote B == <N, ft> and C = <N, c> 
then, according to <pB(a)eB and 1.8 (i), we can find g £ . V u { i } satisfying 
<PB(G) = AG- W e ] have <pB(a) *z A02 — {*}) Aft** <P/y(a) A 6 = b because of 
Q - {b} £ N and a g * for all x 6 G - {ft}. By ft ^ <pj(a) and by ft || c, a <; 
g ft A c we obtain ft A c < ft ^ <p*(a) ^ <pB(ft A c). In the same way we prove 
ft A c < <pc(£ A c). 

These two relations and 1.4 say h c f i u C , As ft A ceB V C, we have 
BKJC * BV C. 

(iv) => (iii): Let us now suppose that [a, <?#(£)] is a chain for each a eL and 
take C,De d(L9 N)9 aeCvD arbitrarily. Then a = <pc(a) A <pD(a) according 
to 1.6. It follows by N £ C9 N £ D and 1.4, 1.5 (iii) that <pc(a)9 <pD(a) e [a, <pN(a)]. 
Hence <pc(a) is comparable with <pD(a) and either a ~ <pc(a) or a = <pD(a). As this 
is equivalent to a e C u D , we have CvD^CuD; the converse inclusion 
is true trivially. 

1.12. Corollary. Let L be a complete lattice. Then <&(L) is semimodular iff L i 
a chain. 



2. ON A L A T T I C E <£(£) C O N T A I N I N G M3 

2.1. Definition. Let V be a set and o, i elements such that card(V) > I, o # i 
and V n {<?, 1} = 0. We denote by Mv the lattice V u {0, i} provided by the follow­
ing ordering, o <£ x ^ i and x || >> for all x, y e V, x # y. 

We write M3 instead of M{ a > 6 c } . 

2.2. Definition. We say that a complete lattice L contains Mv whenever there 
is an embedding (an injective lattice-homomorphism) of Mv into L. 

2.3. Definition. A closure system C on a complete lattice L is called inductive 
in L if V iai h = 0, 1, ...} e C for each chain a0 < a{ < ... in C. 

2.4. Theorem. Let L be an upper continuous complete lattice, N a closure system 
on L and let every element of <E(L, N) be inductive in L. Then G(L, N) does not 
contain M3. 

Proof. Let us admit that i: M3 -» <S(L, N) is an embedding and put tx = X 
for x = o, i, a, b, c. Then An£ = £ n C = C n A = 0, Av£=£vC= 
= C v A = I and Ax = X - 0 ?- 0 for X = A, £, C. 

Choose ae AA arbitrarily. Then a e A g 2? V C implies a = <pB(tf) A <pc(a) 
and, as a $ B, a < <pB(a). Moreover, aeL - B,ae B\f C and 1.9 imply <pB(̂ ) £ C. 
Hence <pB(a) e AB. If we take <pB(a) instead of a and change the roles of A, B in the 
previous consideration then we get 

<pB(a) = <pA<pB(a) A <pc<pB(a), <pB(a) < <pA<pB(a) and <pA<pB(a) e AA. 

Further, a = <pB(tf) A <pc(a) = <PA<pB(a) A <pc<pB(a) A <pc(a) = <pA<pB(a) A <pc(a) ac­
cording to <pc(a) ;= <Pc<pB(a)- Hence a < <pB(a) < <pA<pB(a) and <pA<pB(a) A <pc(a) = 
= a. By induction we obtain 

a < <pB(a) < <pA<pB(a) < ... < <pB(<pA<pB)k(a) < (<pA<pB)k+\a) < ... 
and 

(<PA<PB)n(a) A <pc(a) = a for « = 1, 2, ... 

If we put Q = { ( ^ B ) ^ ) I w = 1, 2, . . . } , R = { ^ ^ " ( a ) | /* = 1, 2, ...} 

and b = V G then b = \/ R obviously. By this, g £ y4, JR g 5 and by the induc-
tivity of A, B we obtain b e A n B = 0. As, moreover, a < b, we have <j0o(a) = *• 
At the same time, a < <pc(a) and <pc(a) = <p0(tf) hold with respect to a 4 C and 
0 s C. Then a < <pc(a) = 6 A <pc(a). But b A <pc(a) = V S A <Pc(<0 = 
88 V {(VAVBYfa) A <Pc(fl) | « s 1,2, ...} = fl and we have a contradiction. 

