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ON sn -SEMIGROUPS

LADISLAV SKULA, Brno
(Received March 9, 1980)

A divisor theory of a commutative semigroup G with identity element is a homo-
morphism & of G into a unique factorization semigroup D which preserves the
divisibility relation in both directions and for each d € D there exist a positive integer
n and g,...,8,€G such that d is the greatest common divisor of the set
{h(gl)’ A h(gn)}

This paper deals with the question when this integer n depends only on the semi-
group G and not on the element d. It is shown (Theorem 1.5) that then n depends
on the divisor class group I' of G, the image of prime divisors of G in I', and the
subset of this image containing all divisor classes which are images of at least two
different prime divisors of G.

If this integer n depends only on the divisor class group of G, then we call this
group an n-group whose basic properties are mentioned in Section 2.

The problem, when a cyclic group is an n-group, is fully solved in Section 3 by
Theorem 3.6.

0. BASIC CONCEPTS AND ASSERTIONS

In this paper the semigroup is always commutative with identity element and
multiplicative notation is employed. If g,, g, are elements of a semigroup G, then

8118 =818
G

denotes the existence of g € G such that g, = g,.

The groups are also commutative, and additive notation is employd. The zero
element of a group I' is denoted by 0, = 0. A subset M of I is said to be a strong
system of generators of the group I if for each ye I, y # O there exist ¥y, ..., ¥x €
€ M(k > 0) and positive integers n,, ..., n, such that '

Y=my + oo+ mYee
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The semigroup D is called a UF-semigroup (a unique factorization semigroup) if
the identity element is the only unit of D and each element b € D different from the
identity element may be written uniquely (with the exception of the order of factors)
in the form

D=1, ...0(k > 0),

where r;,(1 £ i £ k) are the irreducibles of D. The set of all irreducibles of D will
be denoted by P(D). For d,, ..., d, € D(k > 0) the symbol

®y,...,0)

denotes the greatest common divisor of the elements d,, ..., d, in D.

UF-semigroups are Gaussian semigroups with one unit and they are free abelian
semigroups. The sets of generators are equal to those of irreducibles.

The greatest common divisor of a subset M of the set of integers Z will be ab-
breviated to the g.c.d. of M.

Let G be a semigroup, D a UF-semigroup and A a homomorphism of G into D.
We say that h: G — D is a divisor theory if it holds:

1° gxclgz < h(g,) ilnh(gz) for g,,8,€G,

2° for each de D there exist a positive integer n and elements g;,...,8,€G
such that

b = (h(g,), .., k(&)

We recall that the homomorphism 4 is uniquely defined with the exception of the
“G-isomorphism™ (Clifford [1]), more exactly:

ifh;: G- Dy, hy: G- D, are divisor theories, then there exists an isomorphism f
of D, onto D, such that fh, = h, is valid.

G P f
N

2 DZ

If h: G - Dis a divisor theory, we put d, ~ d, ford,,d, € Difthereexistg,,g, €
€ G such that h(g,) d, = h(g,) d,. The relation ~ is a congruence on the semi-
group D and the semigroup of the classes of ~ is a group called a divisor class group
of G and denoted by I'. (For this group I" we shall use additive notation.) The canonical
mapping of D onto I is denoted by ¢.

The situation is demonstrated by the diagram:

GHDIT.

~
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If for a semigroup G there exists a divisor theory A: G = D, we call G a 5-semi-

group.
Then it holds

0.1. Proposition (Skuwla [2], 3.3). Let h: G — D be a divisor theory. Then for each
Po € P(D) the set p(P(D) — {¥o}) is a strong system of generators of the divisor class
group I of G.

A certain “converse” proposicion also holds:

0.2. Proposition. (Skula [2], 3.6.) Let D be a UF-semigroup, I be a group which is
defined by means of a congruence relation ~ on D and ¢ be a canonical mapping of ®
onto I with the following property: for each p, € B(D) the set @(P(D) — {bo}) is
a strong system of generators of the group I.

Then there exists just one divisor theory h: G — D such that G is a subsemigroup
of D, h is the identity of G in D and for b,, 0, € D we have b, ~ b, if and only if there
exist 81,8, € G such that g,d, = g,b,. Then I is the divisor class group of G and
G = 0.

1. on - SEMIGROUPS

1.1. Definition. Let #: G — D be a divisor theory, n a positive integer. The semi-
group G is said to be a dn-semigroup if for each d € D there exist g,, ..., g, € G such
that

b = (h(gy), ..., h(gn)-

1.2. Remark. For n = 1 the notion of dn-semigroup = 61 — semigroup coincides
with the notion of ‘““a semigroup with a unique factorization” (or with more units)
which is equivalent to the divisor class group of G being trivial.

