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ON ASYMPTOTIC PROPERTIES OF 'OSCILLATORY
SOLUTIONS OF THE SYSTEM OF DIFFERENTIAL
EQUATIONS OF FOURTH ORDER

MIROSLAV BARTUSEK, Brno
(Received February 2, 1980)

Consider the system of differential equations ’

@ Yi=fit,y1,92. 73,5, ieN,
where f, € C°(D), D = {(t, x,, X3, X3, x,) : t€ [0, o), y, € R, ie N.},
[t xy, x5, X3, Xg) X141 >0  for x,., *0, ieN,,
@ . Jalt, X1, X2, X3, %) x; <0 for x, # 0,
= {1,2,...,n}, R = (— 0, ®), C°(D) is the set of all continuous functions on D.
LetN={12 .}, Ry = [0, o).
The specnal case of (1) is the differential equation of the fourth order
A - W =1y,
. where fe C°(D) and f(, x;, X3, X3, %) x; <0 t“or x;, # 0.

Definition 1. Let Y = (y,){ be a non-trivial solution of (1), defined on the interval
[a,0), 0 S a < b < . Y is said to be oscillatory if for every i e N, there exists
a sequence (t)=1 of zeros of y;, lim ¢, = b such that

sup{zly‘(t)l t,,St<b}>0 for keN

holds. Y is said to be strongly osc:llatory if there exist sequences tDHS.,, 1€ N,,
t; € [a, b) such that ‘
A<t n=0, y#0 for te(t, b,
 t#,keN,ieN,. '
In the present paper we shall study the strongly oscillatory solutions. Especially
some sufficient conditions are given under which all components of such solutions .
are unbounded. -
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Asymptotic behaviour of oscillatory solutions of (3) under the assumption
f(ta X1 X2, X3, x4) Xy g 0 ‘

was studied in [2] and for the differential equation of the third order in [1] and [2].
However, about the behaviour of oscillatory solutions of (1) with the property (2)
we know very few.

In all the work we shall suppose that strongly oscillatory solutions exist.

First, the following Lemma will be proved that shows the character of the oscill-
atory solutions. .

Lemma. Let (y,)} be a solution of (1), defined on [a, b) and let (1) be the sequence
of consecutive zeros of y,,

limep =b, Qe 't <y, () =0, y1)*0

k= o0

for te(ty,b), t # t,, ke N.
() If at least one of the two inequalities

@ y2(16) y3(16) < 0, ya(to) ya(to) > 0
| is not valid, then there exist sequences (Do, i = 2,3, 4 such that fork =23, ...
HR<K << <t YW*0,  y)=0,
6)  2ONnO<0  for teht), yOy() <0 for te(t thry),

i=23,4.
(ii) If (4) is valid, then there exist sequences (t))2-o i = 2,3,4 such that either
forkeN :

<< <ti<tl,, yth=0, y{th) +0,
' =Dy, >0  for te(t, 1), )
©) (=)' ».(®) <0  for te (tk‘a they), £=2,3,4

holds or there exists a number kq € {0, 1,2, ...} such that (6) holds for k S k, and
(5) holds for k = ky + 2.

Proof. Put for the simplicity #; = 1,, k = 0, 1. According to the Rolle’s Theorem
and (1), (2) there exist numbers x, € (t,, ¢,) and x5 € (#,, ;) such that
Q)] Yi(x2) = ya(x;) = 0, Y1(xs) = yy(xs) = 0.
Next, it follows from the assumptions of the lemma and (1), (2) that
®) - T 2t yi(x2) 20, yalty) yi(x2) S 0,

)] ~ . Y4 y,(xz) is decreasing on (1o, t;)-
Consider some cases.
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1° © o ylto) yi(xz) 2 0, Ya(to) y1(x2) > 0, i=23

