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ON THE ASYMPTOTIC BEHAVIOUR 

OF THE EQUATION ^L = f(t,z) 

WITH A COMPLEX-VALUED FUNCTION / 

JOSEF KALAS, Brno 
(Received March 3,1980) 

1. INTRODUCTION 

This paper deals with the asymptotic properties of the solutions of an equation 

(1.1) Z~f(t,z), -=-^ , 

where/is a continuous complex-valued function of a real variable t and a complex 
variable z. Some results concerning the asymptotic behaviour of the solutions of (1.1) 
are obtained in [2]. The principial tool used in this paper is the technique of Liapunov-
-like functions. 

The approach of the present paper is based on the same method. It is convenient 
to write the equation (1.1) in the form 

(1.2) i = G(t,z)[A(z) + g(r,z)], 

where G is a real-valued function and g, h are complex-valued functions. We shall 
assume that the function h is holomorphic and that the right-hand side of (1.2) is 
in a suitable meaning "close" to this function. 

The organization of the paper is as follows: In Section 2 we give our fundamental 
results concerning the asymptotic behaviour of the solutions of (1.2). In Section 3 
we attempt to generalize some results of [3], [4] applying the results of Section 2, 
to the equation 

i = q(t,z)~p(t)z2. 

The proof of Theorem 2.3 is based on the well-known Wazewski principle. For the 
reader's convenience we shall quote in the Appendix some fundamental notions and 
basic results of this theory; for more details we refer, for example, to [1]. 
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Throughout the paper we use the following notation: 

C — Set of all complex numbers 
N — Set of all positive integers 
Re b — Real part of a complex number b 
Imb — Imaginary part of a complex number b 
h — Conjugate of b 
\b\ — Absolute value of b 
Bd T - Boundary of a set F c C 
CI F - Closure of a set F c C 
Int F — Interior of a Jordan curve z = z(t), t e [a, /}] whose points z form 

a set F; F will be called the geometric image of ths Jordan curve z = z(t), 

I — Interval [f0, oo) 
Q — Simply connected region in C such that 0 e .Q 
C[a, oo) — Class of all continuous real-valued functions defined on the interval 

[a, oo) 
C(D — Class of all continuous real-valued functions defined on the set F 
C(r) — Class of all continuous complex-valued functions defined on the set F 
Jf(r) — Class of all complex-valued functions defined and holomorphic in the 

region F c. C 
DfU(t, z) - Trajectory derivative of a function U(t, z) for the equation z = f(t, z); 

this derivative is defined by the relation 

n rut ^ dU^ 2> .4. dU^ z> p . ut ,\ 4. dU^ 2> ^ {(t »\ 

Suppose that h(z) e Jtf(Q) is a function such that h'(0) # 0 and h(z) = 0 o z = 0. 
Following [2] we define 

zh'(Q)-h(z) 

r(z) 
zh{ź) 

Һ'Щ 

2ҺЩ 

îoт zвQ, z Ф 0, 

for z = 0, 

w(z) = z exp [ f r(z*) dz*] 
o 

and 
W(z) - | w(z) |. 

All of these functions are well-defined on Q. Let S be the system of all simply 
connected regions f c f i with the property 0 e Q. For any F e S put 

4 - = liminf W(z), 
M-+oo zeEAf 
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where 
rM={zeT: inf | z - z* | < M~1} u {ze.T : | z\ > M}. 

Denote 
A0 = supAS. 

res 

Clearly 0 < X0 = oo. 
For 0 < X < X0 define the sets K(X) c Q in the following way: choose F e S 

so that XQ > X and put 
K(X) = { z e T : W(z)~ X). 

According to [2] this definition is correct, and, denoting 

K(0) = {0}, 

K(A)= U to forO<A^A0 , 
0<./i<A 

K(Xt, X2) = U -K0*) f o r 0 ^ ^ < A2 = x0, 
Ai<^<A2 

we have the following statement: 

Theorem 1.1. K = K(X0) is a simply connected region and XQ = XQ. ifoery set l£(A), 
where 0 < X < X09is the geometric image of a certain Jordan curve, and, 

K(X)~ {zeK(X0): W(z) = X), 
Int K(X) = {zeK(X0) : W(z) < A}. 

Moreover, 

and 

K(X) = Int Ќ(X) for 0 < Д < Д0, 

ҖД., Д2) - K(k2) - Cl tf(Л.) /or 0 < Л. < Д2 < Д0, 

#(0, Д) = K(X) - {0} /or 0 < Л < Л0. 

