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FIXED EDGE THEOREMS 
FOR COMPLETE LATTICES 

Jlftf KLIMES, Brno 
(Received February 2, 1980) 

1. INTRODUCTION 

In this paper there is introduced a concept of a fixed edge for the mapping of 
a poset into itself. The aim of this paper is to investigate conditions under which 
a mapping of a poset into itself has a fixed edge. The Fixed Edge Theorem is proved: 
Every antitone mapping of a complete lattice L into itself has a fixed edge. The set E{f) 
of all fixed edges of a mapping/is considered. The partial ordering on the set E(f) 
is defined and it is shown that this poset forms a complete lattice. We prove generaliza
tions and extensions of these results for a family of mappings. Further the existence 
of a fixed edge of various mappings on complete lattices is proved. Especially the 
Fixed Edge Theorem will be extended to include multifunctions on complete lattices. 
We also extend our results about fixed edges to include mappings which are not 
antitone in general. 

In the following P will denote a partially ordered set (poset) with a partial order jS. 
If X is a nonempty subset in a poset P, the least upper bound of a subset X (if exists) 
is denoted by sup X. Analogously, the term greatest lower bound will be abbreviated 
to inf X. The least and greatest elements (if exist) are denoted by 0 &H§ 1, respectively. 
Two elements x and y in a poset P are called comparable if either x g* y or y g x. 
For x :g y in a poset P, [x, y] denotes an interval {z e P | x ^ z U y}. A mapping/ 
of a poset P into the poset Q is called antitone (isotone) if and only if for all x9 yeP, 
x ^ y it implies f(y) £ f(x) (f(y) ^ /(*)). An element that covers the least dement 
of a lattice L will be referred to as an atom of L. It will be convenient to use the 
terminology concerning lattices, see [1], 

2. A FIXED EDGE THEOREM 

Definition. Let/be a mapping of a poset P into itself and let x <£ y be elements 
of P. An ordered pair (x, y) is called a fixed edge off\if(x) = y and/Cp) « x. 
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Theorem 1 (Fixed Edge Theorem). Let L be a complete lattice and f an antitone 
mapping ofL into itself. Then there exists a fixed edge off In particular, (u, v) is the 
fixed edge off, where 

u = inf {yeL | y 2:f2(y)}, v = sup {xeL | x ^f2(x)} 

and u is the least element in L such that (u9 f(u)) is the fixed edge off 
Proof. Let X = {xeL | x ^ / 2(x)} and Y = {yeL \ y ^f2(y)}. The set X(Y) 

is nonempty since it contains an element 0(1). Let u = inf Y and v = sup X. Accord
ing to Tarski's theorem [5, Theorem 1] we can see that u =f2(u) and v = f\v\ 
since/2 is an isotone mapping. Hence v e Y and therefore u ^ v. The last equations 
imply that f(u) = f2(f(u)) and f(v) = f2(f(v)\ whence f(u) e X and f(v) e Y. Hence 
f(u) <| t; and w ^ f(v). On the other hand, we have f(v) g /2(w) = w, and /2(t?) = 
= v ^/(w) since/is antitone. It implies u = f(v) and v =/(w), i.e. (w, t?) is a fixed 
edge of/. If (x, j ) is any fixed edge of/ then x e Y. Hence w <£ x, which completes 
the proof. 

Theorem 2. Lef L be a complete lattice and fan antitone mapping of L into itself 
Then there exists a maximal element p in L such thai (p,f(p)) is a fixed edge off 

