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0. INTRODUCTION

In [6] and [3], every closure operator ¢ on the set of all subsets of a lattice L
such that ¢{a} = {beL; b S a} for each a e L, was called an embedding operator
and the set of all 4 < L satisfying ¢4 = A a generating system on L. These con-
cepts were investigated in [4] on arbitrary posets. In [5], there were proved some
properties of the lattice of all embedding operators on a poset P. This one is dual
to the lattice Gs (P) of all generating systems on P which we call the gs-lattloe on P,

In this paper some statements concerning gs-lattnces in general are formulated.
For an arbitrary set {P; ie I} of nonempty posets, a poset P is found such that
Gs(P) = ]'[ Gs (P)). We say that a poset P is sxmple whenever there are only those

gcneratmg systems in Gs(P) which were constructed in [2] as a solution of a certain
embedding problem. An elementary dcscnptxon of the gs-lattice on each simple poset
is given and the class of all gs-lattices on simple posets is characterized. It is shown
that every poset, in the gs-lattice on which each completely v-irreducible element has
a complement, is simple and that the class of all gs-lattices with this property is
(up to isomorphism) exactly the class of all complete atomic Boolean algebras.

¢

1. THE CONCEPT OF A GS LATTICE

We denote by 0 the empty set, by < the relation ,of mclns:on and by < that of
a proper inclusion. We say that a set % is a system whenever every element of ¥
is a set. If NV e YU for all B, 6 = B < U, then we call the system % multiplicative
In case A = B we put U = 6. The standard partlal ordcnng on each systen is the
inclusion. . . | ¢ o ST

Let P be a poset. We denote by < the«partxal otdorhby < the rela&on “less than’
and by < the covering relation on P. P is said to be a chain, an’ antichain if every
two different clements of P are comparable, incomparable, respectively. Each’ set
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QO < P is considered partially ordered by the restriction of < from P to Q. If this is
the case then we call P an extension of Q.

We denote by V4 the 1. u. bound and by Ap4 the g. 1. bound of 4 in P. Instead
of Vp{a, b} we write a v b. We define V0 iff P has a least element o; then we put
V0 = 0. We say that an element ae P is completely V-irreducible in P if a =
= VpAd =>ac A for all A = P. The set of all completely Vv-irreducible elements
in P will be denoted by IR, and the set of all elements of P having the dual property
by IR?.

If a < b= 1a £ 1b for all a, b € P then we call the map /: P - Q isotone; if the
converse implication is also true then we say that 1 is an embedding of P into Q for
arbitrary posets P and Q. Clearly, each embedding is an injection. If 1 is an embedding
and also a surjection then we call 1 an isomorphism of P onto Q, Q the isomorphic
image of P and write P = Q.

Whenever a < VA = there exists be 4 such that a < b for all 4 < L holds
for an element a in a complete lattice L then we say that a is completely V-primitive
in L. The set of all completely v-primitive elements in L will be denoted by P,
and that of all dual atoms in L by Af.

We consider every ordinal number u to be the set of all ordinals less than u ordered
in the natural way.

The elements of the cartesian product 4, x 4, X ... x 4,, of sets will be denoted
by (ay,a;,...,a,). If L,,L,, ..., L, are complete lattices then L, xL, x...xL,
means the direct product of them. We denote by (a;);c; an element of the direct

product [] L, of complete lattices. In case L; = L for all i e I we write L' instead
iel

of ] L,. We identify the complete lattice 2! with the system of all subsets of the set 1.
iel

If & is a class of complete lattices then I1.Z denotes the least superclass of &
closed under direct products and isomorphic images. One can easily see that I1.Z is
exactly the class of all complete lattices L for which there exists a system {L;; ie [} =

c & satisfying L = [] L,.
iel
The definitions of those basic lattice-theoretical notions which we use and do not

define here can be found in [1].
1.1. Definition. Let P be a poset and a € P. Then we denote
wpa = {b;be P and b £ a}, epa = {b;bePand a £ b},
‘ wpa = wpa — {a}, &pa =P — ga.
We put apAd = Uop[4] for « = w, e and all 4 = P.

1.2. Definition. Let 4 be an arbitrary subset of a poset P. If A = wpAd, A = &4
then we call A an initial, final segment in P, respectively.

We denote by Op (or, if no confusion arises, by O) the system of all initial segments
in P,
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1.3. Definition. Let P be a poset.