2. MAIN RESULTS 

Consider the equation 

(2.1) z = G(/,z)[A(z) + ^ , z ) ] , 

where G(f,z)[A(z) + g(t,z)]eC(IxQ), GeC(Ix(Q - {0})), ge C(Ix(Q - {0})), 
Ae jr(ft). Assume that A'(0) / 0 and A(z) = O o : - 0. Let W(z), A0, X(A), K(X), 

*tL(K»^2) be defined as before. The number A0 and the numbers S <. A0 (S, <j A0) in 
the present section may take the value 00. 
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Theorem 2.1. Assume 0 < y < X0. Suppose that 

(2.2) G(t,z)>0 

and 

(2.3) Re lg(t9 z) ^ 1 < - Re h'(0) 

hold for t i> f0,zeK(y). 
//"a solution z(t) 0/(2.1) satisfies 

(2.4) zOOeClKW, 

wAm» rt i> t0, fAe# z(0 e K(y) /or t > tt. 
Proof. Let z = z(t) be any solution of (2.1) satisfying (2.4). Put M = 

= {t ;> f j : z(r) 6 K(0, A0)}. For any * e .Jjf we get 

iг^2(2) = ~ďг [ w ( z ) w ( z ) ] = 

= 2Re[w'(z)w(z)z] = 

= 2 Re {w(z) ^j [z~* + r(z)] z} == 

= 2 P V ^ R e ^ ' ^ h - ^ z ) ^ , 

where z = z(r). Hence 

W(z) = JV(z) Re [A'(0) h~x(z) z] = 

= G(r, z) *V(z) Re {h'(0) A" HZ) \h(z) + g(f, z)]} = 

= G(r, z) W(z) Re|ft'(0)f"l + ^ ~ \ 

for t € M. If there is a t2 ^ rt such that z(/2) e K(y), then (2.2) and (2.3) imply 

(2.5) W(z(t2))<§. 

Suppose that there exists a t* > tt for which z(t*) $ K(y). Define t3 = 
=5= inf {t* > tx : z(**) $ K(y)}. In view of (2.5) we have f3 > tx. Furthermore z(t3) e 
G K(y), and z(f) e K(y) holds for t e (tt, *3). But on account of (2.5) we know that there 
is a tA e (tx, t3) such that W(z(t4)) > y. Thus our supposition is impossible and z(t) e 
s K(y) for t > tt. 

The proof of the following theorem is analogous to that of Theorem 2.1. 

Theorem 2.2. Assume 0 < y < X0. Suppose that (2.2) and 

(2.6) - Re [g(t, z) - f f l . 1 < Re ft'(0) 

hold for t^ t0,zeK(y). 
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If a solution z(t) of (2.1) satisfies 
z(h)*K(y), 

where tx^ f0, then 
z(t)iC\K(y) 

for all t > 11 for which z(t) is defined. 
It is clear that if the hypotheses of Theorem 2.1 are fulfilled, then (2.1) possesses 

a bounded solution. The following theorem establishes the existence of a bounded 
solution of (2.1) on the assumptions of Theorem 2.2. 

Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then for any ft > f0 

there exists a solution z(t) of (2.1) satisfying 

(2.7) z(t)eK(y) 

forfZti. 
Proof. Choose ft > f0. Put 

U(t, z) = W2(z) - y2, 

V(t,z) = —(t0 + t1)-t, 

Q° = |(f, z) : z e K(A0), W(z) < y, t > y (f0 + ft)J, 

* = |(f, z): z eK(X0), W(z) = y,f£j(t0 + f .) | , 

•V = l(t, z):ze K(A0), W(z) = y, t = y (t0 + f A. 

Denoting f(t, z) = G(t, z) \h(z) + g(t, z)], we have 

D,U(t, z) . 2 Re [w'(z) W)f«, -)] = 
= 2G(f, z) W2(z) Re {h'(0) h-»(z) [A(z) + g(f, z)]} = 

= 2y2G(f, z) JRe /.'(0) + Re U^- g(t, z)jj > 0 

for (f, z) e * . Further, 

DrV(f, z) = - 1 < 0 for (f, z) € TT. 

Thus Q° is a (U, V)-subset with respect to (2.1). Using the first part of the Wazewski 
theorem (see Appendix) we infer that the set of all egress points of Q° is 

Q°e = |(f, z) : z e K(k0), W(z) = y, f > y (f0 + fi)i. 