Proof. Let X = {x eL \ x ^ f2(x) g f(x)}. Clearly X is nonempty since 0 e X. 
Let C be a maximal chain in the set X and let p = sup C. If x, y e C, then x and y 
are comparable since C is a chain. If x ^ j , then by antitonicity of/we have x ^ 
S y S f(y) ^ / (* ) s^ce C s l If j <* x, then we analogously obtain y <: x <: 
«£ /(x) g /(>>). Hence x <£ /( j) for each x,yeC and it implies /? g /(x) for all x e C . 
As/is antitone, we have x <£/2(x) <£ / ( » for all x e C, and hence/? ^ /(/?). Further 
from /? g /(/?) ^ /(x) for all x e C, we have x g /2(x) g /2(/>) g /(/>) for all x e C. 
Hence p gf2(p) ^f(p) and since/2 is isotone f2(p) Sf2(f2(p)) ^ / 3 ( /0- Thus p 
and /2(/?) belong to Z. Since /? g / 2 0 ) , then C u {f2(p)} is a chain, whence by the 
maximality of C, f2(p) e C. This yields f2(p) ^ p and hence p = /2(/?). We have 
proved that (p,f(p)) is the fixed edge and p is the maximal element in X. If (r, 5) 
is another fixed edge of/ and p < r, then r belongs to X and the chain C u {r} 
properly contains C, contradicting the maximality of C. The proof of the theorem 
is thereby complete. 

Remark. Theorem 2 is a generalisation of a result described in [3]. The greatest 
element x in L, such that (x,/(x)) is the fixed edge off need not exist. It can be 
demonstrated by the following. 

Example. Assume that L = {o, a, b, c, 1} is the non-modular pentagon, where 
b < a, sup {c, b} = 1, inf {a, c} = o and define an antitone mapping/of L into itself 
as follows:/(o) = 1,/(i) = o, f(b) » a,/(a) = 6 and/(c) = c. 



3. COMMON FIXED EDGES 

Definition. Let F be a family of mappings of a poset P into itself and let x £ y 
be elements of P. An ordered pair (x, y) is said to be a common fixed edge of a family F 
if/(x) = y and/GO = x for a l l / e F. 

Speaking about commuting family of mappings we mean that composition is 
commutative. The lattice L is said to be atomic if it has the least element 0 and the 
sublattice [0, a] contains an atom for each element a > 0. Throughout this section 
let F be a family of single valued mappings. 

Theorem 3 (Generalized Fixed Edge Theorem). Let L be a complete lattice and F 
a commuting family of antitone mappings of L into itself Then F has a common fixed 
edge. In particular, (w, v) is a common fixed edge of F, where 

w= inf {yeL\y ^fg(y) for all fgeF}, 

v = sup {x e L | x £ fg(x) for all fge F}, 

and u is the least element in L such that (u, v), v = f(u)for allfe F is a common fixed 
edge of F. 

Proof. Let X = {xeL | x £fg(x) for all fgeF} and 7 = {yeL\y ^fg(y) 
for all fge F}. Clearly 0(1) belongs to X(Y) and hence X and Y are nonempty. Let 
u = inf Y, v == sup X. According to Tarski's theorem [5, Theorem 2] we can see 
that u = fg(u)9 v = fg(v) for all fgeF, which implies ueX and therefore u £ v. 
Hence h(u) = hfg(u)9 h(v) = hfg(v) for all fg9he F. Using commutativity of F9 

we get h{u) = fgh{u)9 h(v) = fgh(v) proving that h(u) e X, h(v) e Y for all h e F. 
Then since any g of F is antitone, we have u £ g(V) £ g(u) £ t? for all g e F. On the 
other hand, using antitonicity o f / e F we get/(t>) £fg(u) = w £fg(v) = t> £f(u) 
for all/, g e F . Because of antisymmetry, t; = /(w) and u = /(u) for a l l /e F. Then it 
follows that (w, t?) is a common fixed edge of F If (x9 y) is any common fixed edge 
of F, then x belongs to Y, hence u £ x, completing the proof. 

Theorem 4. Lef L be a complete lattice and F a commuting family of antitone 
mappings ofL into itself Then there exists a maximal element p in L such that (p, q)9 

q = f(p)for allfe F, is a common fixed edge ofF. 
Proof. Let X = {x eL \ x £ fg(x) £ f(x) for all/, g e F}. Clearly Xis nonempty 

since OeX Let C be a maximal chain in X and let p = sup C. Next it will be shown 
that peX. Let x9yeC; since C is a chain, we infer that either x <J >> or j> ̂  x. If 
the first alternative holds, then the fact that x, y e X and antitonicity of /e F implies 
that x <J y Sfiy) Sf(x). The second alternative, analogously, implies that y <£.• 
<J x g /(x) <; /GO. Hence x ^ /GO for all x, j € C and /e F and it implies p jg /(x) 
for all x e C and / e F. Since g e F is antitone we have x £ gf(x) £ g(p) for all 
x e C9 f g e F and hence p £ g(p) for all g e F. Furthermore, the inequality p £ 
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£ g(p) £ g(x) for all xe C, gsF implies that x Sfg(x) ^fg(p) Sf(p) for all 
xeQfgeF. Hence p belongs to X. 

