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SUBGROUPS AND NORMAL SUBGROUPS 
AS SYSTEMS OF IDEALS 

FRANTlSEK VORAC, Kyjov 
(Received January 17,1980) 

In this paper we introduce the notion of an ideal operation. Aubert in [1] defined 
and studied a system of x-ideals which is in our conception an ideal system belonging 
to an ideal operator of a commutative semigroup. 

General problem, if there exists an ideal operation on given closure space, is 
solved in Section 2 for the case of a system of all normal subgroups of a system of 
all normal subgroups of a given group. 

In Section 3 an equivalent form of axioms of an ideal space in the case of system 
of all subgroups of a given group is shown. 

1. IDEAL SPACE 

In this section S will denote a non-empty set, the system of all subsets of the set S 
will be denoted by exp S. 

1.1. Definition. Let Sbea set. A mapping x : exp S ~* exp S will be catted a closure 
operator of S if it holds: 

Al: A £ S=>A &AX9 

A2: Af B £ S9 A £ Bx*> Ax £ Bx. 
A system Q = {Ax :AsS} wilt be called a closure system (belonging to a closure 
operator x) and the pair (S, Q) will be called a closure space. 

1.2. Definition. Let (St.) be a groupoid. A closure operator x of S will be called 
cm ideal operator of S if it holds: 

A3: A £ S*>SAX £ Ax, 
A4: A9B czS^AJ <=:(AB)X. 

We say that A £ Sis an ideal if A == Ax. A system Q » {AX:A S S} will be catted 
m ideal system {belonging to an ideal operator x)9 the triad (S9 Q,.) will be called an 
ideal space. 
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13. Remark. If a non-empty system Q £ exp S fulfils the conditions 
i .Sefl , 
2. AieQJeI=> f)At(i€l)€Q9 

then there exists a closure operator x of S with the property: 12 is the closure system 
belonging to the closure operator x. 

Let us define operator x in the following way: For A £ S we put Ax *= 
-» f) B(BBQ9 A £ B). The converse is also true. 

1.4. Definition. Let (S, Q) be a closure space. We say that an operation - on S is 
an ideal operation on (S, 12) if (S, fi),.) is an ideal space. 

IS. Remark. Let (S,.) be a groupoid. Let us put A : B « {c € S: cB £ Al} for 
non-empty sets A9B & S. In the case 2? « {£} we write A : b. 

1.6. Remark. It holds: 
( a ) ( ^ : U ) . . B £ i < , 
(b) A : U IWe/) - fl (4 -BdQeI)9 
(c)f)Ai(i€l):B~()(Ai:B)(i€l)9 

where A9B9Ai9Bi(ieT) are the subsets of groupoid S. 

1.7. Theorem. Jt>/ (S,.) te a groupoid and x be a closure operator of S. Then the 
following statements are equivalent: 

(1) A9B£S*>AxBc:(AB)x9 

(2) A9 B £ S-=> Ax : B = (Ax : B)X9 

(3) A £ S,fc€S=>^x:6 = (^x:6)x , 
(4) A9 B £ S => (A : B)x £ Alx : B. 
Proof. Let (1) hold. According to 1.6. (a) we can write (A :B)XB& ((A : B) B)x £ 

£ Ax9 hence (A : B)x £ Ax: B. Thus (1) implies (4). Let (4) hold. For A £ S, b 6 S 
we have (4, : 6), £ (Ax)x :b *= Ax:b9 thus (.4, : b)x = Ax:b. Therefore (4) => (3). 
If (3) holds, then by 1.6. (b) we obtain (Ax: B)x - (Ax: v{b}(beB))x ** 
M n ( ^ : f t ) ( * e B ) ) x = ( ^ ^ 
* Ax : A Thus (3) implies (2). 

From Al it follows AB £ (AB)X and therefore A £ (Af.B)x : B. If (2) holds, then 
Ax £ (^B), : -B, hence AJB £ (AB),. The proof is complete. 

