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ASYMPTOTIC BEHAVIOUR OF EQUATIONS
z=gq(t,z) — p(t)z2 AND £ = xo(t,%x~")
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1. INTRODUCTION

During the last few years, a good deal of research activity has been concentrated
on the investigation of the asymptotic behaviour of the solutions of an equation

M z=f(t,2),

where fis a complex-valued function of a real variable ¢ and a complex variable z.
The global asymptotic properties of the Riccati equation

2 z = q(t) — p(t) 2*

are described in detail by M. Réb in papers [5], [6]. Papers [1], [2], [3], [4] contain
a considerable amount of results related to the equation

3 z = G(t,2) [h(2) + g(t, 2)],

where G is a real-valued function and h, g are complex-valued functions, 4 being
holomorphic in certain simply-connected region Q. By virtue of general results
referring to the equation (3), in [1], [2], [3] there are derived several results dealing
with the global asymptotic character of the equation

6)) z=q(t,2) — p(?) 2%

The technique of the proofs of the majority of these results is based on the Lia-
punov function method and the Wazewski topological principle. Considering the
associated Riccati differential equation and using the above methods, M. Réb s‘,tuvdie_s“
the asymptotic nature of the solutions of the linear second order differential equation

) E+p()% +qt)x =0

with complex-valued coefficients p, ¢ in paper [7].
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The purpose of the present paper is to generalize the results concerning the
asymptotic behaviour of the solutions of (4) and to extend some results of [7] to an
equation

(6) % = xo(t, xx71),

where ¢(t, 2) is a continuous complex-valued function defined for all real numbers ¢
and all complex numbers z. In what follows we use the notation from [1] (see also
[2], [3], [4]). In particular, C denotes the set of all complex numbers, N the set
of positive integers, I the interval [¢,, 00), C(I') the class of all continuous real-valued
functions defined on the set I', and C(I') the class of all continuous complex-valued
functions defined on the set I. By C'(I) we denote the class of all continuously
differentiable complex-valued functions defined on 1.

For brevity, we shall omit sometimes the independent variable, writing e.g. a
instead of a(t) etc. Throughout the paper we shall assume that g e C(Ix C), p e C(I).

2. PRELIMINARY RESULTS
Suppose that a(t), B(t) e C'(1), o(t) € C(I) and that B(t) # O for t € I. The follow-

ing lemma can be easily verified and therefore its proof is omitted.

Lemma. Put
(7) p= B‘l + o,
qt,z) = Bo(t,  + )P+ 22 + (B-20)B 7z + (B — x)af™! —

i) A function z(t) is a solution of (4) defined on an interval J < I, if and only if,
z(t) = B(e) x(£) x'(t) — a(r),

where x(t) is a solution of (6) on J.
ii) A function x(t) is a solution of (6) defined on J < I, if and only if,

x(t) = 6 exp [ [2(s) + ()] B~ (s) ds),

where O is a constant different from zero, w € J, and z(t) is d solution of (4) on J.

In view of Lemma we shall obtain the results concerning the asymptotic behaviour
of the solutions of (6) as the immediate consequences of the results referring to the
solutions of the equation (4). If a, be C, b # 0, Yy € C(I) and y(¢) > O for ¢t = ¢,,
then (4) may be written in the form
® 2=y {-25[ - a)?® - b1 + 4@t )Y 'O - POV +

+ 25[(z — a)* — b*]}-

Substituting z, =z — g — b or z, = z — a + b, we get
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CH) 2, = G,(t, z,) [hy(zy) + g4, 2,)]

or '

92) 2, = G,(t, z,) [hy(22) + g2(1, 25)],
respectively, where
G(1, z)) = Gy(t, z,) = Y(1),
hy(z,) = —2bz,(z; + 2b), hy(z;) = —2bz,(z; — 2b),

8i(t,2,) = q(t,zy + a + b)Yy ~'(t) = p()Y (1) (z, + a + b)* + 2bz,(z, + 2b),

g:(t,25) = q(t, 2, + a = b)Y~ (t) — p(t) Y~ () (22 + a — b)* + 2bz,(z; — 2b).
Put :
Q, = {z; e C:Re [bz,] > —|b|?},
Q, = {z; e C: Re [bz,] < | b |?}.

