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ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
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GENERALIZED GRAMMATICAL CATEGORIES 
IN THE SENSE OF KUNZE 

BLA2EJ KJU2, Brno 

(Received March 10, 1980) 

0. INTRODUCTION 

General linguistics studies the so-called morphological categories. Let us take 
as an example from the Czech language the category "neuter noun in genitive of 
singular". This category consists of word-forms whose examples are: mSsta, mofe, 
staveni. 

In addition to morphological categories, general linguistics deals with so-called 
syntactical categories, too. An example taken from English is "noun phrase". The 
syntactical categories are node descriptions in the phrase marker, of the sentence. 
Analysis of these notions has been done in algebraic linguistics. To be able to explain 
it let us mention some basic notions of algebraic linguistics. 

A formal language is an ordered pair (V, L), where V is a finite set and L is a set 
containing some finite sequences or, by another name, strings consisting of elements 
of the set V. We have L c K* if we denote by K* the set of all such strings. The 
associative operation of concatenation is defined on the set V*. We denote by xy 
the result of concatenation of the strings x, y. 

A context-free grammar is an ordered quadruple G = (VT, VNix0,F), where 
VT, VN are disjoint finite sets of terminals and nonterminals, respectively, x0 e VN, 
and F is a finite set of ordered pairs (p, q) — called rules — such that peVN and 
qe (VT u VN)*. We write x =>y for x,y e (VT u VN)* if there are (w, t))eF*x F* 
and (/?, q) e F such that x = upv, uqv = y. Let if be the reflexive transitive closure 
of the relation => on (VT u. VN)*. Then the set &(G) = {we V% \ x0 4 w} is the 
language generated by the grammar G. A regular grammar is a special case of a context-
free grammar. A context-free grammar (VT, VN,x0,F) is called regular, if for every 
(p, q) G Feither q e VTVN or q = X holds, where A denotes the empty string. 

Grammatical categories were introduced for formal languages in several ways. 
The simplest way is the following: Let (V, L) be a formal language. For every X £ y$ 

we define ${X) as the set of all x e V such that uxv e L for every (u9 v)eV*x V* 
with the property utv e L for every t G X. The set $(X) is called the grammatical 
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category generated by the set X. In a special case, when we take V as the set of all 
word-forms in a fragment of a natural language and L as the set of all correct 
sentences of this fragment, sets of the form ${X) for X s V correspond to morpho­
logical categories of this fragment, if the set X is chosen suitably. See Kunze [4], [5], 
Novotny [6], 

In general, the assumption is accepted that a fragment of a natural language 
can be generated by a context-free grammar in such a way that nonterminals cor­
respond to syntactical categories. If a context-free grammar (VT, VNfx0,F) is 
given, we can assign the set {w e V* | n ̂  w} to each nonterminal n e VN. It is quite 
natural to precise syntactical category n as the corresponding set of strings. If n 
stands for "noun phrase", then the mentioned set consists of all noun phrases that 
are substrings of correct sentences in our fragment. We see that it is possible to 
transfer the notion of syntactical category to every language generated by a context-
free grammar. Thus, we shall use rather the notion of syntactical category of a context-
free grammar than the notion of syntactical category of the generated language. 

We now are in the situation that we have defined grammatical categories for 
every formal language and also syntactical categories for every formal language 
generated by a context-free grammar. The substantial difference is the fact that 
a grammatical category is a set of symbols and a syntactical category is a set of 
strings of these symbols. To avoid this difference, we generalize the notion of 
grammatical category admitting sets of strings as grammatical categories. The 
complete characterization of regular languages is formulated here by means of the 
generalized grammatical categories. A natural problem arises here: Which languages 
can be generated by context-free grammars in such a way that their syntactical 
categories are grammatical ones? We prove that all regular languages satisfy this 
condition. A regular grammar is constructed to every regular language in such a way 
that its syntactical categories are the generalized grammatical categories of the 
language and that the grammar generates the given language. 

I. GENERALIZED GRAMMATICAL CATEGORIES 
IN THE SENSE OF KUNZE 

1.1. Definition: Let W be a set. A mapping ij/ from 2W into 2W is called a closure 
operator on 2W, if the following three conditions are satisfied for arbitrary X, Y s W: 

1. \ls(X)^X. 
2. wwo) - un 
3. X s Y implies $(X) £ ^(F). 

A set X with the property X = \j/(X) is called ^-closed or shortly closed. 
To construct grammatical categories in the sense of Kunze, we shall need the 

notion of Calois connection: 
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1.2. Definition: Let S and T be sets, G a mapping from 2s into 2T and % a napping 
from 2T into 2s. We say that the ordered pair of mappings (<r, t) establishes a Galois 
connection between the sets 2s and 2T, if G and x satisfy the following conditions. 