We shall now prove that there exists a complete lattice L such that £(£) contains 
My for an arbitrary given set V with the property card(V) > 1. 

2.5. Definition. Let V ¥> 0 be a set. We denote by K* the free monoid over V 
and by e its unit. If u e K* then there are /w = 0 and #!, a2, • • > «m <= P with the 



property a1a2 ... am « u (we set axa2 ... am = e for m = 0). We call the symbol 
a1a2 ... am a decomposition of u (in K) and m a /ength of w; we write m « | u |. 
If u9 ve V* then the symbol v0a1v1 ... amvm is said to be a u-decomposition of v 
whenever**^ ... am is a decomposition of 11, t>0, vl9 ..., t;meK* a n d t ^ ^ ~amvm** 
= u. For arbitrary u9veV* we put 

u ^ v if there is a u-rdecomposition of v. 

One can easily see that g is an ordering on V*. 
In lemma 2.6 we repeatedly use the following obvious fact. If V & 09ul9u2>vx, 

v2 € V* and w ^ = vxv2 then | vx \ ^ | ux |, | vx \ < | ux \ if and only if there exists 
z e V*, z e V* — {e}9 respectively, such that ux = vxz. 

2.6. Lemma. If V ^ 0, vf e V* for / = 0, 1, ..., w, awd o , e K are 5t/ch that 
ai & tfj-t /or / = 1, 2, ..., w -j- 1 then 

axa2 ... am + 1 $ v0a1v1 ... ami!m. 

Proof. Let us denote v = v0axvx ... amvm and admit that axa2 • •• 0m+i —: v. 
Then there is an axa2 ... am + 1-decomposition WO^M^ ... am+1wm+1 of t;. Let us 
put Xi = Xofli^j ... atXi for x = t?, w and i = 0, 1, ..., m and 

S={i\ \vt\ £\wt\}. 

(a) 0 e 5 : If 0 $ S then | w0 \ = | w0 \ < \ V0 \ = | v0 |. Thus | w0a1 \ ^ | o0 \ 
and we can find ze V* such that v̂ oflfjZ = v0. But then aj g v09 a contradiction. 

(b) m * S : | WmJ <\v\ = 1 ^ | . 

The statements (a) and (b) say that S is a nonempty subset of {0, 1, ..., m - 1}. 
If we denote by k the greatest integer in S then | Vk \ £ \ wk\, I ffk+i I < I #*+i I-
Hence there exist Zj e V*, z2 e V* — {e} satisfying wk = ^ Z j , flfc+1 = wk+1z2\ 
By this and by Wfc + 1 = wkak + 1wk + 1 we obtain 

(c) vfc + 1 = ivfc+1z2 = vvfcafc + 1u>fc+1z2 = $kzxak+xwk+xz2. 

Since | flfc+2 | ^ | z2 |, it holds | !0kzxak+xwk + xak+2 \ ^ | Vkzxak+Xwk+Xz2 \. This 
implies%zxak+xwk+xak + 2z3 = t?fcz1afc+1wfc+1z2 for some z3 e F*. Then ak+2z3 « z2 

and by this, (c), t/fc+1 = vfc0fc + 1vfc+1 we obtain zxak+xwk+xak+2z3 = afc+1t?fc+1. As, 
simultaneously, | ak+x | g | zxak+1 |, there is z4 6 F* with the property ak+1zA «-
= z1a fc+1. But then ak+xzAwk+xak+2z3 = ak+xvk+x implies z4H>fc+1tffc+2z3 = 
= vk+1 which means ak+2 ^ t>fc+1. This is a contradiction. 

2.7. Definition. Suppose that V # 0 and G £ K*. We say that 
(i) G is foca/Ty complete if G n \u) has a least element, which we denote by uG, 

for each ue V*. 
(ii) G is eto.serf under submerging whenever 

u0atux ... amum e G9 v0atvt ... amvm eG=> w0*V*itfi*>i ... amumvm e G 

for arbitrary m ^ 0, al9al9 <9ame Kand « 0 , t?0, ul9 vl9 —9um9vMe F*. 



2.8. Lemma. Suppose that V * &9 G ^ V* is closed under submerging, 0 < k9 

Si H* s2 £ ... ~ sk = s are integers and ai9 a29 ..., ag+i e V. Further, let 
Uo9u[9 ...9u8le V* be such that u^atu[ ...ag(uSieG9 < + 1 = ... = wj = e for 
i = 1, 2, ..., k and Vj = u)u) ... u) for j = 0, 1, ..., s. Then v0aivi ... agvseG. 