L. First we shall consider the equation (9,) on the set Ix Q,. W(z), 4o, K(4,) and
K(2) from [1] (see also [2], [3], [4]) are of the following form:
W(zy) =2|b| |z, | |z, + 26|71, Ao =2|b],
K@) =2, RA)={z,€Q,:2|b||z|=24]z +2]|}
Fort = 14,2z, € Q,, we get
/ 81(t, z) 1| _ hy©) Y _ 2 _
Re {hl(O)[l + ~—h';'(-z—1)—— } = Re[g,(t, Zy —}—,—1—(;5’ 4| b|
- ab
=y (1) Re {[q(t, zy +a+b)+(a? - b*) p(t) — 4p(t)(z, +a + b)m -
— 2y~ () Re [bp(1)].
Suppose there are H;, H, € C(I) such that

| g2, z, +a+b)+(@* — b p(t) — 2ap(t) (z; +a+b) | S |z, + b | H;(r)+H,(:)

fort 2 ty, z; € Q,. It is clear that H,, H, must be nonnegative.
1° Assume that

(10) Re [bp(t)] >0  for t 2 1,,
(i1 T Re [bp(0] dt = o

and N .
(12) sup |2 +2H(0) 5 p

izt Re[bp()]
fo < 2|b|is defined by,
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[ b| H(t) + 2H (1) 8|b|*
13 = ,
(13) .sgg Re [bp(t)] 4|b|* + 82
then 0 £ 6 < 2|b| = Ay. Put y(¢) = 1. We have

Re {hi(O)[l + iﬁ‘—z-l]} <[z + b1 O + H(0] 1 Tllblu %7~

hy(zy)
~ 2Re [bp(1)] =
W3(z,) +4|b|?
2W(z)[lz, +b1> + 1 b]*]

=[lzy + biH(t) + Hy(1)] — 2 Re [bp(1)].

Denote 6, = [2|b| + (2n — 1) 8] (2n)™! for ne N and choose &, > 1 so that

&Ll b Hy(1) + 2Hy (1)) 88,1b1
4 < .
(4 oy 3 Re [bp(1)] = 41b|* + 52

It can be easily verified that there are constants y,, v, € (0, 1) such that

21bl iz +bl o, Ib|? < e
lzy + 612+ 101> =" Jzg+ b2+ b2 T

for z, € K(6py do) = {2,€Q,:6,<2|b]| |z | |z + 2b|™" < Ay}, ne N. There-

fore
’ g (ts zt)

2 2
e
1

W(z,) + 4|b|* B
b WD max (4, v,) — 2 Re[bp(t)]

for t = ¢y, z, € K(B,, A9), n € N. Making use of (14) we get

Re {h;(O)[l + &lbz)

— 2 Re[bp(n] =

S GUDIH(Y + 2H (1]

hy(zy) =
785, b12(W(z)) +4|b%) ]
< L V) — 1 <
s 2[(41 b7+ 520816 P Weey) et L ReLonO]
< 2[max (y,, v,) — 1] Re [bp(1)].

Now, we can apply Theorem 2.3 and Theorem 2.4 of [1], where 8 = Ao, 5 = o>
G(t,z) = 1, E(t) = 2[max (4, v,) — 1] Re [bp(¢)] (see also Theorem 3.5 and
Theorem 3.6 of [4]), thus we obtain the following statement:
If a solution z,(t) of (9,) satisfies Re [bz,(t,)] > —| b |2, where t, = to, then to
nye> Sthereisa T > Osuchthat2|b| |z()| <e|z &)+ 2b|fort 2t + T.
a
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If, in addition,

s+t

) Re [bp(r)] dr — o as t— oo

uniformly for s € I, then T is independent of t, and of z,(t).
2° Suppose that (10), (11) hold and that

(15) ofoHl(t) dt < oo, Gj?Hz(t) dt < 0.
Let s, = t, be such that
?[!blHl(t)+H2(t)]dt<lbl(2ne)", ne N.
Put y(t)=1and 6, = 2| b | (ne)”! for ne N. Then
/ g1(t, z4)

[zy ] 12y + 2b]|
| H,(1) H,(1) 2H,(1)
101 [ S+ T |z12+2b|]“2R°[b”“)]§
Hy(t)  2]b|+56, 2(b] + 6,
élbl[]bl +—2'b’6n Hx(t)‘f'WHz(t)]"ZRe[b}’(t)]ﬁ