1.3. Definition. Let A: G — D be a divisor theory. Then we call the set

{rel :3p;,p,eBD), 9y # P2, 01 = @(b2) = 7}
the doubled set of G. '

1.4. Definition. Let I' be a group. For X g I' we put L(X) = {x,&, + ... + x&;:
x; non-negative integers, ¢; € X(k 2 1)}. (For X = @ we put L(X) = L(6) = {0/}.)

In this notation the set X is a strong system of generators of I' if and only if
LX)=T.

Let M be a strong system of generators of the group I'. An element x € M is said
to be a necessary element of (the strong system of generators) M if M — {a} is not
a strong system of generators of the group I

Let n be a positive integer. We say that N < M is an n-suitable subset of M
if for each w e I' there exist N,, ...; N, & M such that

weL(N)n..nL(N,) and Nyn..nN,gN.
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It is clear that any subset of M which contains an n-suitable subset of M is an
n-suitable subset of M.

1.5. Theorem. Let h: G —» D be a divisor theory, n an integer 2 2. Then G is
a on-semigroup if and only if the doubled set of G is an n-suitable subset of ¢(B(D)).
Proof. I. Let G be a dn-semigroup and let w e I', @ # 0. There exist d € D and
g1 ---» & € G such that
o) = —o,
b = (h(gy), ..., h(gn)

Let d,,...,d,€D, h(g)) = d.di(1 < i < n). Then d; is not the identity element

of D and let
k(i)

o, = [1%i)
j=1
be the canonical form of d;. Put
N, = {‘P(Pij)i 1=j= k(i)}-

Then w = ¢(b,) € L(N,), thus w € L(N,) n ... n L(N,).
Letye N, n ... n N,. Then for each 1 < i < n there exists an integer 1 < u(i) <
< k(i) such that
? = @Piuciy)-
Since (b, ..., b,) = 1, there exists an integer 2 < a < n such that P, = Paua)-
Hence the element y belongs to the doubled set of G.

IL. Let the doubled set N of G be an n-suitable subset of ¢(P(D)) and letde D —
— h(G), ¢(®) = w # 0. Then there exist N, ..., N, £ o(PB(D)) such that

—weL(N,)) n...nL(N,) and Nyn..nN,cN.

For each 1 £ i < n there exist a positive integer k(i), Pi;€ B(D) and positive
integers a;;(1 < j < k(i)) such that ¢(p;;) € N; and

k(i)
-0 = '21 aij(p(pi j)-
j=

Since N, n...n N, is a subset of the doubled set N of G, we can suppose

s

| {Puiléj < k(i)} = 9.

1

Putforeach1 <i<n
k(i)

b( = n Pf}’.
j=1
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Then d,€ D, 0y, ..., d,) = 1, @(b;) = —w, therefore ¢(dd;) = 0. Thus, there exist
g1, ..., & € G with the property dd, = h(g;). Clearly,

D = (h(gy), -, h(gw).
The proof is complete.

2. n-GROUP

2.1. Definition. A group I is said to be an_n-group, where n denotes a positive
integer, if for each strong system of generators M of the group I the set of the neces-
sary elements of M is an n-suitable subset of M.

From 0.1, 0.2 and 1.5 we obtain

2.2. Theorem. For an integer n = 2 a group I' is an n-group if and only if every
d-semigroup, whose divisor class group is isomorphic to T, is a dn-semigroup.
For n = 1 we immediately get the following

2.3. Proposition. 4 group I' is a 1-group if and only if for each strong system of
generators M of T the set of necessary elements of M is also a strong system of genera-
tors of I'.

Obviously there holds

2.4. Proposition. The trivial group is an n-group for each positive integer n.

2.5. Proposition. Let n be a positive integer, I an n-group. Then for every subgroup H
of T the factor group I'|H is also an n-group.

Proof. Let M be a strong system of generators of the factor group I'/H and f
be the canonical mapping of I onto I'/ H. For each X € M let x(X) € X. Put

M = {x(X): Xe M} U H.

