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0. INTRODUCTION

A subset of a complete lattice L closed under formation of arbitrary g.l. bounds
is called a closure system on L and the complete lattice of closure systems on L,
ordered by inclusion, is denoted by ®(L). The following results are obtained. .
A principal filter in €(L) is semimodular iff it is meet infinitely distributive. Under
certain conditions, €(L) does not contain the “diamond”. An example showing
that these conditions cannot be omitted is presented and some corollaries concern-
ing lattices of generating systems, called briefly gs-lattices in [4] and [5], are
formulated. '

For the motivation of the study of gs-lattices the reader may look at [5]. This
study can be included into the general treatment of lattices of topologies on a set
introduced in [9], but the properties of gs-lattices differ essentially from the
properties of lattices of topologies in the sense of [2]. This fact can be observed
by comparison of the results from [4] and this paper with those from [7] and [8].
An extensive list of results concerning lattices of topologies can be found in [6].

1. THE SEMIMODULARITY OF &L, N)

The symbol @ will signify the empty set. For a set 4 we denote by card(4) the
cardinality of 4 and by id, the identity relation on A. '

If P is a poset then the ordering on P will be denoted by <, the covering relation
by =, the incomparability relation by || and a <b will abbreviate a <& or

= b. As it is usual, (a], [@) will denote the principal ideal, principal filter in P
generated by a, respectively, and [a, b] the interval [a) N (b] for all a,b€P,
a < b. A set @ < P will be called hereditary in Pifae Q, b < aimply b e Q. The
set of hereditary subsets in P will be denoted by H(P) and the normal completion
of P by N(P) or, more exactly, by N(P, <). It is the least subset of H(P) containing P
as well as all principal ideals in P which is closed under intersection..If 4 < P
then (4] will denote the least hereditary subset of P containing 4, i.e. (A] =8
if A =0 and (4] = ) (a] otherwise. Finally, A4, a A b and VA, aV b will be
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a notation for the g.l. bound of A4, {a, b} and the l.u. bound of A4, {a, b} in P,
respectively.

1.1. Definition. A subset C of a complete lattice L is said to be a closure system
on L if AAe C for each 4 = C. (AP is the greatest element in L.) '

We denote by €(L) the set of closure systems on L and by G(L, N) the set
{CeC(L)| N e C} for each N e C(L).

1.2. Remark. (i) In the following, both €(L) and €(L, N) will be considered to be
complete lattices in which L is the greatest element and the g.l. bound of every
nonempty subset is its intersection.

(i) Important special cases of G&(L, N) are lattices €(H(P), N(P)), where P is
a poset, which are called lattices of generating systems and denoted by Gs(P) in
[31. [4]. [51 |

1.3. Definition. If Ce C(L) then we put ¢c(@) = A {b € C|a < b} for each
ael.

1.4. Lemma. If C e G(L) then ¢. is an isotone, extensive and idempotent map
of L into L (a closure operator on L) and C = {aeL|a = ¢c(a)}.

1.5. Lemma. The following assertions hold for all C, D e G(L).
(i) CvD = {cAd|ceCandde D}.
(i) @cyvp(@) = @c(a) A ¢p(a) for each a€ L.
(iii) C € D = ¢p(a) £ @c(a) for each ae L.
1.6. Corollary. ac CV D iff a = ¢c(a) A ¢p(a) for all ae L and C, D e €(L).

1.7. Definition. We denote by (A4) the least C e G(L) satisfying 4 £ C for any
complete lattice L and 4 € L.

If Ce €(L)and {a,, a,, ..., a,} S Lthenitis possible to write {(C, a,, a;, -.., a,)
instead of <C u {a,, a;, ..., a,}).

1.8. Lemma. Let L be a complete lattice. Then the following assertions hold.
(i) <A> = {AB| B < A} for each A < L.

(i) ¢C,a) = Cu (a] for all Ce §(L), ae L.

(iii) <C,a) — {a} e C(L) for all CeC(L),ae L — C.

1.9. Lemma. If B, Ce (L) and acL — C thenae BV C implies @g(a) ¢ C.
Proof. ae BV C= a = ¢p(a) A ¢c(a) regarding 1.6. By this-and by ¢g(a) e C
" we obtain a € C which is a contradiction.

1.10. Definition. A complete lattice L is said to be
(i) semimodular if a < b implies a vV x < b V x-for each x e L.

(ii) meet infinitely distributiveifav AB = \f (aVv b)forallaeLand B < L.
beB

(iii) upper continuous if an VB = A (aAb) for all aeL and all chains B
» beB
in L.