Suppose that y,(f) # 0 for ¢ € (fo, ;). Then according to (9) ya(r) > 0 for t€ (o, ]
and we have from (1) and (2) successively for i = 4, 3,2, 1 that y,(f) y4(x3) > 0,
yi(t) y1(x,) is increasing, te(fo,f;) which contradicts to y,(¢,) = 0. Thus, with
respect to (9) there exist the only number x, € (fo, t,) such that yi(x,) =
Yi0) p1(x;) > 0 for t € [£y; x,), i€ Ny, pa(t) y1(x5) < O for t € (xq, ;]

The existence of the only numbers x;, x, with the properties f, < X141 < X; < #y,
yix) = 0, p()) yi(x3) > 0 for te[ty, x), yit) y1(x;) < 0 for te(x;,#] can be
proved successively for i = 3,2 in the same procedure. From this ¢, is the simple
zero of y, and sgn y,(x,) = —sgn y,(x,). Thus '

Vit yi(xs) 2 0, yu(ty) y1(xs) > 0, i=23

and we have the same situation as at the beginning at fo. The repeating of the con-
siderations shows that (5) is valid. The statement (5) is valid _in the cases

2° yi(tO) yl(x2) > 0, y4(to) yl(xZ) é 0, i= 2, 3
3° V2(t) ¥1(x2) 2 0,  p3(to) y1(x2) £ 0,  yalto) ¥1(x2) <0,
[ ya(to) | + 1 ya(to) | > 0,

too, as in both cases y,(f) y;(x;) > 0 in some right neighbourhood of ¢ = ¢, and
this situation was met in 1° on the intervals [x,, x,) and [x3, x,].

4° Yito) y1(x2) 2 0, Ya2(to) y3(to) = 0, Va(to) y1(x2) £ 0,
i=23.

From this and from (9) ys(Y) y,(x,) is decreasing on (f,, tl]. If y3(to) = 0, then
¥2(t) y1(x,) is decreasing on (fy, 7] and according to (7) we get at ¢, the same
situation as in the case 1° for #,. If y;(t,) y,(x3) > 0, y,(to) = O, then in some right
neighbourhood of ¢, the following relation is valid (see (9))

yl(’) J’1(xz) > 09 y4(t)yl(x2)'< 09 te(‘l’ tl + 8), €> 0 iEN3

and we get the situation that was studied in 1° on the interval (x,, x,) Thus the
statement (4) is vahd in this case, too.

5° ' yalto) = 0, y3(to) y1(x2) < 0. S

It follows from (1) and (2) that successively for i = 3, 2, 1 y() y,(x,) are negative
on (o, f) for a suitable 7 < 7, that contradicts the assumptions of the Lemma, This
case is inadmissible. '

€ pnE) >0 nUInE) <0,y =0.

In virtue of (9) y,(r) y,(x;) < O for te(t, t,], i = 3,4 holds and accord:ng to (8)
¥2(t1) y1(x2) < 0, thus we have att = t, thé case 1°, . R
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The last possible case is
7° V2(to) 1(x2) > 0, ys(to) yi(x2) <0,  yulto) y1(x2) > 0.

If y4(#) y4(x2) > O for t€[t,, t;), then with respect to (8) we get in 7, one of the
cases 2°, 3°, 4° or 6° with the exception of y,(t;) = 0. When y,(,) = 0, then we get
the case (5) or in some right neighbourhood of 7, we have the same situation as in 1°
on the interval [1,, x;]. Now, let there exist a zero x, of y, in the interval (¢, ¢,).
Then according to (9) y,(¢,) ¥1(x2) < 0. If y,(t,) = 0, then we get the same situation
in some left neighbourhood of ¢, as in 1°, € [#,, x;]. According to (8) in the other
cases we get at ¢, the cases 1° or 7°.

Now the statement of Lemma follows from the above consnderanons Lemma is
proved.

Definition 2. Let (»,)} be the strongly oscillatory solution of (1). It is said to be
the first kind if there exists an integer k, such that (5) holds for k = k,. ()} is said
to be of the second kind if (6) holds.

