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LINEAR DIFFERENTIAL EQUATION OF THE 2Bd 

ORDER WHOSE PRINCIPAL SOLUTION 
HAS UNBOUNDED LOGARITHMIC DERIVATIVE 

MILOS RAB,Brno 
(Received September 29, 1980) 

Let 
(1) x" = q(t)x' 

be a nonoscillatory differential equation on an interval [f0, oo). If q(t) <£ 0, then 
x'lt) 

——- is a nonincreasing function for every solution x of (1). This follows from 
x(t) 

the fact that 

(4K-$-.-(4-У-* 
It is also well known that the inequality q(t) §: 0 implies that (1) is nonoscillatory 

x'(t) 
and —-T—- g 0 for the principal solution x(t) of (1) (see e. g. [1] p. 355). 

x(t) 
In this paper there will be constructed a nonoscillatory differential equation (1) 

for which the logarithmic derivative of x(t) is unbounded from above for t -> oo. 

Theorem. There exists a continuous function q(t\ 

(2) liminf 4 ( 0 ^ 0 
t^ao 

such that the equation (1) is nonoscillatory and its principal solution x(t) has the 
property 

(3) lim sup —~~- = oo. 
f-00 * ( 0 

Proof. Let {/„(*)} be an arbitrary sequence of functions fn: R-+ R with the 
following properties: 

O/XOecH*); 
») /.(') = 0 for / ^ 0 and t£ n + 1; 
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üi) /Л-J-ì - « . 0 š /„(O = n on Я; 

iv)/ÄOž-L 
» + l 

If we denote «„ = J fn{t) dt, then there is evidently 
o 

(4) j « 2 ^ , ^ 2 , 

since 

n + (-g /n(^) <; rt + 1 _ f for re 
&->]• 

Define 

(5) 

(6) 

Then 

Fig. 1 

4i = 2, qn+i = n(q2 + ... + q2), 

Ir.(0=J/tI,(Ods. 
0 

F.,0) » «€fl for -/ ^ 4; + 1 in view of ii), 

F" (ir)= q" in view of "̂  
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Fn(t) <£ - 1 for t € R in view of iv). 
If we define 

^o = °» 0*11 = <Tft-l + «°W K « (T̂ , 
then there is 

<r«+i ~ *« = fan+i + 0(<r«+i - <*„) ;> 2a4n+1 £ g*+1 > qn + 1, 
so that 

bn + qn + 1 < 6 n + i , n = 1,2,.... 

Let x(f) be defined by means of the formula 

X(t) = *„_,. + Fn(t - *n), fe[>n, * n + 1 ) . 
Then 

x(t) £ <r„-i + a«„ = <?,,= V*« =S V? f o r bn£t< K+x 
and 

lim x(t) = an~x(bn+i). 
t-*bn + i~ 

Thus, x(t) is continuous, has a continuous derivative of the second order and x'(t) -» 
= fqn(t - Z>n) 2> 0 on [An, £n+1), n = 1, 2,. . . , so that x(?) is nondecreasing. Since 

2 

x(fen+1) = <rn £ a€n £ -^- -• oo, 

1 / 1 \ 
it is x(r) -» oo for t -> oo. Let k„ = few + — . Then x\kn) == fqA — l » ^B, 

qit \Qn / 

x(kn) = <rn.i + Fni~—)<<Tn„t + -—ft—- J =. 1 +«rIl.1. 
\Hn / Hn \Hn / 

Consequently 
AK) > qn 
x(kn) 1 + <rn-t

 -

Since in view of (5) 
» - l n - l 

ff»-i = £ a « * š £«* = €» 
x FI —. 1 

we have 

- + '.-t-Ц..JІ . -L + _Ц_ 
n — 1 #n n — 1 

-» 0 0 . 

x'Yrt 
Thus the solution x(t) satisfies (3). If we denote q(t) » —~-»it is with respect to 

I x(*/ 
(iv) #(r) }> — — -*• 0 since x(t) -* oo for t -+ oo. This implies (2). The inequality 
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*(0 ~* sjt guaranties the divergence of the integral | x~2 for t --> oo which means 

that x(t) is a principal solution. 
The proof is complete. 
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