.1.11. Theorem. Let L be a complete lattice and N € €(L). Then the following
assertions are equivalent.

@) (L, M) is semimodulare... ... =~
(ii) ©(L, N) is meet infinitely distributive.
(iii) CvD = C u D for all C, De G(L, N).
(iv) [a, ox(@)] is a chain for each ae L.
Proof. (i) = (iii): If (iii) is not true then there exist E, Fe (L, N) and ae

€(EVF)—~ (EUF). For b = ¢gla), c = ¢x(a) it holds a < b, a < c and a =
= b Ac by 1.4, 1.6. If we put

' B=<(N,b), C=(N,c), A=B-—{b}

hen 4 € §(L, N) by 1.8 (iii) and by the validity of b ¢ N. Indeed, b ¢ F by 1.9 and
NcF.

It follows by b¢ N, b £ c and C & N u (c], see 1.8 (ii), that be L — C. More-
over, b¢ A=>b<g,(b)ed c BSNu (b]= ¢,b)e Nc C. The last two con-
clusions and 1.9 give b¢ A v C. Further, N E,be Eimply A = B = (N, b) <
S E. Then b = ¢g(a) £ o4 (@) by 1.5 (iii) and this fact together with ¢,(a) €
€d=B - {b} = (Nu (b]) — {b} imply ¢p,(a)e N c C. By this, a¢ F 2 C and
by 1.9 we obtain a¢ A vV C. As be BV C obviously and ae BV C according to
a=bAc,beB,ceC,itholds {a,b} = (BVC) - (4V ).

If we denote D =<4V C,a) then D< BV C and b¢ D regarding D
S(AvCOu(d],a<b Hence AVCc Dc BV C and we have not 4 v C <
~ BV C. Since A < B obviously, (i) does not hold for €(L, N).

(iii) = (iv): Let us admit that [a, (pN(a)] is not a chain for some a € L. Then there
exist b, c € [a, py(a)] such that b || c. If we denote B = N, b) and C = (N, c)
then, according to ¢g(a)e B and 1.8 (i), we can find Q £ N u {b} satisfying
@p(@) = AQ. We! have ¢gza) 2 A(Q — {b}) Ab = py(a) Ab = b because of
Q-{b}csNandax xforal xeQ — {b}. By b < ¢g(a) and by b| ¢, a £
S bAc we obtain bAc < b £ @gla) S ¢g(b Ac). In the same way we prove
bAc< ocbdAc).

These two relations and 1.4 say bAc¢BuU C. As bAce BV C, we have
BuC#BvVC.

(iv) = (iii): Let us now suppose that [a, py(a)] is a chain for each ae L and
take C,DeG(L, N), ac CVv D arbitrarily. Then a = ¢c(a) A ¢p(a) according
to 1.6. It follows by N = C, N € D and 1.4, 1.5 (iii) that ¢c(a), ¢p(a) € [a, pn(a)].
Hence ¢¢(a) is comparable with ¢p(a) and either a = ¢c(a) or a = ¢@p(a). As this
is equivalent to ae Cu D, we have CVv D < Cu D; the converse inclusion
is true trivially.

1.12. Corollary. Let L be a complete lattice. Then €(L) is semimodular iff L i
a chain.




2. ON A LATTICE €(L) CONTAINING M,

2.1. Definition. Let ¥ be a set and o, i elements such that card(V) > 1, 0 # i
and ¥ n {o, i} = 0. We denote by M, the lattice ¥ U {o, i} provided by the follow-
ing ordering. o S x <iand x|y forall x,ye V, x # y.

We write M, instead of M, ;.

2.2. Definition. We say that a complete lattice L contains M, whenever there
is an embedding (an injective lattice-homomorphism) of M, into L.

2.3. Definition. A closure system C on a complete lattice L is called inductive
inLifV{a;li=0,1,..}eC for each chainag, < a, < ... in C.

2.4, Theorem. Let L be an upper continuous complete lattice, N a closure system
on L and let every element of ©(L, N) be inductive in L. Then €(L, N) does not
contain M.

Proof. Let us admit that «: My — €(L, N) is an embedding and put ix = X
for x =o0,i,a,b,c. Then ANnB=BNnC=CnA=0, AVB=BVvC=
=CVA=1Iand 4y = X -0# 0 for X = A, B, C.