< -[161Hy(®) + Hy(0)] - 2 Re [bp(0)]

for t = s,, z; € K(3,, 49), n € N. Using Theorem 2.3 and Theorem 2.4 of [1], where
8 =12, Gt,z)=1, E()=4[|b]| H(t) + Hy()]/6, — 2Re [bp(t)], we get the
assertion:

If a solution z((t) of (9,) satisfies

2 a0
| z1(t;) | <exp {_TET Jb1H(® + Hy1)] dt} [ zy(¢,) + 2b]|,
where t, = 5, , then

lim z,(t) = 0.

t—* o0

If, in addition,
s+t

f Re[bp(r)]dt >0 ast—->

uniformly for s € I, then to any ¢ > O there is a T > O independent of t, and of z,(t)
such that | z,(t)| <efort=2t; + T.
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3° Suppose there is a ¥ > 0 such that

Re[bp(t)] 2% fort =1,
and assume that

t+1 t+1
lim | H,(s)ds = lim [ H,(s)ds = 0.
t—o0 t t—o t

Put y(t) = 1and 6, = 2| b|/(n + 1) for ne N. Denoting

g1:(t,z) = q(t,z, + a + b) + (a* — b?) p(t) — 2ap(t) (z, + a + b),
g12(t, z) = —2bp(t) z, — p(t) z + 2bz,(z, + 2b),
we have

g1(t, z)) = g44(t, z,) + g4,(1, 2y).
For t = t,, z, € K(5,, A), n € N, we obtain

h3(0
Re[gn(t, 20| s 0610 + H0],

Re {h’l(O) [1 + £1hz‘%lz_)ll]} = —2 Re[bp(t)] < —2x.

Using Remark 2.1 of [1], where G(t,2) = 1,8 = 15, 0, = —2x, F,(t) =4[| b| H,(t) +
+ Hy(t))/8,, 6, = to, We observe that to any ¢ > O there are sequences {s,}, {E,(t)}
such that s, = t,, E, € C(I) and the assumptions of Theorem 2.4 of [1] are fulfilled

with %, < g, and
lim inf [8,e*] = 0.

n— o

In view of Theorem 2.4 of [1] we have the assertion:

To any 9*,0 < 8* < Ao, there is an S = t, such that for any ¢ > 0 and any solu-
tion z,(t) of (9,) satisfying 2| b| | z,(t;) | < 9% | z,(t,) + 2b|, where t; = S, there

is a T > 0 independent of t, and of z,(t) such that |z,(t)| < efort 2 t, + T.
4° Assume that the conditions (10), (11) and (15) are fulfilled. Put

_ Re[bp(1)]
| ¥(1) 2B
It holds that

’ 2
W(z) ¥() Re [gl(r, 2) ,f’:((z"l))] S S Ll 4 b + 0] S
1

LIMEN [b|? ] 4|b|?
L2 H®H+ ——H,1H =
[|z,+2b|2 |z, +2b| 1) lz, + 22 °

S 4[1 b1 Hy(1) + Hy(1)]
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for t 2 ty, z; € K(0, 4,). Applying Theorem 3.3 of [3], where 8 = 4,, D(t) =
= G(t,z) = Y(t), Et) = 4[| b| H,(t) + H,(t)], we obtain:
If a solution z,(t) of (9,) satisfies Re [bz,(t)] > —|b|*> fort = t,, where t; = t,,
then
j Re[bp()] | z,(t) | dt < 0

and
limz(f) = 0.

t— 00

II. Consider the equation (9,) on the set Ix Q,. W(z), 4o, K(4,) and K(4) from [1]
are of the following form:

W(z) =21bl |z,| |z, = 2617", 4 =2]b],
K(ho) = Q,, R ={z,€Q,:21b| |z, =24|z, — 2b|}.
Assume there are H,, H, € C(I) such that
lq(t,z; + a = b) + (@ — b*) p(t) — 2ap(t) (z; + a = b) | S |z, — b| Hy(t) +
+ Hy(1)

for t = ty, z, € Q,. Obviously, H, and H, must be nonnegative.
5° Let (10), (11), (12) be fulfilled. Define 6 < 2 |b| by (13). Put y(¢) = 1 and
choose x € (8, 4g). There is a £ > 1 with the property

sup SLIbIH,(1) + 2H,(0] _ 8x|b|?
2t Re [bp(1)] T 4bP+ %%

Analogously as in 1°, it can be verified that there exist constants yu, v € (0, 1) such that