Lemma 2. Let (»)% be an arbitrary solution of (1) and let there exist functions
@;€ C'(R), i€ N, such that ¢(s)s > 0 for s # 0, @i(s) = 0 for s € R and on D
(10) @2(%2) 3(x3) f3(t, X1, X2, X3, Xg) = @1(%;) Pa(xa) f1(t, X1, X2, X3, X4)

holds. Then the function F(t) = @y(y,(1)) @3(y3(1)) — @1(31 (1)) @a(ya() is non
decreasing on [a, b).
Proof. We have according to (1) and (2)
F'(t) = 92002) 93(33) 28, ¥1, 2, Y3, ¥4) +
A+ @2(02) 93(¥3) S35 V15 Y25 35 ¥a) = @101) @aa) f1(: Y15 Y2, ¥3,.74) =
— 0:1(31) P4() fo(t, Y1, Y2, Y3, ¥4) 2 0.

Remark 1. The condition (10) is fulfilled e.g.
a) if there exist functions g;e C°(R) and h; € C°(R), ie N, such that
4 4

Ji(t, x4, x2, X3, x4) = a(t) Hgi(xt)sf3(ta Xy, X2, X3, Xg) = Ma(t) H hi(x)), g,(8) > 0,

h(s) > 0, g,(0) = 0, h4(0)=0 g2(s) s > 0 and h4(s)s>0fors¢0 i=134
k-l 2,3; te[a, b), x,€ R, a > 0. In this case we can put

w00 w28 -] e

hys)M
¢4(S) = 2 (s) ’ SER'

b) for the equation (3) with qo,(s) =g, 7eNy.
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Consequence. Let the assumptions of Lemma 2 be valid: Then every oscillatory
solution of (1) defined on [a, b) and fulfilling the condition F(a) 2 0 is strongly
oscillatory of the first kind.

In the rest of the paper we shall deal only with the strongly oscillatory solutions
of the first kind of (1). In all theorems (»,){ means such a solution, defined on the
interval I'=[a,b), 0 £ a < b £ oo and denote by (th,, i€ N, the sequence of
zeros of y, with the properties (5), lim #; = b. Then according to (1) and (2)

k=~
Y@ >0 for te(n, 4*h),
(12) i@ <0 for te (*, they),
Ve y () <0 for te(t, tity),
Yut) =0, keN;jeNs.

Note, that (| p,(r*1) Dy, i€ N, (tf = t}) is the sequence of absolute values of all
local extremes of y; on the interval [tf, b).
In the further considerations M, will denote the suitable positive constant.

Lemma 3. Let i € N, and there exist continuous functions H, : RS - R, H, : R% -
— (0, ©) such that Hy(x,, X3, X3, X4) X414 > 0 for x;4q # 0,

Hl(l X1 Is I X3 |9 ‘ X3 la l X4 I) é |fl(t, X1y X2, X3, xA-)l’
Ifl+1(t’ X1 xz’x3’x4)| é Hz(l Xy L I X2 Iy l X3 l’ ' X4 ')

in D (x5 = x,). Let an interval 4 = [tl, tz] be given such that y,., has a zero in 4
and let v; = max | /() |. Then
0StySty N
Vi+t
min Hy(x,, X3, X3, X4) dX;41 < 2v; max H,(xy, X33 X3, X4);
0 05x{§v1 08x;38v)

JjeN,.

Proof. It follows from the assumtpions that there exist numbers ¢;, ¢, such that
Yie1(te) = 0, | ¥i4+1(ts) | = v;+1 and y;4; do not change the sign in the interval
[t3, ta] = [11, t2] Gf 24 < ¢5 the proof is similar). Then

Vit

{* min H(xhxzsx3sx4)dx!+1éIHl('yl(t)' I.Vz(‘)l [¥s(1,

0 OSx,;Sv;
i

[ 4@ D yis (D[ de £ f [y 1 yisa(®)|dt S 5 2"co;na: Hy(xy, x5, X3, %)
x5y v

The lemma is proved.