We say that G is a generating system on P whenever {P} U wp[P] = G < O,
and ® is multiplicative. ,

The system of all generating systems on P is $aidl to be a gs-lattice on P and

denoted by Gs(P).

1.4. Theorem. Let P be a poset. Then the assertions (i), (ii), (iii) hold.
(i) Every generating system on P is a complete lattice.
(ii) Gs(P) is a complete lattice.
(iii) Both in an arbitrary generating system on P and in Gs(P) the I. u. bound of each
nonempty subset is its intersection. »
Proof. The statements follow by theorem 10 [[1], by the multiplicativity of Gs(P)
and by the fact that O, is a greatest element in Gs (P).

1.5. Definition. The class of all complete lattices isomorphic to Gs (P) for some
poset P will be denoted by G.

1.6. Definition. Let P be a poset. We denote by R (by RN) the least element in Gs(P).
The complete lattice N is called a normal or a MacNeille completion of P.

1.7. Lemma. Let P be a poset. Then the assertions (i) — (iv) are true.
(i) &p : P - Op is an embedding.

(i) ® N &p[P] < IR for each 6 € Gs (P).

(iii) &p[P] = ® = G = O, for each & € Gs(P).

(iv) &[P] = IRY.

Proof. (1) a £ b <> &pa < &pb for all a, b € P is true trivially.

(2) Consider ® € Gs(P), épac ® and U = G such that gpa = AgU. f A =0
then &pa = P which is a contradiction. In case A # @ we have £pa = NU by 1.4(iii).
Then a¢ NA and there is 4 € A with the property a ¢ A. This and &g,a = A give
&pa = A € A which proves (ii).

(3) The statement (iii) follows immediately by 1.4(iii) and by the fact that 4 =
= Negp[P — A] for each 4 € Op — {P}. This fact and (ii) imply (iv). '

1.8. Lemma. If P is a poset, ® € Gs(P) and A < IRG — Np then & — A € Gs(P).

Proof. Clearly, it is sufficient to prove the multiplicativity of ® — U. If 6 = B <
< ® — A then NBe® and either NBeB < G — A or NV ¢B. In the second
case NB ¢ IRG according to 1.4(iii). Hence NB ¢ A and, further, NBVe G — A.

1.9. Cérollary. ([5], Corollary 1 of Theorem 4) Each complete lattice Le G is
dually atomic and the set AL generates a complete sublattice of L isomorphic to 2A1.
Proof. If P is an arbitrary poset, ® € Gs(P) and & < O, then there exists a € P
satisfying £pa ¢ ® by 1.7 (iii). We obtain & < $ < Op for H = O, — {8pa} and
$ e Gs(P) according to 1.8. This says that Gs(P) is dually atomic and that A‘(';,(,) =
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= {Op — {4}; Ae&p[P] — Np}. The remaining part of the statement is a con-
sequence of 1.8 and of the selfduality of 2°P(F1~ %7,

1.10. Definition. Let P be a poset and A = Op. We denote by (A the least
multiplicative system B with the properties Pe B, A < B.

If® e Gs(P)and A = {A4,, A,, ..., A,} then it is possible to write {(®, 4,, 4,, ...,
..., A, instead of (G U A). '

1.11. Lemma. Let P be a poset, W < Op and A€ Op. Then the assertions (i),
(ii) hold.

() W ={NB;0 =B {P}uA.

@ii) (Rp, A) is the least & € Gs(P) satisfying A € 6.

1.12, Lemma. Let P be a poset, I # 9 and N,; = Op for each i€ I. Then
UA> ={N4; A, e<¥) foralliel}.
iel

iel
Proof. Let us put € = {( 4;; 4,e<U,) for all i e I}. Clearly, PeC, Y U, < €,
iel iel
and |J A; = D= € < D for every multiplicative system D. That is why it is sufficient
iel

to verify the multiplicativity of € only. Choose B, 9 « B < €, arbitrarily. Then

there is C7 € (U, such that B = () C? for all ie I, Be®B. If we put C; = () C?
iel BeB
then C; e {U,) for each i e I and, obviously, NB = ) C; € €.

iel
1.13. Corollary. The assertions (i), (ii) hold for an arbitrary poset P.
(i) VospA ={ N 4y Age D for each He A} for every nonempty system A <
HeA

< Gs(P).

(ii) (6, 4> € & L wyA for all & € Gs(P), AeDp.

