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STACKBASES IN POWER SETS
OF NEIGHBOURHOOD SPACES PRESERVING
THE CONTINUITY OF MAPPINGS

JAN CHVALINA, Brno
(Received September 29, 1980)

A generalized filter base in a set M is defined in [7] as a nonempty family
of nonempty subsets of M. The generalized filter base is called a proper
family in [4] and a stackbase in [3]. We shall use the last term. If (M, ¢,), (M, c,)
are topological spaces determined by Kuratowski closure operations ¢,, ¢, then
there exist stackbases o, , 6, in M such that for each continuous mappingf : (M, ¢;) =
- (M, ¢,) whenever X € g, then f"!(X) e ¢, or f~!(X) = 0. Further, for each xe M
and each X, €0, N [f(x)) (where [x) = {X = M : x e X}) there exists a set X; €
€ 0. N [x) with f(X,) = X,. Moreover, the assignment ¢ — ¢ is one-to-one. Indeed,
assigning to a Kuratowski closure operation ¢ on M the system o of all nonempty
open subsets of the topological space (M, c) we obtain that ¢ n [x) is a neighbourhood
base at the point x and the above statements follow e.g. from [6] Theorem 1.4.6.
The just formulated continuity condition at x € M can be written in the form o, N
N [f(x)) < f(e; N [x)), where A; < 4, for 4;, 1, = exp M means, by [4], that for
each X e A, there exists Ye 4, with ¥ < X.

This note aims to show that the above described assertion does not hold in the
case of neighbourhood spaces ([5], [7]) which are not topological, i.e. corresponding
closure operations are the so called Fréchet— Cech closure operations ([1], [5] —
satisfying the following three axioms only: 1° ¢0 = 0, 2° X < cX, 3° X < Y implies
c¢X < cY). Further we shall prove the existence of an assignment of a stackbase &(¢)
in exp M to an arbitrary Fréchet—Cech closure operation ¢ on M with the following
properties: If ¢, # t, then £(t;) # F(t,) and for every continuous mapping f of the
neighbourhood space (M, t,) into the neighbourhood space (M, t,) the corresponding
self-map £ of exp M satisfies the condition f~1(X) e #(t,) U {0} for each X € #(t,),
consequently #(t,) N [f(X)) < f(Z(t,) n [X)) for each X e exp M, where [X) =
= {A cexpM:Xel}. In what follows we denote by exp’ M the system of all
non-void subsets of M (including M). The system of all Fréchet — Cech closure ope-
rations on a set M will be denoted by C(M).
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Definition. Suppose 4,,4, < exp M. A self-map f of the set M is said to be
(44, A;)-continuous if for every X € A, we have f~}(X) e 4, U {0}.

It is to be noted that it is inessential to use in our considerations only one fixed
set M instead of two sets M,, M, (or spaces (M,,t,), (M,,t,)) and mappings
between them. The corresponding changes are only of a formal character. Then the
below constructed mapping & becoms in fact an object function of a functor from
the category of all neighbourhood spaces and continuous mappings into the category
of sets endowed with stackbases with morphisms—mappings compatible in the sense
of the above definition. Hence from the main theorem there follows the proof of
Proposition 5 from [2].

Proposition 1. Let M be a set of the cardinality at least 3, F : €(M) — exp’ exp’ M
a mapping such . that for each pair t,, t, € €(M), every cotinuous mapping
[ (M, 1) > (M, t,) is (F(t,), F(t,))-continuous. Then F is not injective.