—Re {h;(()) [1 + %(‘2—2)]} < 2[max (4, v) — 1] Re [bp(t)]
2(z5)

for t 2 ty, 2, € K(x, Ao) = {2, € R, : % < 2|b| | z,] | 2, — 2b|™! < Ay}. By use
of Theorem 2.2 and Theorem 2.5 of [1] (see also Theorem 2.2 and Theorem 2.4
of [3]), we get the following assertion:

If a solution z,(t) of (9,) satisfies 2| b | | z5(2)) | > 8| z,(t;) — 2b|, where t; = t,,
thentoanye, 0 < g < Agthereisa T > O suchthat 2|b| | z,(t) | > e] z,(t) — 2b |
forallt 2 t, + T for which z,(t) is defined. Moreover,2 | b} | zy(t)| > 6| z,(t) — 2b|
Sfor all t = ¢, for which z,(t) is defined.

6° Suppose that (10), (11), (12) hold. Putting

_ Re[bp(1)]
y() = BN B

and proceeding similarly as in 5°, we obtain
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~Re [g:(t, ) :2'2((2)] < 4[max (1) ~ 1] b1 +41b[* <

< 4max(p,v)|b|? <4|b|* =Rehy0)
fort = to, 2, € K(x, Ag). Applying Theorem 2.3 of [2], where G(¢, z) = Y(2), we have:

For any 7, 6 <y < Ao, and for any S > t, there exists a solution z,(t) of (92)
such that 21b| | z,(t) | < y|z,(t) — 2b| for all t = S.

7° Assume that (10), (11) and (15) are fulfilled. Put y(t) = 1 and choose 6 €
€(0,2]|b|e™?). Let S = t, be such that

g [ b1 Hy(t) + Hy(t)] d1 < §/4.
Fort > S and z, € K(, 4,) it holds that

’ 82(t, 25) 4
—re {1+ B0 < L0161, + 1a0] - Relr0)

Using Theorem 2.2 of [1] with 8 = Ay, E(t) = 4[| b| H,(t) + H,(1)]/6 — 2 Re [bp(1)],
G(t,z) = 1 we get:

If a solution z,(t) of (9,) satisfies 2 | b | | z,(t,) | > de| z,(t) — 2b|, wheret; Z S,

then 21 b| | z,(t)| > 8| 2x(t) — 2b | for all t = t, for which z,(t) is defined.
8° Let (10), (11) and (15) hold. Putting

_ Re[bp(n)]
Y(t) = I

b

we obtain

—W(z3) Y1) Re [gz(t, 2)) 720 ] < 4[| b| Hy(0) + H(0)]

hy(z,)
for t = t,, z, € K(0, Ap). From Theorem 3.3 of [3], where § = 4y, D(t) = G(¢,2) =
= Y(1), E(t) = 4[| b | Hy(t) + H,(1)), it follows:

If a solution z,(t) of (9,) satisfies Re [bz,(t)] < | b|* for t = t,, where t; 2 to,
then

} Re [bp()] | z5(1) | df < 0
and

lim z,(f) = 0.

t— o0

3. MAIN RESULTS

Considering that K(1) are circles with centres 2bA%(4|b|* — At or
—2bA%4|b|> — )" ' and radii 4| b |2 A(4 | b |*> — 4*)"%, and applying 1° and 5°,
we obtain the following generalization of Theorem 3.1 of [1]:

198




Theorem 1. Suppose there are a, be C and H,, H; € C(I) such that

(16) lqt,2) + (@® = b*) p(t) — 2ap(1) z| < |z — a| Hy(t) + H,(r)
fort = ty, zeC,

an Re[bp()] >0  for t 2 1o,

(18) oj? Re [bp(1)] dt =

and N

(19) s | b H(t) + 2H, (1) <2001,

u
ten Re[bp(D)]
Let 6 € [0, 1) be defined by

|b|H (1) + 2H,(t) _ 4]b|é
20 s = — .
20 T Re[bp0] 140
Assume that a complete solution z(t) of (4) defined on [t,, w), where t; 2 t,, satisfies
(#2)) lzt) —a+ (A +6)A =8H"1b|>2]|b|601 — >N

If o = 0, then

(22) limsup [z(f) —a — (1 + ) (1 =)~ b <2|b|o(1 — %)L,

If © < 0, then Re [b(z(¢) — a)] < 0 for te[t,, w) and

lim | z(t)| = 0.
t-w
If, in addition,

s+t

[ Re[bp(r)]dt >0 ast—

uniformly for sel and Re [b(z(t,) — a)] 2 0, then to any ¢ > 2|b|6(1 — 6%)~1
there is a T > 0 independent of t, and of z(t) such that

[z) —a—(1+8HA-6)"'b|<e
for t =t + T.