Proof. The statement (i) follows by 1.12 and by Vg,r)A = (UA) for each non-
empty system A < Gs(P). Regarding 1.12 we obtain (&, 4) ={CnD; Ce®
and D € {P, A}}; this gives (ii). :

1.14. Lemma. Let P be a poset, ® € Gs(P) and A€Dp. If A ¢ ® then (G, A) —
— {4} e Gs(P).

Proof. Suppose that A¢ ® and put € = (6, 4> — {4}. € is multiplicative:
Let us take U, 8 < A < €, arbitrarily. Then A = {6, 4) = NA e (G, 4). A S
€ 6 uwgd by 1.133). f A nwgA=0then A= G and NAe 6 < €. Otherwise
NA < 4 and NA € €, too. "

1.15. Lemma. IR, ) = {<Np, 4); 4 €Op — Ry} for every poset P.

Proof. Let P be an drbitrary poset. Clearly, ® = Vg,p){{Rp, 4); A€ G — Rp}
for each ® € Gs(P). If G €IRg,p) then & = (Np, 4) for some 4e® — Ry <
c Op — Ny.
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Put & = (Np, 4) for an A €Op ~ N, and suppose that & =Vg,p)A Where
A < Gs(P). It holds A # @ trivially and for each $ € A there is 45€ H satisfying

A = () Ay according to 1.13(i). By this, § = & < N, U w4 (see 1.13(ii)) and by
HeA
A € Ay it follows that 45 eRNp or Ay = A for every HeA. If Aye N, for each

HeA then 4eNp < G and we have a contradiction. Thus there exists H, € A
with 44 = A. Then 6 < $, and, with respect to the validity of the converse
inclusion, ® = $, € A.

1.16. Corollary. If L € G then every element of L is the l. u. bound of a set of
completely V-irreducible elements.

2. DIRECT PRODUCT IN THE CLASS G

N = {P} U {Nwp[X]; # < X < P} is an easy consequence of Np = (w,[P])
and 1.11(i).

2 1. Lemma. Let us take a poset P, a final segment Q in P, A EDQ {0} and
= (P — Q) U A. Then the assertions (i), (ii), (iii), are true.
(i) BeNp=>AeR,.

(i) Besp[P]= Aegy[Q].

(i) Be wp[P]=> Aewy[Q] -

Proof. Suppose that BeNp. B = P implies 4 = QeNRy. If B< P then B =
= Nwp[X] for a set X, 8 = X < P. Since A # 0 there is ae A < Nwp[X] and we
obtain X < &pa; thisand epa = Qgive X S Q. Then 4 = BN Q = Nwp[X]n Q0 =
= Nwy[X] eN,.

If B e &p[ P] then there exists a € P satisfying B = £pa. By P — Q < Band a¢ B
‘we obtain ae Q. Then 4 = Bn Q = gpacgy[Q].

If Be wy[P] then B = wpa for an element ae P. As Q is a final segment in P,
BcAc Qand A S wpa, we haveae Q and A = wpan Q = wgae wg[Q]

2.2. Lemma. Let P be a poset, Q a final segment in P, Ac Oy — {0} and let B =

= (P — Q) v A satisfy wpA = B. Then the assertions (i), (ii), (iii) hold.
() AcRy= BeR,.

(i) 4ego[Q]= Beep[P].

(i) 4 € wy[Q]= Be wp[P].

Proof. Let us assume that 4eNy. 4 = Q implies B = PeN,. If A = Q then
A = Nwy[X] for a nonempty set X = Q. 4 < Nwp[X] is true evidently. For each
be P — Q there is an a€ A such that b < a because wpd = B. Hence b e Nwp[X]
and also P — Q < Nwp[X]. We have proved B = Nwp[X]. This inclusion and the
obvious validity of its converse give Be R;.
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IfAeeQ[Q] then there is an ae Q with 4 = z,a. As a £ b for all beP — Q,
we get P — O S £pa. By this and by £a N Q = £ya We obtain &a = (£pa N Q) U
v@Ean(P— Q) =A4u(P— Q) = B which proves Bezp[P].

If Ac wg[Q] then 4 = wga for some ae Q. For every be P — Q there exists
ce Asuchthatb < c. As simultaneously ¢ < q,itholdsb < aand we have P — Q =
< wpa. This and wga = wpa n Q imply B = wpae wp[P].

