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ASYMPTOTIC PROPERTIES OF THE SOLUTIONS
~ OF THE EQUATION : = f{t,2)
WITH A COMPLEX VALUED FUNCTION f

JOSEF KALAS, Brno
(Received September 1, 1980)

1. INTRODUCTION

Three recent papers [1], [2], [3] are devoted to the study of the asymptotic
behaviour of the solutions of an equatnon . .

Ly t=fD), =,

where fis a continuous complex-valued function of a real variable ¢ and a complex
variable z. The subject matter of the present paper is concerned with this problem
as well. The basic tool used here is the technique of Ljapunov-like functwns For
convenience we suppose that

[, 2) = G(t, 2) [M2) + 8(' z)]

where G is a real-valued function, and g, A are complex-valued h,:ncttom The
function A is assumed to be holomorphic and the nght-hand nide of

1.2 = G(t, ) [m(z) + g(t, :)]

.

\

§

to be in a suitable meaning “close" to thxs function. The main results are. mted
in the fourth section. In Section 5 we shall establish some stability results for the
trivial solution of (1.2) by means of the results of Section 4 and of [1], [2]. Notice
that the asymptotic properties of the equation (1.2) was first investigated by M. Rib-
in [4], [5], where he has discussed the asymptotic behavxom' of the solutions of ﬁw

Rxoutl differential equauon . s
. | dm q(r) r(t)t’ L A
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2. NOTATION

In what follows we use the following notation:

C — Set of all complex numbers

N — Set of all positive integers

Reb  — Real part of a complex number b

Imb  — Imaginary part of a complex numbef b

b ~ Conjugate of b

1b| — Absolute value of b

BdI' - BoundaryofasetlI' = C

Cir ~— Closure ofasetI' =« C

IntI' — Interior of a Jordan curve z = z(t), ¢ € [«, ] whose points z form a set

I' = C; I' will be called the geometric image of the Jordan curve z =

= 2(t), te [(1, ﬂ]

1 — Interval [¢,, )

(9] — Simply connected region in C such that 0 e

C[a, o) — Class of all continuous real-valued functions defined on the interval [«, ©0)

cn — Class of all continuous real-valued functions defined on the set I'

é(r) — Class of all continuous complex-valued functions defined on the set I'

X(I') - Class of all complex-valued functions defined and holomorphic in the
region I'

3. PRELIMINARIES

First we recall, for the reader’s convenience, the definition of a Ljapunov-like
function W(z) determining certain sets K(4), K(2), K(4;, 4,), which are very useful
-when describing the asymptotic behaviour of the solutions of (1.2). For more details
we refer to [1]. Let h(z) € () be a function such that 4'(0) # 0 and A(z) = 0 <>
<z =0, Put ‘ :

W) = | W),
- where *
w(z) = z exp [| r(z*)dz*]
0
and
o 55_(_2%(—_2_)5:_) ‘for zef, z# 0,
z) = Y
- () for z = 0.
- - 21'(0)

I s .
Assuming that = denotes the system of all simply connected regions I' = £ with the
property 0 € I', we define

o114



%o = sup lim inf W(z),
Ire8 M= ul‘u
where
={zel: inf |z — 2*| <M Yn{zel:|z] >M}
s*eBdl’
Evidently 0 < 4 S .

For 0 < A < 1, define the sets K(1) = R in the following manner: choose I‘ € 5
so that

lim inf W(z) > A
M-wo zeln

and put .
‘ RQ) = {zel': W(2) = A}.
According to [1] this definition is correct, and denoting

, K@) = {0},
KD = R@) for0<ais i
0Su<i .
K()-n i) = U K(ﬂ) for0 5 4, < Ay S Ao,
Ay<p<iy

we have

Theorem 3.1. K(4,) is a simply connected region. Every set R(A), where 0 < A < Ag,
is the geometric image of a certain Jordan curve, and
- R} = {ze K(Ao) : W(2) = A},

Int R() = {ze K(Ao) : W(2) < A}.
Moreover, v ‘
K@) =IntR@A) for 0<i< Aos .

KAy, A3) = K(4;) = CLK(4,) for 0 < Ay <2; S A,
and -

KO, 1) = KA) — {0} for 0 < A S 4.