Proof. Lete > 2| b| (1 — 6%)~! bearbitrary. Put 4 = [(1 — 8% e + 26%| 5[] x
x[(1 = 6% e+2[b[]*.Clearlys < 4 < 1. Using 1°, we obtain: If Re [5(z(¢,) — a)] >
> 0, then thereis a T > O such that | z(t) —a—b| <A4|2(t) — a + b | for ¢t >
2t + T. Hence

lzt) —a -1+ )1 -6)""b| =
Slzt)—a—(1+4)(1 — 43)"1b| + | b|x
x[(1 +4)(1 -4t = (1 + 651 - )] <
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<|bI[0d+4P2A-4)"'-(1+HN-6)""]<e

fort = t; + T. We shall prove that this assertion remains true if Re [b(z(t,) — a)] =
= 0.
It suffices to show that

@) . L Re [B(z(1y) - a)] > 0.

We have

_d‘ir Re [5(() — a)] = Re {B[q(t, 2) — p(t) 2]} =
= Re {b[4(t, 2) + (a® — b)) p(t) — 2ap(t) z]} +
+ Re {b[2ap(t) z — (a®* — b») p(t) — p(t) 2*]} =
= —|b|[y() Hi(t) + Hy(t)] + | b1* 9(t) — Re [b(z — a)® p(2)],

where y(t) = | z(t) — a | and 3(t) = Re [bp(1)]. In view of (19) there exists a ¢ € (0, 1)
such that
H,(1,) < 2& Re [bp(1))], Hy(t) < (1 = &) |b]|Re[bp(t,)].
This together with
Re [E(Z(tl) - a)zp(tl)] = —"Yz(tj) 9(t,)
yields

”d('it“ Re [B(z(t,) — a)] > Bity),

where
B(t) = —|b|[2&y() + (1 = &) |bI]S(¢) + | B]* () + y*(1) 8(¢) =
=[=281b]y() + &b + y2()] (1) 2
2 @) = 1611 90) 20,

from which (23) follows.
Now, it is clear that Re [5(z(t) — a)] < 0 and

lim | z(¢) | = oo,

1w

" provided that w < c0. Assume @ = co. It is to show that (22) holds. It is sufficient
to prove that there exists a ¢, = ¢, with the property Re [5(z(t,) — a)] = 0. Suppose
conversely that Re [b(z(t) — @)] < 0 for ¢t 2 t,. By 5° we know that to any ¢,
0<e<1, there is a T> 0 such that |z(t) —a+ b|>¢|z(t) —a—b| for
t 2 t; + T. Consequently, there exists a T; > ¢, with the following property:

. ()-a| 1+
jz®) —a—>b| |z(t) —a + b| [bI(1L+8)?2"
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1 < 2(1 + 6%
iz) —a—bllz2®)—a+b| "~ |bj*1 +6)*’

for t = T,. Further, denoting

_lz(t) —a—b]|
00 =T —av bl
we get
d
E—@(t):
i lz—a+bl*Re[(z—a—b)z]—|z—a—b|*Re[(z—a+b)z]
|z—a+ D]
= 0(t) Re{(z_ — bf?z S [a(t, 2) + (a® — b?) p(t) — 2ap(t) z] +
2 _
+ (z—a _b)l(,z —a +b) [zap(t)z"'(az - bz)p(t)_p(t)zz]}_s.

[b] 14t 2) +(a® — b?) p(t) — 2ap(1) z|
éz@m[‘“‘” [z—a—b|lz—a+b]| ]5

< 2@(;)[-9(:) +1b6] lzlj ; ilﬁl(ititzzg)b' ]s

A+ 6H)H,(t) 201 + 6% H,(z)]}
<2 - <
= @(t){ s(t)HbI[ [b](1 + &)? * [b2(1 + 6) s

<2009 { _o+ — 0 biE + 2Hz(‘)]} <
= [bi(l + 8)2 B

<2009 [—1 +46(1 +8)72] = —(1 = 8)* (1 + 8)~2 3(2).