1.8. Theorem. Let (S9.) be a commutative groupoid and let x be a closure operator 
of S. Then the following statements are equivalent: 

(1) A £ S => SAX £ AX9 

(2) a9 b € S => (oi), £ ax n bx9 

(3) -4,1* £ S => (AB)X £ -4, n £x, 
(4M, JB £ S => (Af,.B*)* &Axn Bx. 
Proof. If (1) holds, then from properties of a closure operator it follows (ab)x £ 

£ (ax n bx)x » axn bx9 a9beS9 i.e. (2). 
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Let A9B&S and let (2) hold. It is (AB)X - (v{ab}(a€ A9bmB))» £ 
£ (u{axnbx}(a€A9beB))x * (vax(aeA)nvbx(b€B))X £ (Axr\Bx)x » <4j-n J*. 
Thus (2) *. (3). 

From (3) we obtain (AJix)x £ (^J, n (J.?*)x « A^ n Bx for 4, B £ S. There­
fore (3) implies (4). 

Let (4) hold. If A £ S, then S ^ £ (S^,), - ( S ^ ) , £ Sx n ^x « 4 , . Hence 
SAX £ A(» and the proof is complete. 

2. NORMAL SUBGROUPS AS IDEALS 

In what follows G will denote an additive group. 

2.1. Remark. Let G be a group. If Q is a system of all normal subgroups in G, 
then (G, Q) is a closure space. Let g9 A, a 6 G. (g, A) will denote a commutator of 
pair g9 A, i.e. (g, A) » ~g - A + g + A. It follows directly: 

(a) (g + A, a) = -A + (g, a) + A + (A, a), 
(b) (g, A + a) = (g, a) - a + (g, A) + a, 
(c) (g ,A)= -0og + A = A + g. 

A set c(g) as (A € G : (g, A) «• 0} (a centralizier of an element g) is a subgroup in G. 

2.2. Lemma. Let G be a group and let Q be a system of all normal subgroups in G. 
Then for operation commutator there holds the axiom A3. 

Proof. For this case the axiom A3 is: A £ G =-> (G, Ax) £ AX9 where -4* is as 
follows a subgroup in G generated by A. The proof follows from properties of 
normal subgroups. 

2.3. Lemma. Let Gbe a group and let Nbe a normal subgroup of the group G. Then 
it holds: 

(a) g9b€G9(g9b)eNz*(-g9b)eN9 

(b)g9h9beG9(jg9b)9(h9b)eN*>(jg + h9b)€N. 
Proof. If g, b € G, (g, b) 6 N9 then we have g--(g, ft)-g=»g — 6 ~ g + *-« 

** (~£> 6) € N. If moreover A 6 G, (A, 6) € N9 then we obtain (g + A, ft) «• -A + 
+ (g,*) + A + (A,6)eJV. 

2.4. Remark. From 2.3 it follows: Let Ax be a normal subgroup of the group G 
generated by A for each A z G. Then for each fr 6 G, Ax: b is a subgroup in G 
(division with respect to the operation commutator). If Ax : b will be a normal sub­
group in G, then 1.7. (3) implies that the operation commutator is an ideal operation. 

2.5. Theorem. Let G be a group mid N be a normal subgroup inG. Ifg9a9beGf 

(g, b) € N9 then ( - a + g + a, b) e JV if and only if((a9 g)9 b) e N. 
Proof. Let us suppose that g,a9beG and (g,b)eN. 
1. If ((a, g), 6) e N9 then from 2.3. we obtain (g - (a, g), 6) » ( - a - g + a, *) 

€ N. Hence also (—a + g + a, fc) € N. 
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2. Let us assume that ( - a -f g + a, b) e N. This implies ( - a - g + a, b) e Nf 

which with (gfb)eN give ( - a - g -f a -f #, b) = ((a, g)f b) e N. 

2.6. Lemma. Lef JV Ae a normal subgroup of a group G. If a eAe G/Nf be Be GjNf 

then(AfB)**(afb) + N. 
Proof. Follows from properties of normal subgroups. 