Proof, (a) If k = 1 then v0atVt ... asvs = i/0a1t/[ ... a5t/* 6 G. 
(b) Assume that k > 1 and i ^ a ^ ... atv[eG for t>} = i/)t/2 ... t/*'1 and y = 

= 1,2, ...9sk„i = f. If we putt/* = t/*a,+ 1t/*+1 ... asu
k then also t/^i^* .>atuteG 

and, as G is closed under submerging, we have i^t^a^it/* .. atv\ukeG. But 
t>>) = Vjforj = 0,1, ..., r - 1 and^t/* = v[ukat+iu

k
t+i .asu

k = vtat+ivt+i ...agvg 

because v[uk = vt and, regarding 5y < / + 1, t//+1 = ... = t// = e for j = 
= 1, 2, ..., A: — 1. Hence t ^ a ^ •• asvge G. 

2.9. Theorem. Suppose that V # 0 a/trf C g K * w locally complete and closed 
under submerging. Then 

<{(t/] | t/ e G}> = {V*} u { ( F ] | 0 # F c G W F is finite}. 

Proof. Let us denote CG = <{(t/] | u e G}> and LG = {V*} u {(F] | 0 # F c G 
and F is finite}. 

(a) CG t= LG: If we take an arbitrary PeCG then, by 1.8 (i), there i s g g G 
such that P = A{(?] I ? e g}. In case g = 0 we have P = V* G L G . Otherwise 
p = fl{(?] I 4 e g} = {t/ e V* | t/ <; # for all # e g}. One can easily see that (q] 
is finite and eG e(q] n G for every t j eg . Since, at the same time, P c (qr] for at 
least one q e Q9 we obtain that FP = P n G is a finite nonempty subset of G. The 
validity of ( F j = F is a consequence of FP £ p, P e H(V*). For the proof of the 
converse inclusion consider ueP arbitrarily. Since Q c G n [t/), we have uG^q 
for all ? e g. This and uGeG imply uGeFP. Then t/ e (t/G] g (FF]. 

(b) LG £ CG: Clearly, V* e CG. If F e LG - { V*} then there is a finite nonempty 
k 

set {t/\ t/2, ..., t/*} .= G satisfying F = (J (w1']. We prove that F = f\{(w] I w e ^ 1 
i-=l 

where 
W = {w\ ul

 = w for i = 1,2, ...,*: and weG}. 

The inclusion F s fitO*7] I we W} being trivial, consider an arbitrary z = 
= axa2 ... ame V* and suppose that z$P. Then, for i = 1, 2, ..., fc, we have 
z £ t/1 which is equivalent to aAa2 ... aS| ^ t/1, a ^ ... a,<+1 ^ ul for some ^ j , 
0 ^ $, < m. Without loss of generality we assume that sx ^ s2 ^ ... £ sk and 
put s = sk. Obviously, there exists such an ata2 ... a#l-decomposition u0

fliwi ••• tf««*4i 
of i/1 that fy ^ t/j-i for j = 1, 2, ...9st; aJ |+1 ^ ifjf is now a consequence of 
a ^ ... a4<+1 $ i/1 for i = 1, 2, ..., fc. 

Let t/y « e for j = jj + 1, ..., J, i = 1, 2, ..., k and t>y = izjtz2 ... uk for j = 
= 0,1, ...9s. Further, let v = v^atti ... a/;,. Then v e G by 2.8 and i/1 ^ t? for 
f « 1, 2, . . , k. Indeed, since i/J ^ t;y for J = 0, 1, ..., s obviously, we have ul = 

6 



= ueaxux ... a8iuSi £ v0aivi ... aSivti £ v0aivi ... asva — v. Hence VBW and, as 
*; $ Wj-ifor t = 1,2, ...,fc, we have ay $ t^.,- for al l je {1,2, ...,* + 1}. But 
then a^a2 ... aJ+1 £v by 2.6 and we have z £ v. 

2.10. Definition. If V # 0 and a e V then we put 

V*a = {wa | u e V*}, Lfl == <{(w] | w € F*a}>. 