Theorem 1. Let the assumptions of Lemma 2 be valid and let there exist continuous
JSunctions g, :R: -+ R,, g, :R¥+ Ry, m=1,3; G,: R, - (0,®), Gy : R% —»
= (0, o), k = 1, 2 such that g, = O iff the first argument is equal to zero, g, are non-
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decreasing with respect to the first argument, i € N, and

gl xa I, 1 x4 1) S 1At 15 X2, x5, x) | £ Gy(I X, |, | X2 1),
13) &l xs 1 xy L1 x2) S 1ot xy, %25 %3, %) | S Go(l x|, | x3 ),
g xy I, | x2 1) S 1fat, X215 X2, x3, x) | S Gy(] x4 |).

Let ¢y(s) > 0 for s€ R. Then lim sup y,(¢) = oo holds.
Proof. Put o
Fi®) =F@) - f g1 711 19:0) N1 01(y1(s,) | 9(vals)) ds,
where F is defined in Lemma 2. Then according to Lemma 1, (2) and (13) F(#}) =
= Fi(t}) > 0, '
Fi 2 1910) | 04(a) {—fo(t, y15 2, 3, y2) sgn yy — g3(1 y1 |, 1 2D} 2 0

and thus F, F, are positive, non-decreasing.
Suppose that the statement of the theorem is not valid. Then

(14) Iy SM<w, keN.

We shall consider two cases.

(15) 1°lim F(1) = M, < .
t=b-

It follows from the definition of F, that

(16 lime | (1 111 1720 1) 0srs®) | 0a(y:()) | dt = 0

k-0 ,,:
holds.
First, we prove that the sequence (| y,(ts+1) )T is bounded. Let this propositior
be not valid. Then there exists an infinite subset K; = N such that

k-0

a1 lim | y,(tie1) | = o, keK, ¢

and from (15) and (17) we have
(18) [ y3(tie )] £ My, kek,.

According to Lemma 3 (4 = [#7, tiy,), i = 1)

1720k+ 1) | ‘ 2
min g,(s, x;)ds £ 2. | y;(&) | max Gy(x,,x;) < M,
0 oOsxsM 0SxiSM
OsSx3sSM;
that contradicts (17). Thus 4
(19) [ y2(tsr) | £ My, keN
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and according to (16), (12), (15) and Lemma 1

| 81O 1320 940s0) | 2040 10t
2 M, ; 8501710 1 1720 ) 0404 ) | @) 1Y) 1de 2
1 51D |

=M, | |ei(sseny, ()| min gs(s, x;) @4(ya(t(s)))ds, keN,
0 0Sx2SMy .

Ms=[ max Gl(xl!xz)]—l>0;

0Sx1SM .
0sx2SMq . 4
(20 lim () =0,  lim|y )=, keN.
k=0 k-

Now suppose that | ¥2(#7) | does not converge to zero for k — o, k € N. Then there -
exists an infinite set K, = N such that (see (15))

(#2)) ly,(tH 1 2 Mg >0, | ys(t8) | S M; < o, keKk,
and according to (20), (12) and Lemma 1

[ ()] = 1 ys(8) ] = fl.}’x'(’ﬂdt 2 Mg i&(' 2O LIy OD1ya(0) 1 de 2

"

Inghl | -
2My | min g(s,x,)ds, Mg=[ max G(x;,xy)] "
{20 10Sx S M 0Sx1SM

0Sx3SM7

It follows from this, (20) and (21) that the_re exists an integer k, such that

lya(6) 1 2 M‘z keK,, k 2 kg

2
and
I
BAGIER PRI ,{81(' y20 Lty (O de 2
t
. M
< min g (“f”ﬁ)(‘: - 1),
0sx1sM ;
(23) ' im@ -1tH=0 kek,.
k- ®© .
Then

@) |y = j | ya(r) | dt S [ Gs(l (B ) dt so ;na:MGs(xt) @ -1

4
1 3
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that contradicts (20 and (23). Thus

(25) :ilg ) =0, |y()ISMy, keN

and according to (15) and Lemma 1 |

(26) ‘ 3112 |y3(1) | = o

It follows from Lemma 1 and (12) that there exists a sequence ({07 such that

@33N | = | a&)) |,  &e (el 8
holds and

F(&) = 02002) 93(y3) — 01(31) 04(vs) le=t =
27 = | 0¥ | ( 02002 | + | 1) D) le=g,-

From this and according to (20), (15) and (25) we have
(28) :im lys(€ | = lim | ¥4 | = o0, 1yl =My > 0, keN.