Obviously, M is a strong system of generators of I
Let se M — H be a necessary element of M. Then there exists w € I' such that
w¢ LM — {s}). Let X;e M(1 < i < k) such that f(w) e L(X,, ..., X}). Thus there
exist positive integers a; and h € H such that
w == alx(Xl) + ... + akx(X,,) + h,

which implies the existence of an integer i(1 < i < k) such that x(X;) = s. Hence
f(s) = X, and f{(s) is a necessary element of . '
Let Xe I'/H and x € X. Then there exist Ny, ..., N, & M such that

x€L(N;) A ... 0 L(N,)
and N; n ... n N, is a subset of the set of necessary elements of M. For 1 £ i< n

put N; = f(N) — {H}. Then N, € M and X = f(x) e L(N,) n ... n L(N,). For
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Se ()N, we have x(S)e (| N; — H, whence we obtain that x(S) is a necessary
i=1 i=1

element of M, therefore S = f(x(S)) is a necessary element of the system .
The Proposition is proved.

3. CYCLIC n-GROUP

In this Section we give an equivalent condition in Theorem 3.6, when a cyclic
group is an n-group for positive integer n. The following Definition has a helpful
function.

3.1. Definition. Let k, n be positive integers. We denote by P(k) the system of
all mapping 7 of a non-empty finite set 4 into the system 2F of all subsets of a non-
empty set P, card P < k with the following property: for each p € P there exist
ae A, be A, a # b such that p € n(a) N n(b).

The set A is denoted by d(p) and the set P by c(n).

We say that © € P(k) has the property a(k, n) if there exist 4,, ..., 4, < d(p)

such that () A4, =@ and (J n(a) (a€ 4,) = c(n) for each 1 £ i < n. (Here, under
i=1
the union over empty set we understand again the empty set.)
Further, we put kgn if each n € P(k) has the property a(k, n).

3.2. Lemma. Let k, n be positive integers. If each injective mapping from P(k) has
the property a(k, n), then kon.

Proof. Let n € P(k). Put

= {aed(n):3d ed(n),a’ # a,n(a) = n(a)},

R = n(a)(ae B),

C = {aed(n): n(a) n (c(r) — R) # 8},

P’ =|)n(a) (ae 0),

A" =Cu {a},

where « is a symbol which does not belong to d(r).
If C=6, put C;=0(1 £i < n). In case C # 0 the set P’ is non-empty and
card P’ £ k. Forae A’ put

o _ Jm(a) for a + a,
n(a)__{P’nR for a = a.

Then =’ € P(k), d(n') = A’, c(n’) = P’ and =’ is injective. Therefore there exist
C,,...,C, & A’ such that (n\ C;=0and (Jn'(@)(@aeC) =P (1 Li=Zn).
There exist disjoint subs:t; U, V of B such that
Ur@w) wel) =) n@)(ve¥)=R.
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We can suppose n = 2 and put

4= Uu(Ci—{a}) forlsisn-1,
T lvu(C,—{a}) fori=n.

Then () A, = @ and | n(a) (a€ 4,) = c(n) for each 1 < ; g n. Thus ken.
i=1

3.3. Lemma. Let k, n be positive integers. If each n € P(k) with the properties

(1) a,b,ced(n),a # b # ¢ # a=>n(a) n n(b) N n(c) = 9,
(2) a,bed(n) = n(a) n n(b) # 0

has the property a(k, n), then kon.

Proof.I.Forn,n’ e P(k) put n < =’ ifd(n) = d(n'), c(n) = c(n’) and n(a) S n'(a)
for each a e d(n). It is clear that if & has the property a(k, n), then n’ has also the
property a(k, n). Therefore, if each = € P(k) with the property (1) has the property
a(k, n), then kon.

IL. Denote the set of all mappings from P(k) with the property (1) by P(k). For
n € P(k) which does not satisfy (2) let a, b € d(n) such that n(a) N n(d) = 0. Put
d(n") = d(n) — {b}, c(n') = c(n) and

wor _ (@ v n(b) for x = a,
w(x) = {n(x) for xed(n') — {a}.

Then n’ € P(k) and if n’ has the property a(k, n), then 7 has also the property a(k, n).
From this there follows Lemma.

3.4. Lemma. Let m, n be positive integers greater than 1, m = p{' ... pi* be the
canonical form of the integer m. Then the cyclic group of order m is an n-group if and
only if kgn.

Proof. We can suppose that the cyclic group of order m is the additive group
I' =Z/mZ, where Z denotes the additive group of integers. Let f be the canonical
homomorphism of Z onto I'. Then for M < Z the set f(M) is a strong system of
generators of I' if and only if the g.c.d. of M U {m} is 1. Then an element a € f(M)
is a necessary element of f(M) if and only if there exists a prime p such that p | m,
P + a, where ae M, f(a) = a, and for each be M, b £ a (mod m) the relationp | b
is satisfied.