2.11. Lemma. If V # 0 Men V* am/ V*a/or every ae V are locally complete 
and closed under submerging. 

Proof. V*a is locally complete for each ae V: Let ue V* be arbitrary. In case 
i/ e V*a we have MK«a == u. If w e V* — K*a then we show wK«fl » «a. As ua e 
e [w) n V*a obviously, consider ve[u) n V*a arbitrarily. Then there is a ii-de-
composition v0alvl ... amvm of v. It holds am ^ a according to u$ V*a. By this 
and by v e V*a there exists fm e V* satisfying vm = 0ma. But then v0aifi ... aJ5mae 
is a wa-decomposition of t? so that ua g v. 

All the remaining statements of this lemma are true trivially. 

2.12. Corollary. 7/V # 0 then N(V*, ^ ) » {V*} u {(/*] | 0 c ^ c F * w./?/f/te} 
and Lfl = {V*} u {(.4] | 0 c A g V*a is finite} for each aeV. 

2.13. Lemma. If a9beV9 a # b and ve V* then v = va A t?ft. 
Proof, t; is a lower bound of {va9 vb} obviously. Suppose that u <J va and 

u ^ vb for some ueV* and denote by t^oa^ ... amum, t^a^i ... amvm the «-de-
composition of va9 vb9 respectively. Since a # ft, either am *- a or am # ft is true. 
In the first case there is vme V* satisfying vm = T>ma and, clearly, v^a^v^ •• cinPm 
is a w-decomposition of v so that u ^ v. In the second case we obtain u £ v, too. 

2.14. Theorem. For every set V satisfying card(V) > 1 there exists a complete 
lattice L such that C(L) contains Mv. 

Proof. Let us put L =- N(V*9 ^ ) , to = {V*}9 a = L and *;c = Lx for each 
xeV. 

(a) Lfl A Lb = {V*} for arbitrary a, ft e V, a * ft: {V*} c L„ A L„ by 2.12. For 
the proof of the converse inclusion,consider PeLa — {V*} arbitrarily. Then, 
regarding 2.12, there is a finite nonempty set F s V*a with the property P =- (F]. 
By this and by the finiteness of principal ideals in V* we obtain that P is finite and 
nonempty. Hence P is uniquely determined by the antichain A # 0 of its maximal 
elements. It follows immediately by P -= (F] that A £ F s V*a. If we admit 
P e Lh then we get A £ V*ft in the same way. But this implies 0 c i c v*a n 
r\ V*b which is a contradiction. 

(b) Lav Lb = L for arbitrary a, ft e V, a # ft: Since La\f Lbe d(L) and L » 
= N(F*, <;), it is sufficient to prove (u\ e Lfl V Lb for every ue V*: As u =* ua A ub 
regarding 2.13, we obtain (w] = (ud\ n (wft]. This, (ua] eLa9 (ub]eLb and 1.5(i) 
imply (ii\eLa\fLb. 



3. C O R O L L A R I E S ON L A T T I C E S O F G E N E R A T I N G S Y S T E M S 

As it is usual, we write (A*)+ instead of <pN(P)(A) for arbitrary poset P and A e 
eH(P). 

3.1. Theorem. If P is a poset then the following statements are equivalent. 
(i) Gs(P) is semimodular. 

(ii) Gs(P) is meet infinitely distributive. 
(iii) © V § = © u £ / o r all ©, $ e Gs(P). 
(iv) (A*)* - A is a chain in P for each A e H(P). 
Proof. Regarding 1.11 we only have to prove that (A*)* — A is a chain in 

Po [A , (A*)*] is a chain in H(P) for all posets P and A € H(P). 
If [A , (.4*)*] is not a chain then there exist B, C e [A , (-4*)*] such that B \\ C. 

Clearly, there are b e B — C and ce C - B; but then b \\ c and b, c e (A*)* — A. 
Conversely, if there exist i , c e (A*)* — A such that b || c then we have B || C 
and 5, Ce [A , (A*)*] for £ = A u (b], C = A u (c]. 

3.2. Theorem. I/* Gs(P) w yj/z/te the/* it does not contain M3. 
Proof. This is a consequence of 2.4. 

3.3. Theorem. For every set V satisfying card(V) > 1 there exists a poset P such 
that Gs(P) contains Mv. 

Proof. If we consider V* ordered by co = idY+ then, evidently, N(V*, of) = 
= {0, V*} u {{u} | we V*}. Using 2.14 (a), (b), one can easily see that /: Mv -• 
->Gs(V*), defined by *o = N(V*, co), ii = N(V*, g ) u N(V*, co) and /x = 
= Lx u N(V*, co) for every JC e V, is an embedding. 
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