2.7. Theorem, Let G be a group and let Qbe a system of all normal subgroups in G. 
Then the following conditions are equivalent: 

(a) The operation commutator is an ideal operation for a closure space (G, Q). 
(b) For an arbitrary NeQ it holds: If Ye G/N, then c(Y) is a normal subgroup 

in GIN. 
Proof. 1. First we suppose that the condition (b) holds. Let NeQ, y,beG, 

(yf b)eN exist. If we put Y = y + N, B -= * -f N, then Y, B are elements of G/N 
fulfilling (Y, B) « (y, b) + JV -= N. Thus (Y, B) is a zero in the factorgroup G/N 
and therefore Yec(B). With regard to (b) c(B) is a normal subgroup in G/N. We 
put P ** p + Nfot arbitrary j> e G. According to (b) we have ( - P -f Y -f P, B) » N 
(zero in G/N). By 2.6. we have N = ( - P -f Y + P, B) == (-/> -f >> + p, 6) -f JV 
and from this (-/> + y + p, A) e N. Thus (a) holds (see 1,7, (3)). 

2. Conversely, let (a) hold. Suppose NeQ, Ye G/N. If Bec(Y), then (Bf Y) is 
a zero in G/N and therefore (B, Y) *= (ft, j) 4- N = JV, i.e. (b,y)eN. Let PeG/N 
be an arbitrary element. We can write P = p + NforpeP. According to (a) and 2.5, 
we have((p, A), >>)€ JV that implies ((P,B), Y) « (0», A),j>) -f JV = JV. Thus ((P, 21), 7) 
is a zero in G/N. Hence (P, B) e c(Y), where c(K) is a subgroup in G/N. From here 
we obtain B - (P, J?: =- ~P -f JJ + P e c(F). Therefore c(F) is a normal subgroup 
in G/N and (b) holds. 

2.8. Corollary. Le* G be a group and Q be a system of all normal subgroups in G. 
If the commutator is an ideal operation on (G, Q), then the centralizier of an arbitrary 
element of G is a normal subgroup in G. 

Proof. The proof follows from 2.7. (b). We put JV = {0}. 

2.9. Example. Let M be a multiplicative group of regular matrices of the type 2/2 
with integer elements. Let us find the centralizier of element Ye M(Y •* (yu), yt t « 
miyt^**y^^ - hy%t - 0 ) . 

A solution of the equation A Y =- YA, AeM,A =- (au) isan » a22 ,a2l -= 0, a ia 

is arbitrary. Thus c(Y) consists of all matrices A e M, where a2% = 0, at t -= a%2 # 0 
are integers. It is easy to verify that for BeM(B « (6y), An « b2x « &22 * U 
b%2 » 2) it does not hold BYB"1 e c(Y). According to 2,8. the commutator is not 
an ideal operation for (M, Q) (Q is a system of all normal subgroups in M). 

2*10* Remark. A commutator is in general not an ideal operation on a closure 
space (G» fi) (Q is a system of all normal subgroups of given group G). The necessary 
and sufficient condition is (b) in 2.7. 
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3. SUBGROUPS AS IPEALS 

A greatest common divisior of the integers m, n will be denoted by (m; n). Z(ZJ 
will denote integers (modulo n). 

3.1. Theorem. Let G be a group and let (G9 Q) be a closure space such that Ax is 
a subgroup in G generated by A for A £ G. A commutative operation * is an ideal 
operation on (G, Q) if and only if it holds: 

(1) For every g,heG there exist integers m, n (depending on g, h) such that g*hm 
= mg = nh. 

(2) If A £ G, g, h, b e G, g * b = mg = nb 6 Ax, h*b = kh = ft 6 AM$ 

(g — h)*b = pQf — A) = Aft, ivAere s # 0,«, m, fc, / are integers, then (ml 4- n&; j) 

Proof. Let us prove that (1) is equivalent to the axiom A3 and (2) is equivalent 
to the axiom A4. 

1. We assume that (1) holds. If g, h e G, then there exist integers m, n fulfilling 
g *• h = mg = nh. Therefore (g * h)x £ gxr\hx and by 1.8. A3 holds. 

Let us suppose, conversely, that A3 holds. If g, h e G then according to 1.8. (2) 
we obtain g *• hegxr\ hx. In other words, there exist the integers m, n such that 
g -* h = mg = nh. 