Suppose that  G(t, 2) [h(z) + g(t, )] e CUxQ), Ge cux@ - {0)), ge
€ C(Ix(Q — {0})). The following five results will be necessary at various points,
the first being proved in [3], the second one in [2] and the last three ones m [1]

Lemma 3.2. Assume E(t) € C[ty, ©), 0 < y, < 4o,

inf y, = 0.
neN

Suppose ge C(IxR), Ge CIxN). If

Gt, ) Re {h:(@(; + ezt( ;) < E(t)

T ; ‘1&5 s



or

— y ’ g(t, Z)

G(t, z) Re {h ©) [1 + 7z) ]} < EQ1)

Jor t 2 ty, z€ K(y,), ne N, then G(1,0) g(1,0) = O for t = t,.
Theorem 3.3, Assume 0 < y < Ay. Suppose that there hold

@E.n G(t,z) > 0
and
62 Re [g(t, 2) ';'((f))],< ~Re K(0)
fort e t,, z€ R(y).
If a solution z(t) of (1.2) satisfies
z(ty) € C1 K(y),

where t; 2 to, then z(t) € K(y) for t > ¢,.

Theorem 3.4. Assume 6 = 0, 3 = Ay. Suppose there is a function E(t) € C[t,, o)
such that

toSsSt<owo s

6e* < 9,

G, 2) ﬁe{ 0) [1 + (: ;) ]} < E(t)
Jort 2 t,, ze K(5, 9). L
If a solution z(t) of (1.2) satisfies )
2(r,) € C1 K(y),
where t, 2 t, and 0'< ye* < 9, then
z(t) e Cl K(ﬁ) for t=t,,

sup :\'E(E)dé =x < 00,

and

where B'= ¢* max [y, 8].

Theorem 3.5. Assume 6, 2 0, 8 < Ay, s, eIforneN and 9 < o0, Supposethere
are functions E(t) € C[t,, ) such that: )
(i) for ne N the following conditions are fulfilled:

i (33) ?E,,(S) ds = — o,

sup I E(8)d = x, < 0,

shSaft<w 2

6" < 9;
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(i) for t 2 s,, z€ K(3,, 9), ne N the inequality

G(t, z) Re {h ) [1 + g,(;z’ ;) ]} S E)
holds. : |
Denote - )

& = inf [5,e*].

neN
If a sclution z(t) of (1.2) saisfies
3.9 z(t,) € K(9e™"),
where t, = s,, then to any ¢, § < ¢ < Ay, there is a T = T(g, t,) > O independent
of z(t) such that
z(t) € K(e)
Jort=t, + T. ‘

Theorem 3.6. Let the assumptions of Theorem 3.5 be fulfilled, except (3.3) is
replaced by ' ‘

s+t

JE)dE» —0  as t— o,

uniformly for s € [s,, o). ‘
If a solution z(t) of (1.2) satisfies (3.4), where t; Z s5,, then to any &, § < & < Ay,
there exists a T = T(g) > O independent of t, and z(¢) such that

z(t) € K(s)
fort=t, + T.
4, MAIN RESULTS

Suppose G € C(Ix R), g€ C(Ix ), he #(R). Assume that 4'(0) s 0 and ;;(:) -
= 0<>z = 0. Let W(2), Ay, K(4), K(4), K(4;, A,) be defined as in Section 3. We
start with the followmg

Theorem 4.1, Assume 0 < 9 S Ao. Suppose there is an E(t) € C[t,, oo) such thal

sup _[E(s)ds= x<®, ’
toSt<w g )

‘and that

@.1) . Git,z)Re {h'(O)[ gf& ;’]} < E(1)

fort 2 to, 2 K©; 9). . :
If a solution z(t) of (1.2) satisfies ' PR A

SRR . 2)eCIKO),




where t, 2 t, and
| 0 < B = yeexp [— | E(s)ds] < &,
“then °

4.2 2(t) € Cl K(B)

fO"‘t g t.
_Proof. Put # = {t=1t,:2(t)e K©O,9}, #o = {t 2 1,:2(t)e K(9)}. For te 4
we get

L) = 5 W) )] =

=2Re[W(2)w(z)2] = 2Re (WD) w(z)[z™" + r(2)] 2} =
. = 2W¥z) Re [(0) h~'(2) 2],
where z = z(t). Hence
W(z) = W(z) Re[K'(0) ™ '(z) 2] =
= G(t, 2) W(z) Re {'(0) h~'(2) [h(2) + g(t, 2)]} =

= G(t, z) W(z) Re {h'(()) [1 + g(‘: z) ]}

h(z)
for te 4. This in combination with (4.1) gives
W(z(t)) < E(t) W(z(t)) for te 4.
~ Let t.2 t, be such that z(z) = 0. Then

| W(z(®) | = l tim #(2(0)

2(t)

[z(f) exp [ | r(z*)dz*] |
= | lim 9 =
te t—t
2(t)
= lim {[ 2| lexp [ [ ratyaz2] 1} -

=1%(r)| = | G(z,0) g(z,0) |.
By Lemma 3.2 we have G(r, 0) g(z, 0) = 0 and therefore

. W(z(z)) = 0.
Thus

@3 ‘ W) S E(t) W(z(r))  for te Mo.