Integrating and letting ¢ = oo, we infer that

lim 6(t) = — oo,

t—~®
which is impossible. Therefore there exists a ¢, = ¢; such that Re [6(z(¢,) — a)] = 0.
The rest of the proof results from (23) and 1°. :
Applying 6° and using Theorem 1, we can generalize Theorem 3.1 of [2]:

Theorem 2. Let the asumptions of Theorem 1 be fulfilled. Then to any S > t,

there is a solution z(t) of (4) such that
lz(t) —a+ A +6HU -8H)"1b| 26|61 — 6>

for t 2 8.
By virtue of Theorem 1 and Theorem 2 we obtain the following generalization of

Theorem 3.2 of [2]:
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Theorem 3. Suppose there are a, be C and H,, H, € C(I) such that the conditions
(16), (17), (18) and
. | b1 Hy(1) + 2H,(1)
4 1
@9 M Re [bp(0]
are fulfilled. Define 6 € [0, 1) by
. |b|H(t) +2H,(1) 4]|b|d
lim su = .
o’ Re[bp(n] 1+ 8
Then there is at least one solution zy(t) of (4) with the property
limsup | zo(t) —a+ (1 + 65 (1 =65 b £ 2|b|6(1 — 6371,
t— oo

Let S = t, be such that

<2|b]

| b| H,(1) + 2H, (1)
su
25 Re[bp(D)]
Then every solution z(t) of (4) satisfying Re [b(z(t,) — a)] = 0, where t, = S, is
defined for all t = t, and

limsup|z(t) —a — (1 +85) (1 =857 b| £ 2{b|6(1 — 6% L

t—

If, in addition,

<2|bj.

s+t

| Re [bp(r)]dr - as t— oo

uniformly for se I, then to any ¢ > 2| b | 6(1 — 6%)~! there is a T > 0 independent
of t, and of z(t) such that
lzt) —a—(1+)U -6)"'b| <
fort =2t + T.
Corollary 1. Let a(t), B(t), o(t) be as in Section 2 and let p(t), q(t, z) be defined
by (7). Suppose there are a, b e C and H,, H, € C(I) such that the conditions (16), (17),

(18) and (24) are fulfilled. Let 6 € [0, 1) be defined as in Theorem 3. Then there is a solu-
tion xo(t) of (6) with the property

lim sup | B(t) Xo(£) x5 (1) —a{t) —a + (1 + )1 =637 b | £ 2]|b |61 — 657N

t—

If S=1t, is as in Theorem 3, then every solution x(t) of (6) satisfying
Re [bB(t,) X(2,) x~'(t,)] = Re [b(x(t)) + a)], where t, = S, is defined forallt 2 t,,
and

limsup [ B(0) X() x'() —a(t) —a— (1 + )X =) b Z2|b|60 -6 )N
t=c0
If, in addition,
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s+t

§ Re[b(B~'(r) + e(t))Jdt >0  as t— o,

uniformly for s € I, then to any ¢ > 2| b| (1 — 5%~ thereisaT > 0 independeny
of t, and of x(t) such that

| B(6) (1) x™1(t) — a(t) —a — (1 + 6 (1 —6*) 7' b| <e
for 121, + T.
Making use of 2°, 4°, 7°, 8°, we can generalize Theorem 4.1 of [3]:

Theorem 4. Suppose there exist a, be C and Hy, H, € C(I) such that the condi-
tions (16), (17), (18) and

(25) ?H,(z)dz < o, [ Hy(dt < 0

are fulfilled. Then each solution z(t) of (&), defined for t— oo, satisfies either

(26) limz(f) =a + b, ? Re [bp(1)] | 2(1) —a — bldt < ©
or
(27 limz(f) =a — b, JS Re [bp(1)] | z(1) — a + b|dt< 0.

Let S = t, be such that

})[t blH,(1) + Hy(D]dt < | b1(20)7 .
S

Then any solution z(t) of (4) satisfying
l2(t) —a — (1 + )1 —x®) b <2|b]x(l =7
where t; = S and
% = exp {—Tzii'— Z[I biH (1) + H,(] dt},
is defined for all t = t, and there holds
lim z(t) = a + b.
If, in addition, o

s+t

{ Re[bp(r)]dr = 0 as t— oo,
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uniformly for s € I, then to any € > 0 there is a T > 0 independent of t, and of z(t)
such that |z(t) —a - b| <cfort=t, + T.
Proof. We claim that there is a ¢ = ¢, such that

(28) Re[b(z(t) —a)] >0 fort=zo
or
(29) Re [b(z(t) —a)] <0 fort2=o.