Choose ae€ 4, arbitrarily. Then ae A £ BV C implies a = @ga) A oc(a)
and, as a ¢ B, a < ¢g(a). Moreover,ae L — B,ae BV C and 1.9 imply ¢y(a) ¢ C.
Hence ¢g(a) € 4. If we take @g(a) instead of a and change the roles of A, B in the
previous consideration then we get

0p(a) = ¢,05(a) A 9c@y(a), op(a) < ¢495(a) and 0 0p(a) € 44.

Further, a = @g(a) A ¢c(a) = ¢ ,05(a) A ocpp(@) A pc(a) = @, @p(a) A pc(a) ac-
cording to ¢c(a) £ @cpp(a). Hence a < ¢y(a) < ¢,05(a) and ¢ p5(a) A (@) =
= a. By induction we obtain

-8 < 0pa) < P405(@) < ... < P5(9,405)@) < (P40l (@) < -
and

(pa0p)" @ A@cla) =a forn=1,2, ..

If we put 0 = {(0499)"@ | n=1,2, ...}, R= {pp(0,05)"@)|n=1,2 ..}
and b = YV Q then b = YV R obviously. By this, 0 = 4, R < B and by the induc-
tivity of 4, B we obtain be 4 n B=0. As, moreover, a < b, we have ¢y(a) < b.
At the same time, a < ¢c(a@) and ¢c(a) < @o(@) hold with respect to a¢ C and
0 C. Then a < ¢ca) = bAog(a). But b Aoda) = VO A ocla) =
=V {(¢p.0p)"@) A@c@|n = 1,2, ..} =aand we have a contradiction.

We shall now prove that there exists a complete lattice L such that €(L) contains
M, for an arbitrary given set V with the property card(V) > 1.

2.5. Definition. Let ¥ # @ be a set. We denote by V* the free monoid over V
and by e its unit. If u € V* then there are m = 0 and a,, a;, ..-, a, € ¥ with the

4




property a,a, ... a, = u (we set a,a, ... a, = e for m = 0). We call the symbol
a,a, ... a, a decomposition of u (in V) and m a length of u; we write m = | u|.
If u,ve V* then the symbol vya,v, ... a,v, is said to be a u-decomposition of v
whenever a,a, ... a,,is a decomposition of u, vy, vy, ..., V,€ V* and voa v, ... GyV, =
= v. For arbitrary u, ve V* we put

usv if there is a u-decomposition of v.

One can easily see that £ is an ordering on V*.
In lemma 2.6 we repeatedly use the following obvious fact. If V # 8, u,, u,, v,
v, e V* and w,u; = v,v, then |v,| S |, |, |v,| <|u,| if and only if there exists

ze V*, ze V* — {e}, respectively, such that u, = v,z
2.6. Lemma. If V #80, v,e V* for i =0,1,....,m, and a,€ V are such that
a;fv,_,fori=12,...,m+ 1 then o
a8, ... Ay X V0G40 ... QY.

Proof. Let us denote v = vya,v, ... a,v, and admit that @,a, ... ey S 0.
Then there is an a,a, ... a,,, ,-decomposition woa;w; ... @+ Wns+q of v. Let us

put ¥, = xea;x, ... a;x; for x =v,wandi=0,1, ...,m and
S={illo|s|wl}
(@) 0eS: If 0¢S then |wo| = |Wo| < |By| =|vo| Thus | weay | < |0l

and we can find z € V* such that woa,z = v,. But then a; < v,, a contradiction.
®)y m¢S: |w,| <|v|=17,]

The statements (a) and (b) say that S is a nonempty subset of {0, 1, ..., m — 1}.
If we denote by k the greatest integer in S then | T, | S | Wi |, | Wew 1 | < [ Tpaq |-
Hence there exist z, € V*, z, e V* — {e} satisfying W, = 0,2,, Tyyy = Wy4122.
By this and by W, 4y = Wa,, W+, We obtain

(©) ysy = Wis12Z2 = Wiy Wir 122 = D2 B 1 Wis 122 ‘

Since | @4z | S |2, |, it holds | Bz, s Wit 1Gks2 | S | 52184 1 Wis 12, |- This
implies U,z @y 4 1 Wi 4 18i+ 223 = 321Gy 4 Wi 122 fOr some z3 € V*. Then a,1 223 = 2,
and by this, (C), U541 = T304 (Vx4 WE ODLAIN Z @+ (Wi 10k 4223 = Gp41Upsq- AS,
simultaneously, | @y, | £ | z,a,+, |, there is z, € V* with the property a;, 1z, =
= Z,Gy4(. But then ay,,Z,Wiy(0x4223 = Gy Vhsy IMPlies ZgWiy 1@44223 =
= p,,, which means a;,, < vy,,. This is a contradiction.