We claim that (4.2) holds for ¢ 2 ¢,. If it is not the case, there exists a #* > 1,
- such that z(t*)e K(8,9) and z(t)e K(9) for te[t,,t*]. The inequality (4.3) is

‘ 3113 .



equivalent to

d . t .
rr {(W(z(t))exp[-[E(s)ds]} S O, te.M,-
t P
Integration from ¢, to t* yields

W(z(1*)) exp [—:j E(s)ds] — w(z(t)) S 0,

whence

W(=(t") < W(atey) exp [ Es)ds] 5

‘ Syexp[x — 'j E(s)ds] S B < W(z(t*)).

This contradiction proves (4.2) for t 2 ¢,.

Now, we are going to establish two theorems stating the conditions under which
z(t) > 0 as t — t; - oo is uniformly satisfied with respect to z(¢), or z(t) and t,.

Theorem 4.2. Assume 0 < 3 £ Ay and 9 < oo. Suppose there exists an E(t)e
€ C[to, o) such that

4.4) _[E(s) ds = —o0,
and that ’ '
G(t, z) Re {h ©) [1 + g,("(’ ‘)’) ]} < EQt)

fort = t,, z€ K0, 9).
If a solution z(t) of (1.2) satisfies
1y
4.5) z(t,) € K(9¢™* exp [ [ E(5) ds]),
to
where t, 2 t, and

x = sup j"E(s)ds, '

toSt<w tg

then to any €, 0 < ¢ < Ao, there is a T = T(e, t,) > O independent of z(t) such that

z(t) € K(s)
Jort21t, + T
Proof. Put #, = {t 2 t,: 2(t) € K(9)}. From the proof of Thwrem 4.1 we have
4.3) W(z(t)) S E(t) Wgz(t)) for te #,.

It follows by Theorem 4.1 that z(t)e K(9) for t 3 ¢,.
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Choose &, 0 < & < 4,. Without loss of generality we may suppose ¢ < 3. Let
T = T(s, t;) > O be such that

j'E(s)ds <In—== 2‘9

fortz21t, + T
We claim that z(t) € K(e) for ¢ = t, + T. If this is not true, there exists a 1* >
2 t; + T for which

(4.6) 2(t*) ¢ K().
The inequality (4.3) is equivalent to

t
—‘%- {W(z(D)exp [~ [ E(s)ds]} SO, te,.
t
By integration over [¢,, t*] we obtain

W(z(t*)) exp [-—-‘} E(s)ds] — W(z(t))) S 0.
Hence '

W(z(t")) < w(z(t))) exp [j E(s)ds] £ 954 23 7 <s

which contradics (4.6), thus proves that z(t)e K(¢) for t 2 ¢, + T.

L

Theorem 4.3. Let the assumptions of Theorem 4.2 be fulfilled except 4.4) is
replaced by

s+t

4.7 JE®AE > -0 ast-

uniformly for s € [t,, o).
If a solution z(t) of (1.2) satisfies (4.5), where t, = t, and

t
x= sup [E(s)ds,

tgSt<co to

thentoanye,0 < & < Ay, thereisaT = T(e) > 0 indépendent of t, and z(t) such that

. z(t) € K(g)

Jort 2ty + T.

Proof. The proof runs as that of Theorem 4.2. In view of (4.7) we can find a T =
= T(g) > 0 so that t — ¢, 2 T implies
\ ti+(t-1y) i

[EO% =" [ B <55

s
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5. APPLICATIONS TO THE STABILITY THEO'RY’

First of all we give the short survey of stability concepts used in this section. Suppose
that the equation (1.1) possesses the trivial solution, i.e. that f(z,0) = 0 for te .

The trivial solution of the equation (1.1) is called stable, if to any & > 0 and to
any t; 2 t, there exists a & = d(e, #;) > O such that each solution z(f) of (1.1)
satisfying | z(t,) | < ¢ fulfils the condition | z(t) | < & for ¢t 2 t,. The trivial solution
of the equation (1.1) is said to be uniformly stable, if to any ¢ > O there exists a § =
= d(g) > 0 such that for any ¢, ¢, each solution z(¢) of (1.1) satisfying | z(t,) < é
fulfils the condition | z(t) | < s for t 2 ¢,.