2.3. Definition, Let / be a chain and {P;; i € I} a system of nonempty posets. We
denote by ) P, the disjoint union |J P, partially ordered in the following way. For
iel

iel
arbitrary elements a, b€ |J P; there are j, keI such that ae P;, be P,. We put
iel

asbifj=kandacwpborifj<k.
The poset Y P, is called an ordinal sum of {P;; ieI}. One can write Py + P,

iel
instead of Y P,.
ie2
24. Lemma. Let P = ) P;, AcOp,jeland A; = P; N A. Then (i), (ii) are true.
iel
(i) 9 A;=> P, S A for each i < j.
i<j
25. Lemma. Let P =) P;,, AcOp, jel and Aj=P;nA. If 0c A;c P,
iel
then the assertions (i), (ii), (iii) hold.
(i) AeNp<=>4;,eN,,.
(ii) Aeep[P]<> A;eep[P;].
(iii) A€ wp[P]+ A;ewp[P)].
Proof. f weput Q =) P,and R=P — Q then P=Q + Rand R=P; +

i<j
+ (R - P).

(1) AjeN,, < A;€Ny: Since 4; < P, it holds 4;e Ny, iff 4; = Nwp [X] for
aset X,0 c X c P;. Thisis equivalent to 4; = Nwg[X] € Ny regarding wp,a = wpa
for each ae X and P; S wga for each ae R — P;.

(2 A;jeap[P;]<> A;e0p[R] fora =& w0 : apa = agaforallaeP;and 4, =
< P;c agaforallaeR - P;.

(3) 4;eNg <> 4 €N, follows immediately by 2.1(i) and 2.2(i).

(4) A eap[R] <> Aeap[P] for « = &, 0™ is a consequence of 2.1(ii), (iii) and
2.2(ii), (iii).

By (1), (3) we obtain (i) and (2), (4) imply the statements (ii), (iii).

2.6. Lemma. Let A be an initial segment in P =Y P; with the property P, A€
iel
€ {9, P;} for each i € I. Denote by (%) the following condition. There is k € I such that P,
has a least element 0, A = wpo and A has ot a greatest element.
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Then A € (8p[P] n wp[P]) — R if () is true and A € N, otherwise.
Proof. Itholds P = 4 + Rfor R=Y) P, where J = {i; iel, P,n A = B}.

ielJ
If R = @ or if A has a greatest element then, clearly, A € R;.

Suppose that R # 0 and A has not a greatest element. By the assumption that R
has not a least element we obtain 4 = Nwp[R] e Np. If R has a least element o
then J has a least element k and o is a least one in P,. As o is comparable with all
elements of P, we have 4 = £p0 = wp0 € &[P] N wz[P]. Let us admit that 4 € Np.
Then A = Nwp[X] for some set X = P. For each ae X it holds a ¢ 4 because A
has not a greatest element and g is an upper bound of 4. Hence o € wpa and we
obtain 0 € Nwp[X] = 4, a contradiction.

2.7. Corollary. Let P be a poset. Then 8 € (85[ P] N wp[P]) — R, if P has a least
element and 9 € Np otherwise.

2.8. Definition. If 7 is a chain and I' = {P;; ie I} a system of nonempty posets
then we put Io(I') = {i; P, has a greatest element and there is i” satisfying i < i”,
P,. has a least element}. Let Jo(I') be a set disjoint with I for which there is a bijection
"1 I(T) = Jo(). Let the chain J(I') = Jo(I') v I be an extension of I with the
property i < i’ < i" for all ie I,(I'), i <i" in L

The ordinal sum of the system {P;; j J(I')}, where P, is an antichain {a;, b}

for each je Jo(l‘) is said to be an ordinal m-sum of I' and denoted by Z;P, One

can write P, + P, instead of ZP‘
ie2

2.9. Lemma. Let A be an initial segment in P = ) P, satisfying P, A€ {9, P}
iel

Jor eachie I. Then A ¢ N, if and only if there is k € I such that P, has a least element o
and A = wpo.

Proof. Let us denote I' = {P; ie I}.

If there is k € Jo(I') with 8 < P, n A = P, then A € {wpay, wpb;} S Np. Suppose
that P, n A€ {0, P;} for each ie J(I'). Regarding 2.6, it is sufficient to prove the
equivalence (a) <> there is k € I such P, has a least element 0 and 4 = wpo.

(o) implies that P, has a least elemént 0 and A = wp o for some & € J(I'). Since P,
has not a least element for each i € Jo(I'), it holds k € I. '

If there exists k € I such that P, has a least element 0 and ‘4 = w0 then A4 has
not a greatest element: Let us admit that i is a greatest element in 4. Then we can
find /, ! < k in J(I') such that i is the greatest one in P,. As / € I is obvious, we have
I <k in I, P, has a greatest and P, a least element. Thus there is /' € Jo(I') with
!l < l' < k in J(I'), a contradiction.