I. First, we suppose that kgn. Let M < Z, f(M) be a strong system of generators
of I', the integers from M be mutually incongruent mod m and let f(S) be the set of
necessary elements of f(M), where S € M.

Put 4 = M — S and let P denote the set of all primes p with the properties:
P | m, there exists ae€ A such that p . @ and p + 5 for each s¢& S.

If P = 0, the g.c.d. of S u {m} is equal to 1, hence f(S) is a strong system of
generators of I.
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Let P # 0. Then card P < k. For ae A put

n(a) = {peP:p+taj}.
Then = e P(k), d(n) = A, c(xr) = P. Therefore there exist sets A,,..., 4, S 4
n
such that (YA, =0 and () n (@) (@ae 4) = Pfor eachl <i < n.
i=1

Put N, = f(A4) v f(S) for 1 £i < n. Then N;  f(M) and ('] N; = f(8).

=1
Since | ) n(a) (@€ 4,) = P, the g.c.d. of A; U Su {m} is equal to 1, thus N, is
a strong system of generators of I' which implies that I" is an n-group.

II. Assume that I' is an n-group. Let n € P(k) injective.
We can suppose that c(nr) = P = {p,, ..., ps}, where 1 < h < k. Then we can
consider d(n) = A a subset of positive integers, where for a € 4 we have

a=[]p(peP — n(a)).

(In case P — n(a) = 0, under the mentioned product we understand the integer 1.)
The integers from A are mutually incongruent mod m and the g.c.d. of (4 — {a}) U
v {m} is equal to 1 for each ae 4. Thus f(4) is a strong system of generators of
I' whose set of necessary elements is empty.
Hence there exist N, ... c f(A) such that f(1)e L(N)(1 £i £ n) and
ﬂN, = 0. Let A; £ 4,f(4;) = N;. Then ﬂA = fand the g.c.d. of 4, U {m} = 1,

i=1
therefore for each p € P there exists a € A; such that p € n(a). Then we have

Un(@)(@aed)=P

for each 1 < i < n, hence kgn according to 3.2.
The Lemma is proved.

3.5. Lemma. Let k, n be positive integers. Then

n(n + 1)

kon<=k < 3

“"‘—n(n; 2. and n € P(k) with the properties (1), (2) from 3.3.

For p e c(n) set f(p) = {a, b}, where a,bed(n), a # b, pen(a) N n(b). Then f is
a surjection of c¢(n) onto the system of all two-elemented subsets of d(n). Therefore

Proof. I. Suppose k <

k = card ¢(n) 2 _"1922_'_‘__1_)_’
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where m = card d(n). Hence n = m. Put

4= d(n) — {a;} for1<i<m,
7 ld(n) — {a,} for m<iZn,

where d(n) = {a,, ..., a,}. Then
(n\Ai=6 and  Un(@(@ed)=cr)(l £isn).

From Lemma 3.3. we get kon.
n(n + 1)
2
and S the system of all (n — 1)-elemented subsets of 4. Since card € £ k, there

exists an injection p of € into P. For ae 4 put

Il.Letn =22,k = , P be a k-elemented set, 4 an (n + 1)-elemented set

n(a) = {p(X) : Xe &, a¢ X} U (P -- p(©)).

Thenn e P(k),d(n) = Aand c¢(n) = P.If B< A,card B < n — 1, thenfor Xe G,
X 2 B we have p(X) ¢ ] n(a) (a € B).

n
IfA,,..,A, = A,card 4; 2 n(1 £ i < n), then () 4, # 0.
i=1

Therefore k non gn.
The Lemma is proved.

3.6. Theorem. An infinite cyclic group is not an n-group for any positive integer n.

A non-trivial cyclic group is a 1-group if and only if it has order 2.

A cyclic group of order m, where m is an integer > 1, whose canonical form contains
Just k primes, is an n-group for an integer n > 1 if and only if

n(n + 1)

k< 5

Proof. Let y be a generator of a cyclic group I' of order m, where m is an integer
> 2. Then there exists an integer 1 < x < m such that (x,m) = 1. The set M =
= {y, xy} is a strong system of generators of I' and the set of all necessary elements
of M is empty. According to 2.3 the group I is not a 1-group.

On the other hand we obtain immediately from 2.3 that a cyclic group of order 2
is a 1-group.

The other parts of the Theorem follow from 2.5, 3.4 and 3.5.
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