(a) Xt £ X2 implies G(XX) 2 <r(X2) for arbitrary Xt, X2 £ S. 
(b) Fj £ Y2 implies T ^ ) 2 T(F2) for arbitrary Yi9Y2& T. 
(c) X £ Ttr(JT) for every set Jf £ S. 
(d) Y £ <JT(F) for every set Y £ F. 
For Galois connections the following theorems hold. 

1.3. Theorem: If the ordered pair of mappings (a9 x) establishes a Galois connection 
between the sets 2* and 2T

9 then xa is a closure operator on the set 2s and ax is a closure 
operator on the set 2T. 

Proof: See [8], Theorem 16. 

1.4. Theorem: Let the ordered pair of mappings (&, x) establish a Galois connection 
between the sets 2s and 2T. Then a(X) « (T(XG(X)) holds for any X £ S, and x(Y) « 
= T(<XT(F)) holds for any F £ J. 

Proof: See [1], page 89. 
We now establish the notions .of the grammatical category in the sense of Kunze 

and the generalized grammatical category in the sense of Kunze. 

1.5. Definition: Let (V9 L) be a language. We say that an ordered pair (u9 v) from 
the Cartesian product F* x F* is a context of an element a € V in the language (F, L) 
and write (a9 (u, v)) e Q if and only if uav e L holds. We define a pair of mappings a 
from 2V into 2V**V* and T from 2V**V* into 2V in the following way. 

a(X) = {(u9 v) E F* x F* | (x9 (u9 v)) e Q for every x e X}9 

where XQV. 
x(Y) = {x € V | (x, (w, t?)) € Q for every (M,t>) € F}, 

where F c F * x F * . 
It is easy to see that the ordered pair of mappings (a9 x) is a Galois connection 

between the sets 2V and 2F**FV 

1.6. Definition: We put \^(X) « Tcr(JT) for every if £ F. Then ^ is a dtattr* 
operator on 2 r . The set ^(X) is called the grammatical category in the sense ofKunz& 
generated by the set X. 

We generalize the definition of grammatical category. 

1.7. Definition: Let (V9L) be a language. We say that an ordered pWr (u9v)e 
€ F* x F* is a contort #/*&? string x € F* .fe ifo language (F, £) and write (**tn, t̂ )) 6 
€ #* if and only if uxv eL holds. We define a pair of mappings <r* from 2r* into 
2 r # x r * and t* from 2K*xr* into 2F* as follows: 

**W - {(^,^e r x F » | f e ( M ) ) e f e for every XBX}9 

153 



where X s F*. 

T„(7) = {* e F* | (x, (ii, i?)) e Q* for every (w, t>) e Yj, 

where F s F* x F*. 

1.8. Note. The ordered pair of mappings {o*, T#) is a Galois connection between 
the sets 2F* and 2F*XF*. It follows from the definitions of the relations Q and #* 
that (a, («, t>)) G g holds if and only if (a, (w, i?)) e £* for every symbol a of the 
alphabet F. 

1.9. Definition. We put $*(X) = T*<X*(AT), where X is an arbitrary subset of the 
set F*. Then \j/# is a closure operator on 2V*. The set ty+(X) is said to be the generalized 
grammatical category in the sense of Kunze generated by the set X or shortly the 
generalized category of the set X in the sense of Kunze. 

In what follows we say "grammatical category" and "generalized grammatical 
category" if meaning "grammatical category in the sense of Kunze" and "generalized 
grammatical category in the sense of Kunze", respectively. We now show that 
grammatical categories represent a special case of generalized grammatical categories. 

1.10. Lemma. Let (F, L) be a language, let X be a subset of the alphabet V and 
let Y be a subset of the set of all contexts V*xV*. Then the following assertions hold. 

(a) a{X) = oJX). 
(b) T(F) = t , (y) n V. 
(c) <K*) = M * ) " V-
Proof: (a) If X s V, we obtain, by 1.8., a*(X) = {(«, v)eV*xV*\ (x, («, »)) e <p„ 

for every xeA'} = {(M, v)eV*xV*\ (x, (u, v))e Q for every xeX} - o(X). 
(b) We have T»(F) n F = {x e F* | (*, (M, t;)) e e* for every (u, v)eY}nV = 

= {xeV\(x, (u, v))6g* for every (u, v)e Y} = {xe V\ (x, (u, v))eQ for every 
(u,v)eY} = x(J). 

(c) Let Xs V, then t ^ W n V = xt(at(X)) nV= r*(c(X)) nV= x{a{X)) = 
= MX), Q.E.D. 