2.7. Definition. Suppose that V # ¢ and G = V*. We say that

(i) G is locally complete if G N [u) has a least element, which we denote by ug,
for each ue V*. :

(ii) G is closed under submerging whenever

UGy ... A, € G, VodyUy .. Gy € G = Uglo@y1ty 0y ... Gullyby € G

for arbitrary m = 0, a,, a,, ..., a, € V and ug, Vg, Uy, Vg, .., U U € V*, -




2.8. Lemma. Suppose that V # 0, G < V* is closed under submerging, 0 < k,
51 £§ S ... S5, =S5 are integers and a,, az, ..y a‘,+l e V. Further, let
Ug, Uy, ..., Uy, € V* be such that upa,ui ...a,u! eG Uy = .. =u=e for
i=1,2 ..,k and v; = ujuj ... u} for j= 0 1 .., 5. Then vya,0, ... ay, € G.

Proof. (a) If k = 1 then voa,v, ... av, = uba,u} ... aul €G.

(b) Assume that k > 1 and v(,a,v’1 a,v‘eG for v) = uju} . u,’l and j =
=12, ..,85., =tIfweputa¥ = ufa,, ut,, ... au’ then also uiauf ... aif e G
and, as G is closed under submerging, we have vouta, vyuf . av;ﬁ:‘e G. But
vl =, forj =0,1,...,t — 1 and vjiaf = vjuka,, uf, | ... aut = 0,84 Very -0,
because vju* = v, and, regarding s; <t + 1, ul,, =..=ul=¢e for j=
= 1,2, ...,k — 1. Hence vya,v, ... a,v,€ G.

2.9. Theorem. Suppose that V # 0 and G < V* is locally complete and closed
under submerging. Then

@] lue G}y = {¥*} U {(F]18 # F = G and F is finite}.

Proof. Let us denote C; = ({(u] |ue G}y and L = {V*} U {(F]I9 # F< G
and F is finite}.

(@) C; = L;: If we take an arbitrary P e C; then, by 1.8 (i), there is Q = G
such that P = A{(¢]| g€ Q}. In case Q = # we have P = V* € L;. Otherwise
P=N{@q]lqe 0} = {ueV*|u < q for all ge Q}. One can easily see that (g]
is finite and eg € (¢] N G for every g € Q. Since, at the same time, P < (q] for at
least one g € Q, we obtain that F, = P n G is a finite nonempty subset of G. The
validity of (F,] < P is a consequence ‘of Fp = P, Pe H(V'*). For the proof of the
converse inclusion consider u € P arbitrarily. Since Q < G n [u), we have ug < g
for all ge Q. This and ug € G imply ug € Fp. Then ue (ug] < (Fp)-

(b) Lg < Cg: Clearly, V* e Cq. If P e L; — {V*} then there is a finite nonempty

set {u', u?, ..., u*} = G satisfying P = U (u']. We prove that P = N\{(w] | we W}
. i=1

where .
W = {wlu-wfort 1,2, ...,k and we G}.

The inclusion P < N\{(w]|we W} being trivial, consider an arbitrary z=
= a,a, ... a, € V* and suppose that z ¢ P. Then for i=1,2, ..., k, we have
z £ u' which is equivalent to a,a, ...a, S ¥, a,a, ...a, ., £ ' for some s;,
" 0 £ 5; < m. Without loss of generahty we assume that 5 S5 S ... £5 and
put s = s,. Obviously, there exists such an a,a, ... a,-decomposition uf,alu‘1 e a
of u' that q; £ uj_, for j=1,2, ...,s; @,+; £u, is now a consequence of
aa; .4, L utfor i=1,2, ...k

Let uj=e for j=s,+1,..,5, i=12, ..,k and v; = wju ... uj for j =
=0, 1, ..., s. Further, let v = vga,v, ... a,v,. Then ve G by 2.8 and u' < v for
i=1,2, ..,k Indeed, since uj < v, for j = 0, 1, ..., s obviously, we have u' =




= “501‘“1 o aul S Voa,v; ... a,v, < voayv, ...aw, =v. Hence ve W and, as
a; fujyfori=1,2 . k we have a; £v,_, forall je{l,2,..,s + 1}. But
then a,a; ... a,,, % v by 2.6 and we have z £ v.