2.10. Theorem. If P = Y P, then Gs(P) = [] Gs(P).
lel iel
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Proof. Let us put /6 = (6,);er Where

&, = <{P, N A; Ae ®} — {0} if P, has a least element 0 and wj 0 ¢ 6,
! {P, n 4; A € ®} otherwise ’

for an arbitrary ® e Gs(P).

(1) &, Gs(P,) for each iel: By Pe® and # = P, = P, n P it follows that
P,e ®,. Because of 0 < P, wpa = wpa and wpae ® for all aeP;, it holds
wp[P;] € ®,. The inclusion &, = Op, is true trivially. If 6§ < A, = &, then there
is¥U, 0 c A = G, with the property A, = {P, n 4; A € A}. By this we obtain NA, =
=N{PNnA AecU} =P,nNAe{P,n A; Ae®}. If P, has a least element o
and wpo ¢ ® then 8¢ A, and we have o € A for each 4 € A;. Hence § = NY; and
also N, € 6,.

(2) 1 is an embedding of Gs(P) into [] Gs(P,): Regarding (1) and the fact that : is

iel
isotone it is sufficient to prove ® & § = there is k € I having the property 6, ¢ 9,

for all ®, $ € Gs(P).

Thus, let Ae® — $ for some G, H e Gs(P). Then I # 9, A ¢Np and, by 2.9,
one of the following possibilities arises.

(a) There is k € I such that P, has a least element 0 and 4 = wpo.

(b) 9 =« P, A c P for an index ke L.

In case (a) we have wp0€e ® — $ and it follows that 8 € G, — 9. If (b) is true
then P, N A € 6,. If we admit P, N 4 € $, then there is B e § satisfying P, n B =
= P, N A. By this and by 2.4(ii) we obtain A = B e § which is a contradiction.

(3) 1 is a surjection: Let us denote I' = {P;; iel} and Q; = ), P; for each
! . Jjea )i
i e I. Choose (9));c; € [] Gs(P)) arbitrarily and put
iel

G=Nu{0, +A4;,4€H, — (P}, iel}.

® € Gs(P): The inclusions {P} U wp[P] = 6 = O, hold obviously. We prove
that G is multiplicative. Let A, 8§ < A = G, be arbitrary and let 4 = NA. With
respect to Np = ®, 2.9 it is sufficient to investigate the possibilities (a), (b) from (2).
If (a) is true then 4 = &po. Thus it follows 4 € A = G by 1.7(iv), 1.4(iii). In case (b)
denote B = {B; BeW and P, ¢ B} and B, = {P, ~ B; BeB}. Then, clearly
B #0 # B,. For an arbitrary B, € B, we can find Be®B such that B, = P, N B.
If Be M, then B, e Np, — {Pi} = H, — {P,} regarding 2.5() and B, = P,. If B¢ N,
then there are ie I, Ce H; — {P;} with the property B = Q; + C. This and B =
=0+ B,,0c B,c P, givei =k and B, = Ce $H, — {P,} by 2.4. Hence B,
S H —{P}and 4, =P,NnA=NB,eH, — {P,}; we have 4 = @, + 4, € 6.

(®)ier = (Dier: Let ie I and 4 € B, be arbitrary.

A = P;implies A € §;.
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By# c A c P,weobtain A = P, Bfor some Be ®. f BeNpthen Ae R, =
< %, according to 2.5(i). If B = Q; + C for some jel, Ce $; — {P;} then j =i
and 4 = Ce $, regarding 2.4.

Assume that A4 = 0. Then either P, has not a least element or P, has a least
element 0 and Q; = w0 € G. In the first case 4 eRNp, = H; by 2.7. In the second
one Q,¢ N, according to 2.9. Thus, there are je I and Ce $; — {P;} with the
property O, = Q; + C. Hence j = i and C = A so that 4 € §,.

If we consider an arbitrary element 4 € §, then one of thecases 4 = P,,0 c 4 c
< P;, A = Barises. A = P, e ®, with respectto (1). If0 ¢ A = P;then B = Q, + A
and 4 = P, Be ,. By A = 9 it follows that Q, € ® and by this 4 € G,.