The trivial solution of the equation (1.1) is called asymptotically stable, if it is
stable and to any ¢, = 7, there exists a 3 = 3(t,) > 0 such that each solution z(t)
of (1.1) satisfying | z(¢,) | < 9 fulfils

lim z(¢) = 0.

t= o0
The trivial solution of the equation (1.1) is said to be uniformly asymptotically stable,
if it is uniformly stable and there exists a 3 > 0 so that to any ¢ > O thereisa T =
= T'(e) > 0such that for any 7, = t, each solution z(¢) of (1.1) satisfying | z(t,) | < 9
fulfils [z(t) | <efort=t, + T.

The validity of the following lemma can be verified easily and therefore the proof -
will be omitted.

Lemma 5.1. If the solutions of (1.1) depend continuously on initial values, then the
trivial solution of (1.1) is uniformly stable if and only if to any ¢ > O there exist 6 =
= &(e) > 0 and ¢ = a(e) > 0 such that for any t, 2 ¢ each solution z(t) of (1.1)
satisfying | z(tl) | <6 fulfils |2(t) | <efort=t,.

Suppose G(t, 2) [n(z) + g(t, 2)] e CUxR), G(t,z)e CIx(R2 — {0)), gt 5 e
eCUIx(Q - {0})) and h(z) € H#(R2). Assume that A'(0) # 0 and h(z) = 0 <>z = 0
and that W(z), 4y, K(4), K(A), K(4,, 4,) are defined as before.

Theorem 4.1 has the following consequence:

-

Corollary 52. If Ge C(IxQ), ge CUIxR) and the assumptions of Theorem 4.1
are satisfied, then the trivial solution of (1.2) is stable. . '

Combining Theorem 3.4 and Lemma 5.1 we obtain

, § :
Corollary 5.3, Suppose 6, 2 0, 8, S A, 5, € I for n € N, Assume that the solations
of (1.2) depend continuously on initial values and that (1.2) possesses the trivial solu-
tion. If there are functions E,(t) € C[to, ) such that

pmSsSt<o s

sup j'E,,({)dsz <o for neN,
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.

6,"< 9, for neN,
inf [6,e*] =0

neN

and that ' ’ .

. g(t, 2)
G(t z) Re {h (0)[1 + ") ]} S E®),

Jor t 2 s,, ze€ K(5,,93,), ne N, then the trivial solution of (1.2) is uniformly stable.
If we suppose in addition that s, = t, for ne N, then the assumption concerning

the continuous dependence on initial values is superfluous.

Proof. Without loss of generality it may be supposed that 8, < 4, forn e N. Choose ¢,

0 < & < A,. Let n be such a positive integer that

de <e.
If a solution z(¢) of (1.2) satisfies the condition z(¢,) € Cl K(y), where ¢, 2 s, and

ye*» = min [(,e*" + €)/2, (5, + 3,)/2],
then
: z2()eClKp), tzt,,
- where
B =e"max[y,4,] =ye” <e.

Using Lemma 5.1 and Cl K(f) = K(g), we get the assertion of the first part of the
corollary.

If S, =1y for ne N it is not necessary to use Lemma 5.1 and the assumption
concermng the continuous dependence on initial values is superfluous.

Theorem 3.3 together with Lemma 5.1 yields
Corollary 5.4. Suppose 0 <y, < Ao, s,€ 1 for ne N and
infy, = 0.

- neN

Assume that the solutions of (1.2) depend continuously on initial values and that (1.2)
possesses the trivial solution. If the conditions (3.1) and (3.2) are fulfilled for t Z s,,
z€ K(y,), n€ N, then the trivial solution of (1.2) is uniformly stable.

If we suppose in addition that s, = t, for n € N, then the assumption concerning the
continuous depe‘ndence on initial values is superfluous.

The following corollary is a consequence of Theorem 4.2:

Corvllary 5.5. If Ge C(IxR), ge C(IxR) and the assumptions of Theorem 4.2
are satisfied, then the trivial solution of (1.2) is asymptotically stable.
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Corollary 5.3 in combination with Theorem 3.5 ahd Theorem 3.6 gives the follow-
ing two results: .

Corollary 5.6. Let the hypotheses of Theorem 3.5 be fulfilled with 6 = Q. Assume
that the solutions of (1.2) depend continuously on initial values and that (1.2) possesses,
the trivial solution. Then the trivial solution is asymptotically stable.

If we suppose in addition that s, = t, for n € N, then the assumption concerning the
continuous dependence on initial values is superfluous.

Corollary 57 Let the assumptions of Theorem 3.6 be fulfilled with & = 0. Suppose
that the solutions of (1.2) depend continuously on initial values and that (1.2) possesses '
the trivial solution. Then the trivial solution is uniformly asymptotically stable.

If we suppose in addition that s, = t, for n € N, then the assumption concerning the
continuous dependence on initial values is superfluous.
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