Put 
3 = {(t1,z):zeK(k0),W(z)^y}. 
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The set 
3nQ°e~ {(tx, z) : ze K(k0), W(z) = y} 

is a retract of Q°ei as it can be seen by choosing the retraction (t, z) h> (f A, z). Next 
we shall show that 3 n Q® is not a retract of S. Suppose on the contrary that there is 
a retraction px :3 -+ 3 n Q°e. Because of the Riemann theorem we can find a con-
formal mapping of K(y) onto {z : | z | < 1}. Since Bd K(y) = K(y) is the geometric 
image of a Jordan curve, there exists a homeomorphismJp2 of CI K(y) onto {z : | z | <J 
<* 1} which is an extension of this mapping. Let p3 : CI K(y) -+ 3 be defined by 
z *-» (^, z). The composite mapping v(z) = p2(p3i(Pi(p3(P2i(^))))) is a retraction of 
{z : | z | <Sj 1} onto {z : | z | = 1}. Clearly, — v is a continuous map of {z : | z | 51 1} 
into itself without fixed points, which is impossible by the fixed point theorem of 
Brouwer. Therefore 3 n Q® is not a retract of 3. Using the Wazewski theorem 
we infer that there exists a solution z(t) of (2.1) such that (2.7) holds for/ ^ tx. 

Now, we recall one result of [2], Theorem 2.5: 

Theorem 2.4. Assume 8 > 0, 9n = l0, sn ^ 10 for ne N Suppose there are functions 
En(t) e C[t0, oo) such that: 

(i) for «e N there are fulfilled the conditions 

00 

f En(s)ds= -oo, 
to 

t 

sup iEn(0d£ = xn< oo, 
sn:£s<.f<Qo s 

(ii) fhe inequality 

-G(í, z) Re jй'(0)fl + - ^ ^ - ] } žá £„(0 

AoWs for t ^sn, z e K(<5, 3B), w e iV. 
Denote 

9 = sup [V~X n]-
neiV 

#*a solution z(t) of (2.1) satisfies 

z(tx)eK(8e*\k0)9 

where tx ^ sx, tAe/i to a/iy e, 0 < e < 3, f Aere ex/sts a T -= r(s, tx) > 0 independent of 
z(t) such that 

z(t)$ClK(e) 

for all t ;> ti + r / o r wAfcA z(f) is defined. 
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Using Theorems 2.3 and 2.4, we can prove the following 

Theorem 2.5. Let pn < 1, 0 <; dn < 9n <J A0, sn «> t0 hold for ne IV. Assume 
Re A'(0) > 0, 

lim<5n = <5 < S = HmSn. 
»->oo n~*ao 

Suppose that 
(i) f/iere are nonnegative functions Dn(t)e C\)o, oo) swc/j f/jaf 

(2.8) f -WOdf-co 
*o 

and 
(2.9) G(r,z) = Z)n(0 

/or f = sn, z e K(5n, 9n), neN; 
(ii) the inequality 

(2.10) - Re [g(t, z ) ^ \ 1* Pn Re h'(0) 

holds for t^sn, ze K(dn, 9n), neN; 
(iii) there is a y, 5 < y < 9 such that 

(2.2) G(t, z) > 0 

for t = r0,zGK(y). 
Then there exists a solution z(t) of (2.1) w/tA the property that to any e, 5 < e < A0, 

a ti = ^(e) > f0 ea« be found such that 

z(t)eK(e) 
for t = f,. 

Proof. Without loss of generality it may be assumed that 8n > 0 for n e IV. Pick 
N e IV such that SN < y < 9N. For t ~ sN, z e K(y) we have 

- Re FgO, z) - f f l -1 g fo Re *'(0) < Re h'(0). 

By Theorem 2.3 there exists a solution z(t) of (2.1) satisfying 

(2.7) z(t)eK(y) 

for t ^ sA + 1. 
Putting Kn(r) = (Pn - 1) Dn(0 Re h'(0), we obtain 

for/ 
that A 

G(r, z) Re |ft'(0)[l + ^ j f 1} -* £ »« 
]*> sn, z e K(5n, 9n)9 neN. Choose e, 5 < e < y. Let n be a positive integer such 
8H < e < y < 9n. Denote tt = ^(e) = max \sN + 1, s„]. We claim z(t)eK(a) 
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for t _t tv Suppose for the sake of argument that there is a t2 __ t, for which 
z(t2) e K(e$ $n). Using Theorem 2.4 we infer that there exists a t3 ̂  t2 such that 
z(t3) £ K(y). Since it contradics (2.7), it follows that z(t) e K(e) for t __ tx. 