To prove that p = fg(p) for a l l / g e F, assume that there are/0 , g0 e F such that 
/> ^fogoipl Let /0go(P) = /><>• Also from the fact that p ^fg(p) £f(p) for all 
fgeF and ftfc is isotone for all h,ke F, we get that hk(p) ^ Wfc/g(p) g Wc/(p) for 
a l l / g,h9ke F. Replacing now h by/0 and kby g0, interchanging hk and^g (hk and 
/ ) , we get p0 «£yg(/?o) ^/(Po) f°r aH / ' ^ ^ because F is a commuting family. 
Hence p0sX and p < p0> Then C u {/?0} is a chain in A" properly containing C, 
contradicting the maximality of C. This contradiction shows that p = /K/0 for all 
/ g e F. Hence we get h(p) = hfg(p) = f(hg(p)) = /(/?) for all / A € F. This means 
that all elements /(/>), / e F, are equal to the same element, say q, and we conclude 
that (p, q) is a common fixed edge of F. Suppose (r, s) is another common fixed edge 
of F and suppose p < r. Then r belongs to the set Zand the chain C u {r} properly 
contains C. Again, this contradicts the maximality of C, which completes the proof. 

Remark. Theorem 1 (Theorem 2) is a collary of Theorem 3 (Theorem 4), since 
every set consisting of a single mapping is obviously commutative. Obviously, the 
dual Theorem 3 and Theorem 4 — replacing the least by the greatest and the maximal 
by the minimal — is also true. 

4. STRUCTURE OF THE SET OF ALL FIXED EDGES 

Let P be a poset and F a family of mappings of P into itself. By E(F) we denote 
the set of all common fixed edges of F. Partially order E(F) by defining (a, b) ^ 
2g (c, d) if c S a and b S d. Adjoin a new element © to E(F) in such a way that © 
is the least element of the poset F(F). 

Notation. If F is a one-element family containing a mapping / then we will use 
E(f) instead of F(F). 

Theorem 5. Let L be a complete lattice and F a commuting family of antitone 
mappings ofL into itself Then E(F) is a complete and atomic lattice. 

Proof. A. Completeness. It is evident that the fixed edge (w, v) from the Theorem 3 
is the greatest element of E(F). Let (xi9yt) be a common fixed edge of F for each 
I'e/and set Z = Qi6f[xi5 jyj. If Z is an empty set then © is the infimum of {(xi9 yd}ieI 

in E(F). In the opposite case denote x = sup {Xi}ieI and y = inf {>>,}*ej. Since each 
element of Z is an upper bound for {Xi}ieI and a lower bound for {j>i}i6j, xt S y ^ yi 
for all 16 /. It implies f{yt) = xt ^ f(y) ^ f(x) £ y% = /(JCJ) for all i e I and fe F. 
This implies that/maps [x,y] into itself for a l l / e F. If we denote the restriction 
o f / t o [x,j>] b y / ' for each/eF, then F' = {/' | / e F } is a commuting family of 
antitone mappings of the complete lattice [x, y] into itself. Applying the Theorem 3 
to the complete lattice [x, y] and to the family F \ we get a common fixed edge (u\ v'). 
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According to Theorem 3 and its dual an element u'(v') is the least (greatest) element 
in [JC, y] such that (u\ v') is the common fixed edge of F. It is evident that (ti\ v') is 
the infimum of {(xi9yi)}iel in F(F). 

