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THE MOST GENERAL TRANSFORMATION
OF HOMOGENEOUS LINEAR DIFFERENTIAL
RETARDED EQUATIONS OF THE FIRST ORDER
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On an interval I = (a4, ©), a 2 — oo we shall consider an equation of the form

) % +p(x)y + .‘ilq:(x) y(Ex) =0

with delays

“l(x) =X - fi(x)g 1sighn
where p, q;,£,€C°(I), gy # Oon I'for some k (1 S k < n)and §, * §,, {{x) < x_
on the whole interval 7 as i % j, §(J) 2 1, 1 £ i, j S n. Supposg that {(xX) -+ @
as x — oo for all i. ‘

A continuous function y is said to be a solution of (1) if there exists & € I such thasy-
satisfies (1) for all x € [, o). In such a case, we my thet y is a solution of (1) on
[, ).

Let bel, A =[b, ), A, = {§£x):¢{(x) < b,xeA} and ¢ = meA.. i=

=1,2,...,n.Then —0 < ¢ < band we pyt 4, = (uao,b]tfca — 0. Othcrvme
let A, = [c, b].

For a given function o € C°(4,) we say y is a solytion of (1) through (b, 0) if y
is a solution of (1) on A and »(s) = o(s) for all s 4,."

If p,g;, &,0 (i = 1,2, ..., n) are continuous fupttions, there exists a solution
of (1) through (3, 6) and it is unique (see [1], p. 24). '

TRANSFORMATION OF LINEAR
DIFFERENTIAL EQUATIONS

Stackel [2] and Wilczynski [3] proved that the most general point-transform-
ation
T:x=f(t,w, y=gu),



converting every linear differential equation of the n-th order of the form

() YO+ a0y + .+ a0y =0, (y"" = ——:;’,',)
with continuous coefficients into another equation of the same form, is
@) x=f(), y=gt)u* in the case that n.‘= 1,
(ii) x=ft)) y=gOu ifnz22

where fand g are arbitrary functions satisfying some additional assumptions, 4 % 0
being an arbitrary constant.

Even if the equation (1) is studied by many authors, they did not pay special
attention to the question of transformation. Only El’sgol’c [1] considered the trans-
formation (ii) that converts an equation (1) into another of the same form and order.
The same transformation is used by Melvin L. Heard [4] and others for a functional
differential equation (generally nonhomogeneous).

THE MOST GENERAL TRANSFORMATION
OF THE EQUATION (1)

In this paper we derive the most general transformation which convert any linear
differential equation (1) into another equation of the same form

@ S+ POu + T 00 u(nkt) =,

where P, @, ;€ C°(J),n(J) 2 J, n; + n;as i +jand sgn (¢ — n(t)) = sgn(t — n (1)) + 0
on J for all i,j; Q. + 0 on the whole interval J for some m, 1 £ i,j,m £ n.

We wish that the transformation T = (f, g) be independent of coefficients of (1)
and will convert any nontrivial solution of (1) into some nontrivial solution of (3)
for the same reason as in [3] (see [3], p. 8).

If y is a solution of (1), there is b € I such that y is defined on an interval 4 U 4,.

A mapping ¥ : A U 4, - R? defined by

W(X) = (x’ y(x)), xedvu Ab’

is a one-to-one homeomorphism of A U 4, into a graph of the given solution y.

Conversely, to any point (x4, yo) € R2, x, € A, there is a solution of (1) such that
a graph of y contains the point (x,, ). For example the interval 4 = [x,, )
and some continuous function 7 on 4, satisfying the condition ©(xo) = y, will do.
Due to continuity of p, ¢;, &;, T (i = 1, 2, ..., n) there exists a solution of (1) through
(%0, %).
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We have

Theorem 1. The most general transformation which converts an equation (1) into (3)
is ,
x=ft), y=gt)uy,
where f, ge C'(J), f'(t)g(t) + O for all te J.

Furthermore, &, f=f.nionJ fori=12,..,n

Proof: If G:= IxR < R? then G is open and ¥(x) = (x, /x)) € G for any
solution y of (1) and each x € I where y is defined.

Consider a one-to-one homeomorphism & taking G into U = R? with properties
@ € C'(G) and Jacobian | ¢'(p) | + 0 for all p € G, i.e. @ is a diffecomorphism. Then U
is open and there is &~ = (f, g) such that | #~''(g)| + O for all ge U (see [5],
p. 223). -

The mapping ®~! is a point-transformation. Consequently, for any solution y
of (1) and arbitrary fixed x € I where y is defined there is a unique set of mutually
disjoint in U points (¢, ) = &(V(x)), (t;, u) = S(P(E(xX), i = 1,2,..., n. Substi-
tuting

(x, y(x¥)) = &1, u) = (f(t, u), g(t, w))
and

(fa(x); }'(ft(x))) = ¢—l(tb “l)» i= l’ 2’ ey My
into the equation (1) we get

du  s(tu)+ WX o
dt " gLw+fwX 7

n
where X = p(f(t, w)) g(t, u) + Y, q{f(t, w)) g(t;, u) is a function of the coefficients
=1

of the equation (1). :

The equation (3) gives that the last expression of a previous equation must be
a linear combination of X for arbitrary choice of coefficients of (1).