2.11. Corollary. G = IIG.

3. THE CONCEPT OF A SIMPLE POSET

3.1. Definition. Let P be a poset. We say that an ordered pair (g, a') of elements
of P is a twin-pair in P whenever a £ x <> x < a' for each x € P.

We put Up = Vp U W, where V, is the set of all first members of twin-pairs
in P and W, is the set of all such elements of P which are comparable with all elements
of P. Clearly, Vp = {a; a€ P and £pa € wp[P]} and W = {a; a€ P and &pa = wpa}.

3.2. Lemma. V, = U, n IR, for every poset P.

Proof. Let a € Vp be arbitrary. One can find a’ € P such that (g, a’) is a twin-pair
in P. Suppose that B < P satisfies VpB =a. If a¢ B then a £ b and thus b < a’
for all b € B. This implies a = VpB < a'. But then @’ £ a’ by the definition of a twin-
pair which is a contradiction. Hence @ € B and we have proved a€IR,, Vp < IR,.
That is why Vp € Up N IR,.

Let us admit that there is an element ae (Up N IRp) — Vp. Then £pa = wpa
regarding a € Up — V, = W, and because of a € IRp, Vpwpa = a is not true. Thus,
there exists an upper bound b of w; a with the propertya £ 6. If b < athenbe wpa
and, further, £pa = wpa = wpb. That means a € V, which is a contradiction. In case
b & ait holds b € 8pa — wp a; this contradicts a e Wp.

3.3. Definition. We say that (R, C) is a suitable pair in a poset P if the assertions
(i), (ii) hold.

(i) IR, =€ Rc P.

(i) UunRcs Cc R _

We denote by S(P) the set of all suitable pairs in P ordered in the following way.
(R;, C)) £ (R,, Cy)if R, € R, and C, < C, for arbitrary (R,, C), (R;, C;) € S(P).

3.4. Theorem. If P is a poset then S(P) =~ 2% x3'x2’ where H = Up — IR,,
I=P—(UPUIRP)andJ=IRP‘-UP.
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Proof. For each (R, C)e S(P) put (R, C) = ((kaerts (Maer> (Mo)aes) in such
a way that

0 for a¢ R 0 for a¢ R 0 for a¢ C
k, = s m, =<1 foraeR—-C}; and n, = .
1 for ae R 2 for ae C 1 for aeC

1 is an embedding of S(P) into 2# x 3! x2’: It is evident that ¢ is isotone. Let us
thus suppose that (R,, C,) £ (R, C,) for some (R, C,), (R;, C;) € S(P).

If there is ae R, — R, then a ¢ IR, and either a € Up or a ¢ Up. In the first case
we have a e Up — IRp; by this we obtain k, = 1 in «(R,, C)), k, = 0 in 1(R,, C,).
In the second oneae P — (Up U IRp), m, > 0 in (R, C;) and m, = 0 in i(R,, C,).

Let there exist ae C; — C,. Since UpnIR, € Upn R, = C, and a¢ C,, it
holds a¢ Up N IR,. Thus, exactly one of the assertions ae Up — IRp, ac P —
— (UpUlIRp), a€lRp — U, is true. In the first case ae C; =>ae R, a¢ C, =
=a¢Upn R, and, as aeUp, it holds a¢ R,. Hence ae R, — R, and we have
k, =1 in «(R,, Cy), k, = 0 in «(R,, C;). In the second one it holds m, = 2 in
i(R,, Cy), m, < 2 in 1(R,, C;) and in the third one n, =1 in (R, Cy), n, =0
in i(R,, C,).

We have shown that each possibility gives «(R,, Cy) £ (R,, C,) which proves
the statement.

1 is a surjection: Let us put R=IR, u {aeH; k,=1}u {ael, m, 2 1} and
C=UpnIR) U {aeH; k,=1}u{ael; m,=2}u{aet; n,=1} for an
arbitrary element 7 = ((Koacrs (Moacr> Maaes) € 2 x 31 x 27

IR, < R < P is true obviously. This, Uy n R = (Up nIRp) U {ae H; k, = 1} =
< C and C < R imply (R, C) € S(P). It is now easy to verify that (R, C) = =.

In the following we shall need some corollaries and nonessential modifications
of statements from [2]. For a better understanding of the text we introduce all
of them consecutively.

3.5. Lemma. ([2], 2.10(i), 2.11) Let P be a poset and ® € Gs(P). Then the asser-
tions (i), (ii) hold.

(i) wp: P— G is an embedding.

(ii) IRg and Pg are subsets of wp[ P].