B. Atomicity. Choose any nonzero element (x9y) in F(F). It is easy to see that 
each/e F maps [x9y] into itself. Then the restriction o f / t o the interval [*,}>] is 
the antitone mapping of the complete lattice [x, y\ into itself for a l l /e F. Applying 
the Theorem 4 and its dual to the complete lattice \x9 y] and to the partial mappings 
of F, we get a maximal element p and a minimal element q in [x9 y] such that (p9 q) 
is a common fixed edge. Now 0 g (p9 q) g (*» j)» and the maximality of p and the 
minimality of q ensure that there is no element (r, s) in E(F) with 0 < (r, 5) < (p9 q). 
Thus every nonzero element in E(F) contains at least one element covering 0. The 
proof of the theorem is complete. 

Corollary 6. Let L be a complete lattice and fan antitone mapping ofL into itself 
Then E(f) is a complete atomic lattice. 

Proof follows immediately from Theorem 5. 

5. FIXED EDGES OF MULTIFUNCTIONS 

In this section we prove an extension of the Fixed Edge Theorem to include 
multifunctions. A multivalued function F on a set X into a set Y is a point to set 
correspondence, i.e. F(x) is a nonempty subset of Y for each xe X. The term multi
function is used as a contraction of multivalued function. Of course any single valued 
mapping is a multifunction. Now we generalize the concept of antitone mapping 
and fixed edge. Observe that for single valued mappings the following definitions are 
reduced to the prior ones. 

We say that a multifunction F on a poset P into a poset Q is antitone if xx, x2 e F, 
xt <£ x2 implies y2 g yx for all yt e F(xt) and y2 e F(x2). Let F be a multifunction 
on a poset P and let x :g y be elements in P. An ordered pair (x, y) is called a y?xerf 
edge o/Fif ;> e F(x) and x e F(y). A family #" of multifunctions is commuting in case 
FG = GF for all F9Ge^ where FG(x) = F(G(x)) = [j {F(y) \ y e G(x)}. 

Theorem 7. Let L be a complete lattice and F an antitone multifunction of L into 
itself such that sup F(x) e F(x)for all xeL. Then there exists a fixed edge of F. 

Proof. We define a single valued mapping/from L to L by setting/(x) = sup F{x) 
for all x e l . Clearly / is well-defined, since sup F(x) exists for each xeL. To show 
that/is an antitone mapping, let xi9x2 be in L with xt S *z- Then y2 g sup F(xt) 
for all y2 e F(x2) and hence f(x2) g /(*!>, since sup F(x2) e F(x2). Thus/is antitone 
mapping of L into itself. According to Theorem 1 there exist u9 v e £,, u S v such 
that u = f(v)9 v = /(w). But this implies that u e F(v) and v e F(w), which completes 
the proof. 

231 



Theorem 8. Let L be a complete lattice and If a commuting family of antitone 
multifunctions on L. If each Fe«f satisfies supF(x)eF(x)for each xeL, then there 
is a common fixed edge for the members of #". 

Proof. For each Fe fF we define a single valued mapping/as follows. For each 
xeL, let/0*:) = supF(x)./be clearly well-defined, antitone single valued mapping 
of L into itself for all F e # \ Let &0 = {/ | /be single valued mapping associated 
with F, Fe #"}. We need only show that 3F0 is a commuting family. Let/, g e # o 
where f(x) = supF(x) and g(x) = sup G(x) for all xeL. Then/(#(*))€^((/(x)) = 
« G(F(x)). Thus there exists >> e F(x) such that/(g(x)) 6 G(j). Further, y <* f(x) = 
= supF(x), and by antitonicity of G we have for each zeG(f(x))9 z ^f(g(x)). 
Therefore g(f(x)) g f(g(x)). We also get f(g(x)) <; g(f(x)) by a similar argument. 
Thus /g = gf Then we apply the Theorem 3 to obtain the elements u, v e L, u ^ v 
such that u = f(v)9 v = f(u) for all / e ^ 0 . Hence we get u e F(v) and t; G F(W) for 
all F e ^ . This completes the proof of the theorem. 

6. FIXED EDGES OF WEAKLY ANTITONE MAPPINGS 

Definition.' A mapping/from a poset P into a poset Q is called weakly antitone 
if x, y e P, x g >> implies f(y) <| /(x) whenever x ^ /(x) or /(>>) g y. 