1.11. Note. Clearly, we have ^ ( * ) = { » e P | ^ ( * ) 2 ^*({o}), which is the 
consequence of 1.1. 

2. CHARACTERIZATION OF REGULAR LANGUAGES 
BY MEANS OF GENERALIZED CATEGORIES 

An important characterization of the class of regular languages is described in [2]. 
Definitions 2.1., 2.2. and Theorem 2.4. can be found there. 

2.1. Definition. Let s= be an equivalence on V*. If x = y implies uxv = uyv 
for every u,ve V*, then = is called a congruence. 

154 



2.2. Definition. The index of an equivalence is oo, if the number of equivalence 
classes is infinite; it equals the number of equivalence classes, if this number is 
finite. 

2.3. Definition. Let (V,L) be a language. We put (x,y)e^L for x,ye V* if 
and only if <r*({*}) = ^*({>;}) holds true. Obviously, £=L is a congruence on K*. 
It is called a principal congruence. 

2.4. Theorem. For every language (V,L) the following three statements are 
equivalent: 

(a) (K, L) is regular. 
(b) There is a congruence = on V* of finite index such that L is a uniori of some 

of its classes. 
(c) The relation ^L is of finite index. 

2.5. Note. If E is a class of the principal congruence, then 0*({e}) =* <r+(E) and, 
hence, *A*({e}) - *A*(£) holds for all strings eeE. 

2.6. Lemma. Let (V,L) be a regular language. Then every nonempty generalized 
grammatical category is the union of some classes of the principal congruence cor­
responding to the language. 

Proof: Let n be the index of H=L and let Et,..., En be the classes of the principal 
congruence ^ L corresponding to the language (V,L). Since \I/*(X) 2 ^*({t>}) holds 
for every v e \I/*(X) and ^*({i>}) = ^*(£/) for the class Et containing v, the inclusion 
$*{X) 3 Et holds for all Et with ^*(Ar) n Et # 0. Since every v e ij/^X) is contained 
in some class Ei for j e {1, . . . , n}9 we have ij/*(X) = ^J Ei9 Q.E.'D. 

2.7. Lemma. A language having a finite rtumber ofgeneralizedgrammatical categories, 
is regular. 

Proof: Let us put x « y for strings x,y if \j/*({x}) = &*(&}) hokfc. Then 
<A*({*}) = i M M ) ^ equivalent with a*({x}) = <r*({y}) by Theorem 1.4. and, 
therefore, x z=L y. Hence, « =» s=L. If a language possesses a finite number of general­
ized grammatical categories, the relation « is of finite index and the language is 
regular, Q.E.D. 

2.8. Theorem. A language is regular if and only if it has a finite number of generalized 
grammatical categories. 

Fro of: Due to Lemma 2.6. and statement (c) of Theorem 2.4., a regular language 
possesses a finite number of generalized grammatical categories. The converse 
implication is included in Lemma 2.7., Q.E.D. 
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3. SYNTACTICAL CATEGORIES 

We define a syntactical category by modifying slightly the definition in [3]. 

3.1. Definition. Let G = (VT, VN, x0, F) be a context-free grammar and let x e VN. 
We put 

and this set is called the syntactical category of the nonterminal symbol x in the 
grammar G If x = x0, then we omit the nonterminal symbol x and we put if (G) = 
= jSf(x0,G). 

There exists a regular language having a regular grammar such that some 
syntactical categories are not generalized grammatical categories, as it follows from 
the next example. 

3.2. Example. Let VT = {a, b, c}, VN = {S, A, B, C, D}, F = {(S, aA), (A, bB), 
(J8, A), (S, a£>), (D, cC), (C? A)}. Then G = (VT,VN, SyF) is a regular grammar 
generating the language {ab, ac}. Obviously, A i> b, D X c. Thus the sets {&}, {c} 
are syntactical categories of this grammar. On the other hand, b ^L c holds and, 
consequently, every generalized grammatical category either contains both symbols 
b, c or none of them. This implies that {b}, {c} are not generalized grammatical 
categories. 

On the other hand, to every regular language, there exists a regular grammar 
generating the language such that the syntactical categories of this grammar are 
generalized grammatical categories. 

3.3. Theorem. Let (V9 L) be a regular language. We define dpL = T*({(p, A)}) for 
every p e V*. Further we put 

VT - F, 

VN = {dJL I A # pe V*9 dpL # 0} u {dAL}, 

F-\(dJL,ad^) I d„Le VN,ae V,p€ F*} u {(dpL9X) | d^s V^Xed^L). 

Then the ordered quadruple G = (F r , VN9 dkL9 F) is a regular grammar generating 
K the language (F, L) and its syntactical categories are generalized grammatical categories 
of(V,L). 