Assuming that this claim is false, there exists a sequence {f,}, {,—» 00 as n — o,
with the property

(30) Re [b(z(,) —a)] =0 for ne N.

By using 2°, 7°, it can be easily verified that there is an L > 0 such that
fz(¢) —a—-b|ZL, |z)—a+b|lZL

or all sufficiently large ¢ € I. Denoting

_lz() —a—b| _
o@) = Tz —a 51" 8(t) = Re [bp(1)],

we get

IA

zZ(t)—a—>b| |z(t) —a + b|

H,(t) H,(1)
< @(t){—29(t)+ lbl[[z(t) _la o1 T 7200 —1a + b

2H,(1)
* Iz(t)——a—b|2|z(,)__a+bi]}§2@(t)x

x{=98() + | b| [L""H,(t) + L"H,(0]},

?dt—@(t)g 2@(:)[-9(:) +1b| | | 2(1) — a | Hy(t) + H,(1) ]

ie.,
d v -
- {exp [=2 [ [1 6] LX(LH() + Hy(s)) — 9(9)] ds] O} S 0.
L 3%
Integration and limiting process t— oo yield

lim ©(t) = 0,
t— o0
which contradicts (30). Hence there is a o 2 t, such that (28) or (29) is satisfied for

t 2 0. By 4° and 8° there hold the conditions (26) and (27). The rest of the proof
follows from 2°.

Corollary 2. Let a(t), f(t), e(t) be as in Section 2 and let p(t), q(t, z) be'deﬁned
by (7). Suppose there are a, b€ C and H,, H, € C(I) such that (16), (17), (18) and (25)
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are fulfilled. Then each solution x(t) of (6) defined for t = © 0beys one of the following
two conditions:

(31 tim [A() () x™'(t) — a(9] = @ + b,

{ Re [6(8~1(t) + o(0)] 1 B %) x~ (1)) — o() = @ — b | d < oo,
(32) lim [B() () x™'() — ()] =@ — b,

§ Re [6(871(1) + o)1 O X0 x™'(1) — a() = @ + b dt < .
If S = t, is as in Theorem 4, then any solution x(t) of (6) satisfying
| B(ty) x(t) x~1(ty) — alt)) —a — (1 + »*) (1 — W) 7'h| <2 [b]x(l —%¥)71,
where t, = S and

% = exp {——]gbe—l Z[I b|H, () + Hz(i)] dt},

is defined for all t = t, and there holds
lim [B(¢) %(t) x™*(t) — a()] = a + b.

t— o0

If, in addition,
s+t

[ Re[b(B~(r) + ¢(x))]dt > 0  as t— oo,

uniformly for s € I, then to any ¢ > O there is a T > 0 independent of t, and of x(t)
such that

[BO )2~ M) —a(t) —a—b| <e
for t =t + T.

Application of 3° yields the following generalization of Theorem 3.3 of [1]:

Theorem 5. Assume there are a, be C, ¥ > 0 and H,, H, € C(I) such that the
conditions (16),

33) Re[bp(t)] =2 x fort=t,
and
t+1 t+1
34) lim | H(s)ds = lim { Hy(s)ds =0,
t=o t t—o0 ¢t

are fulfilled. Then to any 3, 0 < 8 < 1, there is an S = t, such that for any ¢ > 0
and for any solution z(t) of (4) satisfying

lz(t) —a—- 1+ 91 ~-9)"1b|<2|b|9(1 ~-9)"",
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wheret, = S, thereisa T > 0 independent of t, and of z(t) such that | z(t) — a — b | <
<egfort=zt, + T

Corollary 3. Let a(t), f(t), o(t) be as in Section 2 and let p(t), q(t, z) be defined
by (7). Suppose therearea,be C,x > 0and H,, H, € C(I) such that (16), (33) and (34)
are fulfilled. Then to any 8, 0 < 8 < 1, there is an S = t, such that for any ¢ > 0
and for any solution x(t) of (6) satisfying

| B 3(t) x71 () —at) —a— (1 + )1 = 9)71b| <2]b]8(1 - )7,

wheret, 2 S, thereisa T > 0 independent of t, and of x(t) such that | B(t) x(t) x~'(t) —
—a(t)—a—b|<efort =t + T
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