Proof. Let M be a set with card M = 3. Denote by M, an arbitrary three element
subset of M containing elements x,, x,, x; and put M, = M\ M,. Let u,, u, be
Fréchet — Cech closure operations on M, defined by u,{x;} = {x;, X;4,}, 4p{x;} =
= {x;, x;+2} where addition of indices is modulo 3 and i = 1, 2, 3. Denote by ¢,
the discrete topology on M, and put (M, t,) = (M,,u;) + (M, t,), i = 1,2 [i.e.
(M, t,) is the disjoint sum of neighbourhood spaces (M, , #,), (M, t,) and similarly
for (M, t,)]. Evidently ¢, # t,. Define permutations f;, f3,/f3 : M - M as follows:
For x e M, we put fi(x) = x and f(x;) = x;, if i #j then fi(x;) = x,, where ke
€{1,2,3}, i # k #J, i, je{l1,2,3}. It is easy to verify that every f;, i = 1,2,3 is
a homeomorphism of the space (M, t,) onto (M, t,) and also (M, t,) onto (M, ¢,)
for f; = f;!, i = 1,2, 3. Then these mappings are (F(t,), F(¢;))-continuous as well
as (F(t,), F(t,))-continuous. We are going to show F(t,) = F(t,). Suppose X € F(t,).
If M, c X or Xc M, we have f(X) =X =f7'(X) for i=1,2,3 thus X =
= f; '(X) € F(t,). Suppose card (X nM,) =1 and X0 M, = {x; }, joe{l1,2, 3}.
Consider a mapping fj,, i-e. the permutation of M with the fixed point x; . Then
LX) =X =jj;‘(X) hence X € F(t,). If card (X n M,) = 2,say X n M, = {x;, x;},
Jj»k€{1,2,3}, we use the homeomorphism f, where i €{1,2,3}, j # i # k. Then
X = f71(X) e F(t,), consequently we have F(t,) < F(t,). Using the equality f;! = f;
for each ie {1,2,3} we get in the same way as above F(t,) = F(t,), i.e. F(t;) =
= F(t,). This completes the proof.

Consider ¢,,0,cexp’ exp M. In regard with [4] 1.1 we put o,(U)a, =
={S, U S, :S, €0, S;€0,}. Let (M, t) be a neighbourhood space with M # @,
Xeexp’' M. We put ¢,(X) = {exp M} eexp’ exp M if the set X is dense in the space
(M, 1), ie. tX=M and €(X) = {(6(U) exp’ X) U exp’ X : 6 eexp’ exp (M \ tX)
otherwise. Further we put ,

Iut) = U €LX).

Xeexp’'M
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From the definition of & (t) it follows immediately 8 € & () (for M # 9), exb Me
€ P u(t) hence ¥\ (1) # 0, i.e. & y(1) is a stackbase in exp M.

Lemma 1. Let t,,t, be arbitrary different Fréchet—Cech closure operations on
a non-void set M. Then & y(t,) # L u(t2).

Proof. There exists a non-void set X, < M, such that ¢, X, # t,X,. Exactly
one of the following cases is possible: (i) 1, X, G 1, Xo, (ii) 1, X0 G £, Xo, (iii) 1, X, || t2 X,
(i.e. 1, X,, 1,X, are incomparable with respect to the set inclusion).

In the case (i) we put

o = (exp’ (M \ 1, X,) (L) exp’ X,) U exp’ X,.

There is 0 € & y(t,) and o ¢ €,,(X,). Admit o € Py (t,). Since @ # ¢ # exp M, there
exists a non-void set X; « M such that ¢ = (A(U) exp’ X;) U exp’ X,, where 0 #
# A < exp (M \ t,X,). Since exp’ X; = g, we have X; n X, # 0. In the opposite
case we would have X, ¢ exp’ X, and simultaneously X, ¢ exp’ (M \ ¢, X,) (L) exp’ X,.
Assume X, ¢ X,,. Then X; n (M \ X,) # @ thus there exists a nonempty set S = X, N
Nn(M\ X,) with Séexp'X,, Séexp (M\ t;Xo) (V)exp' X, for S nX, =
Then S ¢ o which contradicts Seexp’ X; = 6. Hence X; < X,. Simultaneously
exp’ Xo < (A(u) exp’ X;) uexp’ X;. If exp’ X, = A(U) exp’ X, then for every point
x€ X, we have {x} = XU Y where Xed, Y= X; and thus X, Y are disjoint,
Y #0. Then xe Y c X,, i.e. Xy © X,. (The same follows also from the inclusion
exp’ X, < exp’ X;). Hence X; = X,, which means ¢ € ¢,,(X,)—a contradiction.
Consequently o ¢ & (t,) in the considered case. Since the case (ii) is analogous to (i)
we consider (iii). Put again ¢ = (exp’ (M \ t,X,) (V) exp’ X;) U exp’ X,. Since by
the above consideration the assumption o € &(t;) implies o € €,,(X,) which is
impossible for M\ 1, X, ¢exp’ (M \ t,X,), we have o¢ Py (t,). Consequently
Fu(ty) # L ulty).