2. Let there hold A £ G, g,h,beG, g *b = mg = nheAx, h*b = kh m lbs 
GAX, (g - h)*b m p(g — h) = s6(y # 0, m, w, k, I, pe Z). If (2) holds, then 
(ml 4- wfc; s)beAx.We can write g,he Ax: b (according to the operation *). From 
the definition of the greatest common divisior it follows: There exists an integer q 
fulfilling s = q(ml 4- nk; s). With respect to (ml 4- nk; s)b&Ax we have sb m 
= q(ml 4- nk; s)be Ax. Hence (# - h) e.4* : b and by 1.7. (3) the axiom A4 is 
valid. Now let A4 hold. Let us suppose that (ml 4- nk; s) b $ An. By 1.7. (3), A9 : * 
is a subgroup and hence g-~heAx. Therefore sbeAx. We denote -f0 *» 
= min {| s | : s 4= 0, s e Z, sbe Ax). There exist s\ steZ, \ st | < s0 such that 
s = s's0 4-.?!. From here we obtain stb = sb — - y ^ e i4* which implies ^ = 0. 
Thus s0 is a divisior of $. In the same way we can prove that s0 is a divisior of ml 4- irit. 
It is in a contradiction with (ml + nk; s)b$Ax. Thus it is verified A4 => (2). 

The assertion is proved. 

3.2. Corollary. Let G be a group and Q be a system of all subgroups in G. If * is 
a commutative ideal operation on (G, Q), then it holds: 

(1) An element g(h) of the group G has an infinity order if and only if there exists 
exactly one integer m(n) fulfilling g*h = mg(g •*h = nh). 

(2)Ifg=*0orh=*0(g,h€G), then g * ft = 0. 
Proof. (1) An element g e G has an infinity order if and only if m, k e Z9 mg m 

= kg => m = k. , 
(2) It follows from 3.1. (1). / , 
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3.3. Lemma. Let G be a group, Q a system of all subgroups in G. Let * be a com­
mutative Ideal operation on (G, Q) with the property g,a,h€G=>(g -f h)*a «• 
» (g * a) «f (A * a). Then it holds: 

IfkeZ, then the relationship g,h€G=>g.h** fc(g * A) defines an ideal opera­
tion on (G, Q). 

Proof. Let s e G, a e AX(A s G) be. From s * a e Ax we have k(s * a) «• s . a e 
6 A x . Thus the axiom A3 holds. Assume g,h,beG, A s G, g.beAxf h.beAx. 
TTien(g~A).A = *(te~A)*A) = Mte*^^ 
BAX. A4 holds by 1.7.(3). 

Now, we shall use our results to cyclic groups. 

3.4. Theorem. Let (Z, Q) be a closure space such that Ax is a subgroup in Z generated 
by A for A £ Z. Let ksZ. Then the implication g, AeZ=>g*A = kgh defines the 
ideal operation on (Z, Q). 

Proof. Let us show that (Z, Q,.) is an ideal space. Axiom A3 holds evidently. 
If A £ Z, g, A, b e Z, gb, hbeAx, then there exist integers a, zx, z2 such that Ax = 
-« aZ, gb = azx, hb = az2. From here (g - A) b =- gA - AA e ><x holds. According 
to 1.7. (3) the axiom A4 is verified. Now the assertion follows directly from 3.3. 

3.5. Theorem. Let (ZH, Q) be a closure space such that Ax is a subgroup in Zu 

generated by A for A £ Zn. Let keZ. Then the implication g,heZn*>g*h*z 
= k(g. A) (multiplication . is modulo n) defines an ideal operation on (ZH9 Q). 

Proof. Analogously as in the proof of 3.4. 

3.6. Remark. It remains a question, if all ideal operations on (Z, Q) ((Zm, Q)) 
are in the form used in 3.4. (3.5.). The next examples give the negative answer. 

3.7. Examples. 
(a) We put a * b «- | ab | for a, b € Z. 
(b) On ZA we define the operation * as follows: 

{g,h}n{0} =-0*>g*A = 2, 
{&A}n{0} 4-0*->£*A«0, (g,heZ^. 

It is easy to verify that the operation in (a) (in (b)) is an ideal operation on (Zt Q) 
((Z4,fl)). 
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