3. APPLICATION TO THE EQUATION i = q(t,z) - p(0Z2 

In this section we propose to establish certain results concerning the asymptotic 
behaviour of the equation 

(3.1) z~q(t,z)-p(t)z\ 

where p e C(I), q e C(IxC). Some results of this type are given in [2]. The special 
case of (3.1) is studied in [3], [4], where M. Rab has obtained results describing the 
asymptotic properties of the Riccati differential equation 

i = q(0-P(0*2 

with complex-valued coefficients p, q. 
If a, be C, Re [(a - b)p(t)"] > 0, then (3.1) can be written in the form 

- Re [ (q~ fe )KQ] f r r -w w ^ , \a-b\2g(uz) . 
z __ 1 (p ~~ a}(z — a)(z — b) + r/ ..— 

| a ~ f e | 2 L Re[(a-fc)p(0] 

Denote c = a — b. Substituting zx = z - A, we get 

(3.2,) i i = G(f, zt) [h(Zl) + g(t, z_)l 

where 

G ( . , z . ) = M ^ l , /,(z1)=-cz1(z1-c), 

g ( ' ' Z l ) " Re [cKO] Re [cp(0] ( ' } lC ' }' 

Put 
G = {z, : 2 Re [cz^ < | c |2} 

and consider the equation (3.2,) on the set IxQ. We observe that W(zx) — 
= | c | | z. | | z. — c |_ 1 , A0 = | c | and K(k0) — Q. Moreover, we have 

K(k) = {zleQ:\c\ | z. | = A | r, - c |} 
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for 0 g k < X0. Notice that 

(3.3) >-L,c,J__L___L 

for zt e KW), where 0 < k <; A0. 
Suppose that there is an H(t)e C[t0, GO) such that 

| ?(/, zx + b) + aft/*/) - (a + £>)p(0 (*_ + * ) ! _ _ H(t) 

for / £ /o,^! 6.2. 

1 ° Assume that 

(3.4) Re [>( / ) ] > 0 for / £ /0 

and 

(3.5) 

If <5 ^ | c | is defined by 

(3.6) 

sup жo 1 I , 

,*ï0 Re[cp(0] " 4 

sup 
ЖO S\c\ 

aZ Re [cp(0] 2(| c | 2 + S2) 

then 0 ^ _ < | c | = X0. Notice that the function 

<p(s) = 
\c\2 + s2 

is increasing in [0, | c I). Thus we have 

- -шшт Híq{t'Zi + b) + aЫt) ~{a + b)miZl + Ь)] -ïЌ^č)} = 
< жo | c | 3 ö\c\ lc ľ 

Re [cp(0] I -_ I \zt-e\- 2(| c | 2 + Ô2) I -i I I zj. - c 

(z:) 

_ > ^ г 

2[| c |2 + Ж2(z t)] I z t I I -i — c | 

I |Z_I [, .2 , I C ^ I Z . I 2 ] - 1 1 

i ~ c l L |z t -c| 2 J Iz.l I "i - c I -

_•!11* - . i , n̂ c2_.icn 
gT'" |.,-.|-t|.,ř-T'"0'--T +|T|J 
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for t ;> t0 and zx e K(8, 9), where 8 < 9 < A0. Hence using (3.3), we get 

-»[««®}*Mjpe(my+\in'< 
^ | c ( 2 d C l + g ) 2 < | C | - = R e / V ( 0 ) . 

2( |c | 2 + 92) * " 

Using Theorem 2.3 we obtain the following statement: To any y, 5 < y < | c |, 
and to any T > t0, there is a solution zt(t) o/(3.2.) such that 

c\ 1.7,(01 < v l - i ( 0 - « l 
for t = T. 

2° Suppose (3.4), 

(3.7) í Re [cp(0] dť - oo 
'o 

and 

(3.8) lim n ?(*\ ,-, = 0. 