Lemma 2. Let f be a continuous mapping of the neighbourhood space (M, t,) into
the neighbourhood space (M,t;). The induced mapping f: exp M-oexpM is
(L u(ty), L(t;))-continous.

Proof. Assume o € &) (t,). We are going to show f~ 1(a)e.?,,,(r,) whenever
f7Y0) #9. If 6 = exp M then f ~Y(0) = exp M € Ly(t,). Let X =« M be a non-
empty set which is not dense in the space (M, t;). Suppose ¢ = (A(U)exp’ X) U
vexp’' X,0 # A < exp (M \ t,X). It holds f ~1(6) = {S = M : f(S) = f(S) e 6}. We
show that if / ~1(s) # 9 then there exists a non-void set ¥ = M such that

(@) /' (0) = (exp (M \ 1,Y) (L) exp’ Y) U exp' Y,

(ii) if Sef '(o)\exp’Y and T < Y is an arbntrary non-void subset then
(Sn(M\tlY)u Tef o)\ exp' Y. ~ '

(iii) exp’ Y = f (o).

Assume f (o) # 0 and put ¥ = f~!(X), admit ¥ = @. There is a non-void set
S € f ~1(0), thus either f(S) = Y or;there exist non-void disjoint subsets @y, @, = M,
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Qieexp(M\ 1,X), Q, = X such that £(S) = @; U Q,. Thus f(S)n X # 6.0n
the other hand f(S) = f(M) and f~!(X) = 0, i.e. f(M)n X =B hence f(S)n X = 0
which is a contradiction. Consequently ¥ = f ~!(X) s 0. We shall prove (i). Suppose
Sef '(o). Thus f(S)ea, i.e. either f(S) c X or f(S) = Q, U Q,, where Q,, O,
are suitable subsets of M with the above mentioned properties. If f(S) « X we have
ScfY(S) =f'(X) =Y, thus Seexp’ Y. In the second case S = f~f(S) =
= f~(Q,) u f~'(Q,) and there exist non-void sets P; = f~1(Q)), i = 1, 2 such that
P, uP,=3S. (Indeed, since @9, nQ, =90, Q, #90 # @, we have f~1(Q)n
NfUQ,) =0 f71Qy) #0 #f1(Q,) and putting Pi=Snf"4Q), i=1,2
we get the just used statement). Since the mapping f : (M, t,) — (M, t,) is continuous
wehavef(t,Y) c t,f(Y) = t,ff /(X)) = t,(Xn f(M)) = t,X. Thent, Y = f~}f(1,Y) <
< f74(t,X), thus M \ f~'(t,X) = M \ t, Y. Further, with respect to the inclusion
0, €« M\ 1,X, we have Py c f7YQ) cf M\ 6,X) =f""(M)\f'(t:X) =
=M\f'(t;X) = M\ t,X and P, c f~1(Q,) = f~'(X) = Y which implies S =
=P, uP,eexp(M\1,Y)(LU) exp’ Y. Hence Se(exp (M \ t,Y) (U) exp’ Y) U
v exp’ Y, therefore (i) holds. We shall prove (ii). If Sef~"(s) \ exp’ Y then by (i)
S belongs to exp (M \ #,Y) (V) exp’ Y and by the above considerations there exist
non-void disjoint sets P,, P, with P, = f~}M \ t,X), P, = Y. Since P, « M\ 1, Y
we have SN (M \ ,Y) = (P, UP)n M\ t,Y) =[P, n(M\ 1,Y)] v
U [P, n(M\ t,Y)] = P,. Since f(S)eexp’ X implies Seexp’ Y, the set f(S) =
= f(P,) v f(P,) belongs to o and ¢ \ exp’ X = 1 (U) exp’ X for A = exp(M\1,X),
we have f(P,)eA. Let @ = Y, be a non-void subset. There is f(Q) c f(Y) =
=XnfiM)c X ie f(Qeexp' X, X n(M\1,Y))u Q) =f(P)u flQ) e
€A(U)exp’ X = o \ exp’ X. This means (SN (M \ 1,Y))v Qef (o \exp' X) =
=f"Yo) \f " '(exp’ X) = (o) \ exp’ ¥ since f~1(X) # 0 implies f'(exp X) =
= exp’ f~1(X). The family f (o) satisfies condition (ii). The inclusion (iii) can be
easily verified. Indeed, if Seexp’ Y then f(S) < f(Y) = X n f(M) thus f(S)eexp' X <
< o, i.2. S belongs.to f ~(6). Now, if we put & = {SA(M\1,Y): Sef'(c)\exp' Y}
we get with respect to (i), (ii) and (iii) the equality