It is clear that each antitone mapping is weakly antitone. But there are weakly 
antitone mappings which are not antitone. Let us consider, for instance, a four-
element chain {1, 2, 3, 4} with usually ordering and let us suppouse/(l) = /(3) = 4» 
/ ( 2 ) = / ( 4 ) = l . 

Theorem 9. Let L be a complete lattice and fa weakly antitone mapping of L into 
itself Then: 

(i) there exists a maximal element p in L such that (p,f(p)) is a fixed edge off; 
(ii) there exists the least element u in L such that (u,f(u)) is a fixed edge off; 

(iii) E(f) is a complete and atomic lattice. 
Proof, (i) Let X = {x e L | x g f2(x) S /(*)}• Clearly 0 is in X and therefore X 

is nonempty. Let C be a maximal chain in X and let p = sup C. For each x in C 
we have x g p9 x :g /(*) and hence/(/?) ^ /(*) for all xeC. This last relation together 
with/2(jc) Sf(x) imply that/2(x) ^f2(p) for all x e C, showing that/2(/?) is an 
upper bound of C. Hence /? <; /2(/>). Let x, y e C. If x ^ j> then x ^ / ( j ) , since / 
is weakly antitone mapping and x g/(x) . If y :g x then also x g / ( j ) , by a similar 
argument. Thus x «£/0>) for all x j e C Hence /? J*/(*) for all xe C, moreover 
/2(x) ^ / (x ) , and this implies tha t / 2 0) Sf(p) for all xeC. Consequently,/(/>) is 
an upper bound of C, i.e. p Sf(p) and it implies f2(p) Sf(p). This means that p 
belongs to X. Next it will be shown that also/2(/>) belongs to X. The inequality/? g 
S/2(P) together with /> Sf(p) Y l̂d that/3(/>) ^/(/>)• This implies that/2(/>) £ 
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Sf\p\ since f2(p) Sfipl Further the inequality/2^) £f(p)> together with the 
assumption on/yield that/2(/>) g/3(/>) and this implies f4(p) ^/3(/>). Hence f2(p) 
belongs to X. Ifp < f2{p)> then the chain C is not maximal, contrary to assumption. 
Therefore p =/2(p) and (p,f(p)) is a fixed edge of/ Suppose (r, s) is another fixed 
edge of/ and suppose j?s< r. Then r belongs to the set X and the chain C u {r} 
properly contains C, which gives a contradiction. 

(ii) Let S = {* € L \ x <; /2(x) g /(*), x <; ̂  for all ^ e L such that (y,/(}>)) is 
a fixed edge of/}. 0 e 5. Let C be a maximal chain in 5 and let sup C = u. Then the 
proof can be modelled on the proof used in (i) — replacing the set X by the set S. 

The proof of (iii) can be modelled on the proof used in the Theorem 5. 

Theorem 10. Let L be a complete lattice and F a co mmuting family of weakly 
antitone mappings of L into itself Then: 

(i) there exists a maximal element p in L such that (p, q), q = f(p) for all fe F9 

is a common fixed edge of F; 
(ii) there exists the least element u in L such that (w, i?), v == f(u) for allfeF, is 

a common fixed edge of F; 
(iii) E(F) is a complete and atomic lattice. 
Proof. In fact, the proof of the theorem can be modelled on an idea used by the 

proofs of Theorem 9 and Theorem 4. We leave the details to the reader. 

Remark. McShane [2] has introduced the following concept of Dedekind 
completeness for posets which is a generalization of the concept of completeness for 
lattices. 

A poset P is called Dedekind complete if every up-directed subset of P has a sup 
in P and every down-directed subset has an inf in P. 

Recall that a subset S of a poset P is said to be up-directed (down-directed) if 
for all x e S and yeS there exists z € S such that x <£ z, y S z (z S *» z S y)-
For properties of Dedekind complete posets, the reader is referred to [6]. 

It is not difficult to see that all results of this section are true for Dedekind 
complete posets with 0 and 1. 

Acknowledgement. The author wishes to express his appreciation to Professor 
V. Novdk for his interest and assistance. 
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