Then, by use of (25) and (12) successively

Sk Sk
920801 = 1yt | = I‘ [ya(t)1dt = ! g0 y:O L Iy 1,1 y2(0) | dt 2

= min g,(Mj, xy, x;) (& — 17),

0sx1SM
- 0sx25Ms
(29) lim (& — 1) = 0,
k= o .
. o [
- (30 1 ya(@) | = l [ya(®)dt < [ Gi(lyi(ODdt =
T Ix
< max Gi(x) (& — %),
0sSxisM
_ that contradlcts (28) and (29). Thus (14) is false i m the case 1°,
(31) 2° Let lim F(f) = oo.
p t—b-
Then according to (14) and Lemma 1 .
(32 ‘ :lm l y4(tg)| = llm | ya() | =

Suppose that hm mf | y,(t,.,)l < . Then there exists an infinite subset K, =« N

such that | yz(t,‘)l § Mg, k € K, and according to (14) and (31) the relations (27)
‘and (28) hold and &, — #§ is bounded that contradicts to (30) and (28). Thus

(33) gmmmwn
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If there exists an infinite set K, = N such that | y,(tf) | = My, k € K, holds then (22)
is valid and according to (13) t; — ¢} is bounded for k € K, that contradicts to (24)
and (32). Thus lim y,(t:) = 0 and from (33), (13) and from the estimation (22) made

k-~
for the interval [#, 1] we get that f; — # is bounded for k € N. From this and from
the estimation (30) made for the interval [1}, ;'] we can conclude that y,(t}) is bounded
for k € N, too, which contradicts to (32). The theorem is proved.

Theorem 2. Let the assumption of Lemma 2 be valid and lim | @,(s)| = 00,j= 1,2,

s+t o
©4(s) > 0 for se R. Further’ let there exist a positive constant M and continuous.
non-decreasing functions *g; : R, - R, and G,:R, - (0,©), ie N, such that
g:0) = 0, gi(s) > 0 for s > 0, lim g,(s) = 0, g3(s) = MG;(s), se Rand

(34) ga(l Xt D) S 1At xg, %2, X3, %) | £ Gl X441 1), ieN,.
Then
35) lim sup | y(t)| = oo, ieNg.

t=b-

Proof. As the assumptions of Theorem 1 are valid, there exists an infinite set
K < N such that

(36) lim|y, ()| = 0, kek.
k- o0
First, we state some simple estimations. According to (34), (12), (1) and Lemma 1

we have

{ {
| y2(tic+ 0| thet

@) Gds = § GlnON 01z { 1O 150X

xdiz | 82000 D018 2 8(1 D D!

Similarly

193¢l . : ’
(38) (I, Ga(s)ds = g5(1 yatt) )| y2(1) |
and .
. "z‘
(39 [ ] = 1y = [1yi®1de 2 ga(l (D) ) (5§ — 1)
. I '
It follows from Lemma 3 (4 = [#, 1], i = 2) that
1ys@edl '
(40) g 82(9)ds < 21 y;(12) | G5(1 ya(1) 1)-
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Thus, according to (38)

I3

@1) [ eyds s 2M“'"§b'cz(s) ds, keN.
First we prove that

42 lim F(t) = oo.

Suppose on the contrary that o

(43) lim F(t) = M, < oo.

t=b-

Then it follows from (43) and (36) that
(44) limy,(2) =0, keK.

k=
Suppose that | y,(2) | does not tend to infinity for k — o0, k € K. Then there exists
an infinite set K, < K such that | y,(¢2) | is bounded for k € K; and we can prove the
first relation of (22) in the same way as in Theorem 1 (we must use the interval [t,t, t,f]
instead of [#2, fx+]) which is a contradiction to (36). Thus

lim | y,(t))| = 0,  keK.