Put 
._.„, Re [cp(í)] 

Ö"- = 1ГTT' " є Л Г -
|П + 1 

For n 6 AT choose sn ^ t0 so that 

- u p --X0 z 0» + - ) M ( , g . | c | 2 \ 
»&»; .Re [cp(0] - 2[(B + l)2 + 1] \ '2(| c | 2 + <52) / ' 

I c\ Then for t _• s„, z. eK(S„, $), we At, where -iy!- < 9 < | c | = A0, the inequality 

H««i&W^. 
3) 2 

S2) 

holds again. Applying Theorem 2.5 with 9„ — & and 

| c | - J L2' 

we get: 7%£r£ ex/si's a solution zt(t) of (3.2X) such that 

lim zx(0 = 0. 
t-*oo 

By using 1° we obtain the following generalization of Theorem 2 of [3]: 

Theorem 3.1. Assume that there are a,beC andH(t)e C[t0, °°) such that 
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(3.9) | q(t, z) + abp(t) - (a + b)p(t) z | _ //(f) for t^t0,zeC, 

(3.10) Re [(a - 6) p (t)] > 0 fort^t0 

and 

<3") gi.toJ-°*)-M<T"-»'-
Define <5 e [0, 1) by the relation 

« 1*» «„n ^ ( 0 _ g | « - f e | 
( ' ,?S ̂  [(- " *) J<0] " 2(1 + *2) * 
_>/ y be any real number satisfying 5 < y < 1. TAe/i to eiwy T > t0 there is a solu­
tion z(t) of (3.1) sucA that 

| z(t) - 6 | < y I z(r) - a | 
for all t = T. 

Combining Theorem 3.2 of [2] with 2°, we can generalize Theorem 3 of [3]: 

Theorem 3.2. Suppose there are a,beCandH(t)e C[/0, oo) such that there hold 
(3.9), (3.10), 

00 

(3.13) J Re [(a - b) j?(f)] df = oo 

and 
(3.14) lira _ r .

 H^\. .... - 0. 
' ,-.00 Re[(a-b)p(0] 

TAen /here existe af least one solution z0(t) of (3.1) for which 

lim zo(0 = b. 
t-*QO 

Let T 2: t0 be such that 

S?R*[(«-6)Kr)]<T , f l-61-
.FAeyi a/ry solution z(t) of (3.1) satisfying Re [(a — 5) (2z(rt) — a — 6)] _J 0, wAere 
fA ^ 7", /s defined for all t __ tt a«d 

lim z(0 = a. 
f-+00 

4. APPENDIX 

Here we recall, for the reader's convenience, some fundamental notions and basic 
results of the theory of Wazewski; for more details we refer, for example, to [1, 
pp. 278-283]. In what follows we assume fe C(IxQ). 

21 



Let rx be a topological space, ^ c f - . A continuous mapping ^ of Fj onto F 2 

is called a retraction of Fj onto F2 , if the restriction of i/f to F2 is the identity mapping. 
The set F2 is said to be a retract of F t , if there exists a retraction of Fi onto F2. 

An open subset Q° of ZxO is called a (CI, V)-subset with respect to 

(4.1) i = / ( r , z ) , 

if there exists a number of real-valued functions Ut(t9 z),. . . , (/„(*, z); Vx(t, z),..,, 
Fm(r, z) defined on IxQ which are of the class C1 (with respect-to t, Rez, Imz) 
such that 

Q° = {(/, z) : Uj(t, z) < 0 and Vfc(/, z) < 0 for all f, A:} 
and 

DfUa(tfz)>0 for (*\z)e^a , 
D /F / f(f ,z)<0 for ( U ) e f . , 

where 

<8fa = {(/, z) : tf.(/f z) = 0 and Ufa z) g 0, Vfa z) ^ 0 for all f, k), 
rfi = {(t, z) : Vfa z) = 0 and tf//, z) £ 0, Ffc(f, z) £ 0 for all f, A:}. 

Wazewski theorem, (i) Let Q° be a (U, Vysubset with respect to (4.1). Denote 
by Q® the set of egress points ofQ°, and by Q°e the set of strict egress points of Q°. 
Then 

n m 

j = l fc=l 

(ii) Let Q° be a (U, V)-subset with respect to (4.1) and let S c i 2 ° u O j be a non­
empty compact set satisfying the condition that E r\Q°e is not, a retract of S but is 
a retract of Q°. Then there exists at least one point (tt, zv) e 3 n 0° such that the 
graph of a solution z(t) of (4.1), z(tt) = zx is contained in Q° on its right maximal 
interval of existence. 
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