f7Y0) = (E(U)exp’ Y)u exp’ Y.

Consequently f ~(g) belongs to ./9’M(t1).‘

Theorem. Let M be a non-void set. There exists an injective mapping & : ¢(M) —
— exp’ exp’ M of the system of all Fréchet— Cech closure operations on M into the
system of all stackbases in exp M such that for every continuous mapping f : (M, t{) —
= (M, t,), with t,, t, € €(M), the induced self-map f of exp M is (#(t,), ¥(t,))-conti-
nuous. :

Proof. Consider Sy : €(M) - exp’ exp’ M defined above and apply Lemma 1
and Lemma 2.
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Remark. From the above theorem it follows that for every continuous mapping
of a neighbourhood space (M, t,) into a neighbourhood space (M, t;) and every
non-empty subset X = M we have (¥(t,) n [f(X))) < f(£(t,) 0 [X)). As the proof
of this statement there can be used the proof of implications (3) = (4) = (2) from
Theorem 1.4.6 [6].

There is a quite natural construction of a stackbase in exp M determined by
a Fréchet—Cech closure operation t on M and a subset 4 of M as follows: For
oeexp exp M we put T(6) = o U {tX : Xea}, T(0) = 0 and

T 4t) ={ceexp expM : Aeexp M\ T(exp M \ 0)}.

It is easy to verify that (exp M, T) is a neighbourhood space moreover with the
completely additive closure operation (i.e. each point X € exp M possesses the least
‘T-neighbourhood). Hence by [4] 1.6, 7.1 and 7.6, the stackbase J ,(¢) is in fact
a filter (the T-neighbourhood filter of A) on exp M. But as the following example
shows J , does not preserve the continuity of mappings.

Consider the topological space (w, t*), where w is the set of all positive integers
and t*{n} = {n,n + 1,n + 2, ...} for ne w, t*X = ) t*{x} for a nonempty subset

xe X

X < w and t*0 = 0. Define a mapping f : w —» w by f(n) = n for n even and f(n) =
= n — 1 for n odd. Evidently f is a continuous self-map of (w, ¢*). But denoting
by T* the Fréchet—Cech closure operation assigned as above to t* we have we
e {2}, 0} = T*{L, 2}, /@) = (21 — 1 :ne o} ¢ {1}, 0} = TH{1}} =
= T*{f({1, 2})}. Further see [4] 1.6 and 1.12.

It is easy to see that the stackbase F(t) constructed above is not a stack in general
(i.e. the condition o e &(t), 0 = 1= 1€ S(t) is not satisfied). Thus to assign
a Fréchet-Cech closure operation Ty, to the stackbaseS(¢)is possiblein the follow-
ing way: For 4 ¢ M we put ¥'(4) = {t cexpM :30€ F(t) n [4) with 7 < g}
and Ty\(0) = {4 =« M :6nt # 0 for every e ¥ (4)}, where ¢ < exp M. Then
by the definition of #(¢) and [4] 1.6, 1.12, 7.1, 7.6, we have (exp M, Tg,) is a neigh-
bourhood space and for an arbitrary continuous mapping f : (M, t,) = (M, t,) the
mapping f of the space (exp M, Ty(,)) into (exp M, Ty(,,) is also continuous.
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