Vroof: We prove that dpL = if (dpL9 G) holds for every dpL eVN. 
1. Let us take x e dpL. If x = A, then F contains the rule (dpL9 A) and dpL £> X. 

Let x «* ax, .*.., an9 where n «> 1 and Hj, . . . , an e VT« This implies that F contains 
the rules ( 0 ^ , ^ 5^,1), ( S ^ i , a 2 S^^L), . . . ,(3^1 . . .*.1£,^3^... , jL) and • 
(dpii^tj* A). Hence, g^L4 ^ 1 . . . 0» - * tod apL s J^(5^L, G) holds. 

2, Suppose 3piL 2> x. Thus, we obtain t?^ => a4 3 ^ ^ => aia2 dmiUlL •> ... *> 
5^% ... andmitaJL*>at ...aH. Hence, Xedpai_knL and this entails pat ...aneL 
and, hence, a*... a„ =* x e dpL. We have proved dpL 2 ^(djA G). If we put /> ** A, 
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we obtain dxL = se(dxL, G) = &(G). The assertion follows from the fact that 
djJL « T„,({(p, A)}) = T«(<r«,(T,({0>, A)}))) = tfr,(r*({0>> A)})) is a generalized gram­
matical category, Q.E.D. 

4. EXAMPLE 

4.1. Example. We consider the regular language (V,L), where V => {a,b} and 
L = {b, ba) u {abm | m ^ 0}. We shall construct the principal congruence ssL. 

Let C be the set of all strings in V* that are not substrings of any string contai­
ned in L. We have ff,(C) = 0. We obtain also the other sets of contexts 

».({*}) - {(A, b), (A, 6a), (6, A), (6, a), (to, A)} u 
u {(A, a*') | / fc 0} u {(a*', 6>) I / £ <W £ 0}, 

**({«}) = { ( M ) } u {(A,6') | i£0}, 
*•({&}) = {a, A), (A, a)} u {(aft', 6>) | i £ 0,/ £ 0}, 
<r*({afr( | / 2s 1}) - {(A, **) I ' ^ 0}, 

»•({*»})-KM)}, 
a,({6' | / £ 2}) = {(aft', &0 I * fc 0,y £ 0}. 

We form the nonempty intersections of the sets o*(X) 
*i - *•({*}) n <r»({a}) = {(6, A), (A, 6)}, 
** = **({A}) n <r,({6}) - {(A, a)} u {(a6', 6>) | / £ 0J £ 0}, 
<r3 = <r«({A}) n <r„({a6< | i £ 1}) - {(A, 6)}. 

Then the semilattice, possessing the above mentioned sets as elements and the 
intersection as operation, is given by the following Hasse diagram (it is constructed 
by the method described in [8]): 

6,(tfi<*2)) 

Let us put A = {A}, A = {a}, B - {b}, AB - {abl \ i £ 1}, BA = {6a}, BB » 
•» {6' | iet 2}. These sets together with C form a partition on V*. In accordance 
with Definition 2.3., these sets are just all classes of the principal congruence m^. 
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Let Jfg F* be an arbitrary set. Then Definition 1.7. implies cr*(X) « fj M M ) 
xeX 

and, therefore, ^(JT) = f] a*(T) by Note 2.5. 

We shall find all classes T that have nonempty intersections with X and then the 
infimum of the sets a*(T). This infimum equals a+{X). By Note 1.11. $*(X) consists 
of all x e F * satisfying \jft(X) 3 *M{*}) which means ^ f f l c ^ } ) by 
Theorem 1.4. These elements x can be found by means of the diagram. In this way, 
we find all generalized grammatical categories: A9 A9 B9 A u AB, AKJ BKJ AB \J 
KJ BA9 Au BKJ BB9 Au A, Au B9 Au Au AB9 V*. 

To construct a grammar by Theorem 3.3., we find all nonempty sets of the form 
*•({(*> X)}h where x e V*. For the sake of brevity, we write T*({(X, A)}) = dxL as 
in Theorem 3.3. It is easy to see that dxL is a union of the classes Te F*/==L with 
the property (x9 X) e a*(F). Hence, we obtain 

dxL = AKJ B KJ AB V BA, 
BaL = A u B u BB « dflbL, 
3fc£ = A KJ A, 
dbaL = i l . 

Thus FN = {e^L, 5aL, 3feL, dfcfl]L}. The empty word is contained in the sets daL9 dbL9 

dbaL. Therefore, F = {{dxL9 a daL)9 (8XL9 6 36£), (<?flL, A 3.1), (36L, a dbaL)9 (daL9 X)9 

(dbL, X)9 (dbaL9 A)}. The resulting grammar is the ordered quadruple: 

G = (V,VN9dxL9F). 
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