2.10. Definition. If V' # 6 and a e V then we put
V*a = {ualueV*}, L,=<{(u]lueV*a}).

2.11. Lemma. If V # 0 then V* and V*a for every a€ V are locally complete
and closed under submerging.

Proof. V*a is locally complete for each ae V: Let u e V* be arbitrary. In case
ue V*a we have uy.,, = u. If ue V* — V*a then we show uy., = ua. As uae
€ [u) N V*a obviously, consider ve [u) N V*a arbitrarily. Then there is a u-de-
composition vya,v, ... ayv, of v. It holds a, # a according to u ¢ V*a. By this
and by v € V*q there exists 7, € V* satisfying v,, = U,a. But then vya,v, ... a,9,ae
is a ua-decomposition of v so that ua < v.

All the remaining statements of this lemma are true trivially.

2.12. Corollary. If V # 0 then N(V*, <) = {V*} U {(4] |0 = A S V* is finite}
and L, = {V*} U {(4] |9 = A < V*a is finite} for each ae V.

2.13. Lemma. If a,be V,a # b and ve V* then v = va A vb.

Proof. v is a lower bound of {va, vb} obviously. Suppose that # < va and
u < vb for some ue V* and denote by vea,v, ... a,v,,, vpav] ... a,, the u-de-
composition of va, vh, respectively. Since a # b, either a,, # a or a, # b is true.
In the first case there is 7,, € V'* satisfying v,, = 7, and, clearly, vya,v, ... a,%,
is a u-decomposition of v so that ¥ < v. In the second case we obtain ¥ < v, too.

2.14. Theorem. For every set V satisfying card(V) > 1 there exists a complete
lattice L such that §(L) contains M, .

Proof. Let us put L = N(V*, 5), wo = {V*}, ¢i = L and «x = L, for each
xeV.

(@) L, A L, = {V*} for arbitrary a,be V, a # b: {V*} = L, A L, by 2.12. For
the proof of the converse inclusion, «onsider Pe L, — {V*} arbitrarily. Then,
regarding 2.12, there is a finite nonempty set F < V*a with the property P = (F].
By this and by the finiteness of principal ideals in V* we obtain that P is finite and
nonempty. Hence P is uniquely determined by the antichain 4 s @ of its maximal
elements. It follows immediately by P = (F] that A € F < V*a. If we admit
PeL, then we get A < V*b in the same way. But this implies 6 c 4 & V*an
N V*b which is a contradiction. ,

(b) L,v L, =L for arbitrary a,be V, a # b: Since L,V L,e®L) and L =
= N(V*, <), itis sufficient to prove (u] e L, v L, for every ue V*: Asu = ua A ub
regarding 2.13, we obtain («] = (ua] A (ub]. This, (ua] € L,, (ub] € L, and 1.5(i)
imply (u]eL,VL,.



3. COROLLARIES ON LATTICES OF GENERATING SYSTEMS

As it is usual, we write (4*), instead of @nep)(4) for arbitrary poset P and 4 €
€ H(P). ’

3.1. Theorem. If P is a poset then the following statements are equivalent.
(i) Gs(P) is semimodular.

(ii) Gs(P) is meet infinitely distributive.

(i) GVH =6 v H for all 6, H e Gs(P).

(iv) (A*), — A is a chain in P for each A € H(P).

Proof. Regarding 1.11 we only have to prove that (4*), — A is a chain in
P<>[A,(4%),] is a chain in H(P) for all posets P and A € H(P).

If [4, (4*),] is not a chain then there exist B, C e [4, (4*),] such that B | C.
Clearly, there are be B — C and ce C — B; but then b || ¢ and b, c € (4*), — A.
Conversely, if there exist b, c € (4*), — A such that b || ¢ then we have B C
and B, Ce[4, (A4*),] for B= AU (b],C = A v (c].

3.2, Theorem. If Gs(P) is finite then it does not contain M.
Proof. This is a consequence of 2.4.

3.3. Theorem. For every set V satisfying card(V) > 1 there exists a poset P such
that Gs(P) contains M, . ,

Proof. If we consider V* ordered by w = idy. then, evidently, N(V*, w) =
= {0, V*} U {{u} | ue V*}. Using 2.14 (a), (b), one can easily see that i: M, —
— Gs(V*), defined by 10 = N(V* w), i = N(V* =£)u N(V*, w) and 1x =
= L, u N(V*, w) for every x € V, is an embedding.
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