3.6. Theorem. ([2], 4.7, 4.10, 4.13) Let P be a poset and R, C subsets in P. Then
(R, C) € S(P) if and only if there is ® € Gs(P) satisfying IRg = wp[R], Py = wp[C].

3.7. Lemma. ([2], 3.4, 3.5) Let P be a poset, ® € Gs(P) and a € P. Then the asser-
tions (i), (ii) are true.

(i) wpaelRg <> wpac ®.

(ii) wpae Py <> pae 6.

3.8. Corollary. If P is a poset and ©,$H e Gs(P) then 6 = = IRy < IRy,
Pg S Py,
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Proof. Suppose that G < $. If 4 €IRy then there is a € P such that A='w,a
according to 3.5(ii). By this and by 3.7(i) it follows that w7 a € ® and this gives w;a €
€ 9. Then 4 = wpaeIRy by 3.7(i) again. The inclusion Py & Py, can be proved
similarly using 3.7(ii) instead of 3.7(i).

3.9. Corollary. IRy, = wp[IR;] and Py = wp[Vp] for every poset P.

Proof. If P is a poset then there exists (R, C) € S(P) with the properties wp[R] =
= IRy, wp[C] = Py by 3.6. (Ry, Cp) = (IRp, Vp) is the least element in S(P) regard-
ing 3.2. From this and 3.6 it follows IRg = wp[Ro], Py = wp[C,] for some & e Gs(P).
According to R, = G and 3.8 we obtain wp[R] = IRy S IRy = wp[Ry], wp[C] =
= Py € Py = wp[Cy]. Then (R, C) £ (Ry, Co) by 3.5(i) and, immediately, (R, C) =

= (Ro, Co)-

3.10. Corollary. Let P be a poset. Then the asserttons (i), (ii) are true

(i) ¢pa¢Np<>aeP — Vp.

(ii) There is a bijection of P — Vp onto Ac,,(p,

Proof. It follows by 3.9 and 3.5(1) that wpae Py <>aeV,. This and 3.7(ii)
give £pa € Np <> a € V, which is equivalent to (i). '

The proof of 1.9 and (i) imply A&, ;) = {Op — {£pa}; ac P — V,}. By this and
by 1.7(i) we obtain (ii).

3.11. Definition. If P is a poset and Q < P then we put $2 = {4; 4 €O, and
wpac A=>aeAforallaeP — Q}.

3.12. Lemma. Let P be a poset and Q < P. Then H% = (HD).

Proof. P e $2 holds trivially. $2 is multiplicative: Let us take %, 6 = A < H%,
arbitrarily. If wpa = NYU for an element ae P — Q then wpa < A and ae A for
each A eU. Thus ae NY.

3.13. Lemma. ([2], 3.11, 3.12, 3.13) Let P be a poset and IRp & R < P. Then the
assertions (i), (ii), (iii) hold.
(i) 97 € Gs(P).
(i) IRy = wp[R] = Pyx.
(i) IRg S wp[R] < 6 C 95 for all ® € Gs(P).

3.14. Definition. Let P be a poset and (R, C) e S(P). We put 3p(R, C) = $} —
- EP[R - C].

3.15. Theorem. Let P be a poset and (R, C) € S(P). Then the assertions (i)—(iv)
are true.
@ Jp(R, C) e Gs(P).
(ii) IRy, z,c) = wp[R]-
(iii) Py,x,c) = @p[C].
(iv) IRg. S wp[R] and Py < wp[C] <> G < Jp(R, C) for all G e Gs(P)
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Proof. (1) If £,a € N, then ae V, by 3.10(i)) and a e C as V, = T by 3.2. Hence
&[R—- C]AN, =0 and we obtain Jp(R, C) = HF — g[R — C] € Gs(P) using
3.13(i), 1.7(ii) and 1.8. _

(2) 8[R — C] nw;[P] =9: Let ae R — C be arbitrary. Thena€ R, a¢ Up n
A R and for this reason a ¢ Up 2 W,. Hence w;a < &pa. If we admit &pa € o [P]
then 2,a = wp b for an element b € P. This is equivalent to a £ x <> x < b for all
x e P and it gives a = b. But then £,a = wp a which is a contradiction.