Since

(@74 u)| = (t,u) 0,

fe S
8¢ 8

it follows immediatelly f, = 0, f,g, + 0.

Consequently, x = f(f)and {(x) = f(t;) by means of (§(x), W§«(x)) = &7 1(t4, u)),
i=1,2,...,n. Therefore, for a given x e I there is unique t € J.

Define the functions #, : J = R by virtue of

() (@) =r'¢EUO) =14, 15isn

Thenn, % nyasi +j,n(t) + tfor &, + §;as i + j, {(x) + x and the function]’
is monotonicon J, 1 < i, j < n.
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Using (5) and (6) we have immediatelly from (4)

d : \
M G+ I 1O TS+ T r0aro)
x g(n(1), u(n(n)) = o.
The following relations

g(t,u)

® Sy = o,
gt u) _

® W B u, |

(10) - 2O AO) _yyui),  i=1,2,0m

must be valid for a suitable functions a, #, ¥; on J = f~!(I) to obtain the equation (3).

For u is a nontrivial solution of (3), and a(t) & 0 on some interval J; « J would
imply g(t, u) = 0 which would be a contradiction with y to be nontrivial, it is not
difficult to show directly from (8) that

(11 glt,u) = () u"?,  a,()a (1) 0

on J for suitable functions a,, o,.
From (9) and (11) we have

(12) aju® + u*aje, In |y | = Bo,a,u" "y

for u #+ 0. It is clear that only a,(t) = A = const complies with (12).
Finally, A = 1 for the sake of equations

a,(nd0)) W(n (1)) = Ay(r) oy () w(n () &*~ (1)

(1 £ i £ n) obtained from (10).

Consequently, g(t, ¥) = o,(t) u, a,(t) + 0.

It remains to show the required transformation rewritten as x = f(¢), y = g(t) u
S'g%00nJ,n(t) =" (D), teJ, i=1,2,...,n, converts (1) into (3). In fact
‘e get

()
and the theorem is proved.
Méssark 1. Consider the equations

@ %——z—y+3-y(

S+ ( £0 | ) s (t))u + 2 a(f®) /() u(nfs)) = 0

X
2) 0 on I= (0, )
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and

(b) %‘t‘__u.g-u(:—l)zo onsome JER,J=(b, o)

There does not exist a transformation converting (a) into (b). Indeed, if x = f(r),
y = g(t) u was such a transformation then by Theorem 1 we would have

© @t = 1) =f)2

on J and the transformed equation would be

i’i+(3’(‘) - 2.&).; + 2&_32:_11“(1 -1)=0,

dt g1 J@) J(0) g

f(t)g(®) £ 0. Due to (5) g'(t)/g(t) — 2f'(t)/f(t) = —1 and through integration we
would get g(¢) = Kf%(t)e~* with an arbitrary constant K % 0. Similarly

f')egt—-1)
d ZW =1

2
Furthermore g(t — 1) = Kf%(t — 1)ee™* = K -}—'-4-(9- ee”". Using this result and

integrating (d) we would have f(t) = Cexp {2t/e} for C * 0 an arbitrary constant.
This is a contradiction with (c). Hence, such a transformation does not exist.

Remark 2. If the function f is strictly increasing (strictly decreasing), the trans-
formation described in Theorem 1 converts a retarded equation into a retarded (an
advanced) equation.

Proof: Let f be strictly increasing. Then &,(x) = £,(f(2)) = f(n(1)) < x = f(¥)
for all xe I implies n(t) < tforallt =f~Y(x)e J, i = 1,2, ..., n. An equation (3)
is retarded.

If f is strictly decreasing, we prove similarly (3) is an advanced equation, i.e.
n(t) > t on the whole interval J, 1 £ i < n.

Remark 3. For the equation
dy -2
rry +yx")=0

on 7 = (1, o0) where £(x) = x~2 < x on Iand our assumption &(I) 2 Iis not satisfied
(see also MyXkis [6], p. 211). It would be interesting to find the most general trans-
formation for equations the above type characterized by {(D N I = &.

Example. %xzv- - 72‘- y + -i—- y(—’zf-) = 0 is the retarded equation on the interval

I = (0, 00). There holds &(x) = -’25- < x on I and (1) = 1. The transformation x =
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=2 =f(t), y=g(t)u, geC'(R=f"')), g+ 0 on R, n(t) = ') =

=t — 1 < t converts this equation into the retarded equation

+(sg((:)) ,n4>,, +£(_‘KT‘51)_1n4u(: ~1)=0

on R.
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