k= o0

Similarly it can be seen that lim | y,(tf,,) | = ©, k € K and by use of (43), (12) and

k-

Lemma 1 we have successively
|ps(t)| S M, keK,

1
1321 = [1y2(0) 1 dt £ G(My) (15 - 85),
tk
45) lim(f — ) = o, lim|y;(K)| = o, keK.
k— oo k- 0
But (45) is a contradiction to (39) and (44). Thus (42) is valid.
Now, suppose that (35) is not valid for i = 2. Then

46) | y2()] = M3, te [t thierds keK
and according to (42)
CY)] \ lim | ys(t})| = o, keK.

k-

As according to (37), (36) and (46) lim y;(17) = 0, k € K we get the contradiction
k- ©
_to (41) and (47). Thus lim sup y,(f) = . Suppose that the statement (35) of the
t=b-~

theorem is false for i = 3. Then
“8) 17| S My,  te[ab)
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and by_ use of (42)

49) - lim | yp(6) | = lim | yo(k+1) | = .
’ k- k- -
Similarly to (37) it can be proved that .
13(ties DI ) o
§ o Gy(s)ds Z g3( ya(t) )1 ya(tes o) |
Iyateil

and from this, according to (48), (49), (42) and (12)

lim y,(t}) = lim y(t3) =0,  lim|y,(t))| =0, keKk.
k=

k= o0. k= o

According to (39) the last relations give us lim (¢2 — #3) = 0, k € K and successively

k=

fori= 3,2 ]
It
[ydti 1= [1yi®)de 2 Gl Vier(88 7Y I)(’: - 1),
I

lim|y(~) =0, keKk,
k-0

that contradicts to (49). Thus it follows from the proved part of the theorem that
there exists an infinite set X; < K such that for k € K,

(50) lim |y, =0 or  lim|y,(ths))| = o0
ko0 k—+
and -
(51 Im|y;(t)| =00 or  lim|ys(tfsy)] =00  hold.
k= k=

Suppose that (35) is false for i = 4. Then

(52 |ys@® | = M5, te[ab)
and with respect to (42)
(53) ‘ lim | y,(t))] = 0, keKk,.

k- o0
If | y5(tt+ ) | does not tend to infinity for k - o0, k € K, then there exists an infinite
set K, < K, such that (use (51) and Lemma 1) -
| y3(tken) | S Mg, A lim|ys(t) | =, |ystd)] SMs, kek;,

k-»©
that contradicts to (41). Thus ' ‘
(54 lim | y3(tiss) | = o, keK,. -
- k-0
Now, we shall prove that - )
(35) lim | p;(ti41) | = o0, keK,.
k-0 N
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Suppose on the contrary, that there exists an infinite set K, = K, such that
(56) [ ytis) | S My, kekK,
is valid. Then according to (50) hm | yz(t,‘) | = o0, ke K, and it follows successively

from (37), (36), (56) and (50) that
limys(t)) =0, kek,,

k-‘w
(57 |)’z(‘3)|’ I | y2(01dt £ G,() 3D ) (8 — 1), .

lim(t2 —t})=o, keK, holds.

k- o
The last relation contradicts to (39) and (52). Thus (55) is valid. Similarly to (37)
the estimation

14

| Gi9)ds 34(| }’1(tk)|) | ys(tD) 1,

1y4()
can be proved and by virtue of (52), (53)
(58) y3(t2)  is bounded for k e K, .

Then it follows from (39), (52) and (53) that t2 — 2 is bounded for k € K, and (57),
(58) and Lemma 1 give us that y,(t)) and y,(t}) are bounded for k € X, too.

Finally, from the last conclusion and from (40) we have that y3(tf-), kek, is
bounded. But the boundedness of y;(ff) and y,(t¥) contradicts to (42). The theorem
is proved.

Corollary. Let there exist continuous non-decreasing functions g : R, - R, and
G : R, = (0, o) such that g(0) = 0, g(s) > 0 for s > 0 and
g(l xy 1) S LSt X1, %3,%3, x4) | £ G(I x4 |)
holds in D. Then for the solution y of (3)
tlit:'x sup | yP(@#) | =00, i=0,1,2,3 holds.
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