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ON TOLERANCE ANALYSIS 

NORBERT BRUNNER, Baden 
(Received November 20,1979) 

We study below a special case of a natural stability problem in the theory of 
tolerance relations: What theorems of classical calculus remain valid, when equality 
is substituted by a tolerance relation? We shall consider a wellknown theorem, 
stating, that every polynomial-equation p(x) = 0 of degree n ^ 1 has at most 
n solutions. 

Substituting some RB = {(*,>>) eR2 : | x - y \ < e}, e > 0, for =, then, in 
general, the set {xeR:p(x) Rfi} of e-solutions is infinite. The cardinal number of 
the connectednesscomponents of this set, however, has the degree n ofp as an upper 
bound, according to the next theorem. As {xeR:p(x) = 0} trivially has at most 
n components, this theorem yields an extension of its classical version. 

Theorem. Let p: R -> R be a polynomial of degree n ^ 1 and let s > 0. The 
set {x € R: p(x) Rfi} = {x e R: | p(x) | < e} of e-solutions has at most n components. 

Proof: lfp~1(->e, s )= 0, the theorem is trivial; assume therefore p~l(—e9 s) # 0. 
As the polynomial p is not constant, the set/?""1^—e, s) is bounded. It furthermore 
is an open set the components of which are intervals (a, b\ a e R, such that 

(1) {P(a\p(b)}<z{+s9 -£} , 

because p is continuous. As the sets of solutions of the equations p{x) * e, p(x) * 
= -e are finite, p~l(-e9 e) has only finitely many components C « (ae, bc)f which 
are pairwise disjoint and linearely ordered: C < D iff bc £ aD; let C% « (aif b() be 
an enumeration of the components such that C, < Ci+1, ir <J m - 1, m the number 
of components. 

For i! <J m - 1 />(£>,) = />(ai+1)
: If ** * tfi+i» ^is is trivial; assume therefore 

*i < **+i • ff />(**) # iK<*<+i) then /)(*,) =? -/>(<**+1) by (1). Therefore there is an x, 
bt < x < a{+i9 such that p(x) = 0 and a component Cj containing x; necessarily 
Ct < Cj < C i + 1 , thus yielding a contradiction. 

Furthermore we note that there is an x9 b{ g x & <*i+i • such that the derivative 
p'(x) = 0: If *j < fl|+i this is from Rolle's theorem. If bt = a,+ 1, then /<&,) is an 
extremum ofp in (ai9 6 m ) and therefore />'(£<) « 0. * 

*f? 



So there are at least m — 1 distinct points xl9 bt ^ xi £ ai+1 < bi+1 :g xi+i9 

such thatp'&d — 0. As the polynomial/?' has degree at most n — 1, we get: m — 1 g 
£- ft — 1, iff £ it: / ^ ( - e , a) has m £ n components. 

Corollary: Let/;: R -> R, #: R -• R be polynomials of degrees « and m respective­
ly: The set {x e R:p(x) Req(x)} has at most max {ft, /ft, 1} components. 

The same is true for the relations RxR, A = {(x,x): * e R } , Rg(I) = R9 u 
u {(x9y\: \x ->>| as e9 xel}9 e > 0, / £ R connected. If on thecontrary /* £ RxR 
is a tolerance relation, such that for each pair (/>, q) of polynomials of degrees 
ft = m = 1 the set (x6R:p(x)^(x)} has only one component, then R is one of 
these relations. 

Also {x e R: 3 y . */?;>> &/>(>>) i?rf(y).} has at most max {«, w, 1} components. 
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