B R={aeP; wpacIRyr} = {aeP; wyaeH}} = {a e P; wpa e Jp(R, C)}
according to 3.13(ii), 3.5(i), 3.7(i) and (2). By wpa e Jp(R, C) <> a€ R and by 3.7(i)
we obtain (ii). Similarly, 3.13(ii), 3.5(i) and 3.7(ii) imply R = {a € P; &pa € H}} so
that C = {a e P; gpa € Jp(R, C)} regarding 1.7(i). This and 3.7(ii) give (iii).

(4) Let us take G € Gs(P) arbitrarily. < (R, C) implies IRg = wp[R], Pg &
< wp[C] according to 3.8 and (ii), (iii).

If IRy S IRy, (r ¢, then IRg < wp[R] by (ii); this and 3.13(iii)) give & < H7.
If, moreover, Py S Pqy,x,c, then Py < wp[C] with respect to (iii). By this and by
3.5()) we obtain wpae Pg<>ac C. Then gpae ® <> aec C by 3.7(ii) and, clearly,
® n &[R — C] = 0. We have proved 6 < HF — &[R — C] = Jp(R, C).

3.16. Corollary. 3p: S(P) = Gs(P) is an embedding for each poset P.

Proof. Let a poset P and (R,, C,), (R,, C;) € S(P) be arbitrary. Regarding 3.5(i)
it holds (R;, C)) £ (R;, C;) iff wp[R,] < wp[R,] and wp[C,] € wp[C,]. This
assertion is equivalent to IR, ,.c,) S @p[R:] and Pq,r,,c,) € @p[C,] by 3.15(ii),
(iii) and this is true iff Jp(R;, C;) € Jp(R;, C;) by 3.15(iv).

3.17. Definition. A poset P is said to be simple whenever Jp: S(P) — Gs(P) is
a surjection.

We denote by Py the class of all simple posets and by Gg the class of all complete
lattices isomorphic to Gs(P) for some P € Ps.

3.18. Corollary. If P is a simple poset then Gs(P) = 2% x3'x2’ where H =
=UP“IRP,I=P""(Upump)and-’=mp "Up.
Proof. This is a consequence of 3.16, 3.4.

3.19. Theorem. Let P be a poset. Then the assertions (i), (ii) are equivalent.

(i) Pe Zs.

(i) Op = Np U [P} U 0 [P].

Proof. Assume that there is 4eOp — (Np U &[P] U wp [P]). If we denote
G =N, 4> and = 6 — {4} then $ e Gs(P) by 1.14. Let us admit that He
€ 3p[S(P)]. Then $ = Jp(R, C) for some (R, C)e S(P) and IRy = wp[R], Py =
= wp[C] according to 3.15(ii), (iii). By this and by 3.7(), (ii), 3.3() we obtain R =
={aeP; wpac9}, C={aeP; spaecH}. This and WpaeH > w,ae®, gpae
€ $ <> gpae G for each a € P imply IRy = wp[R], Py = wp[C] regarding 3.7(i), ().
Then 6 < $ by 3.15(iv) which is a contradiction; hence $ ¢ 3p[S(P)] and also P ¢ ;.
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Suppose that P ¢ #5. Then there exists ® € Gs(P) — Jp[S(P)] and we can find
(R, C) € S(P) such that IRg = w,[R], Pg = @p[C] by 3.6. From this it follows

L@ 3G <« g€ Jp(R, C), w;ae® e wyaeJp(R,C)

according to 3.15(ii), (iii), 3,7(i), (ii) on the one hand and ® = Jp(R, C) by 3.15(iv)
on the other hand. As we suppose ® # Jp(R, C), [there is A€ Jp(R, C) — 6. By
this, (a) and N, < 6 we get 4 € Op — (Rp U &[P] U 0 [P)).

Figure 1

3.20. Example. By means of 3.19 one can easily see that the posets P?, P* from
Fig. 1 are simple. Regarding 3.18 and Uy = {a,b}, IRp. = {a,b,c}, Ups =
= {a,b,c} = IRp, it holds Gs(P?) = 29x3%x2(} ~ 2 and Gs(P?) = 29 x 3 x
x2% ~ 3.

3.21. Theorem. G5 = I1{2, 3}.

Proof. Gg = II{2, 3} according to 3.18.
If L e T1{2, 3} then there are ordinal numbers p, v satisfying L = 2* x3". Let us

put x =p+v, P,=P>fori<p, Pi=P for py<i<xand P=) P, Then
iex
Gs(P) = [] Gs(P) = 2*x3" = L by 2.10 and 3.20.

iex

Pe Ps: Choose A €D, arbitrarily. With respect to 2.9 it holds 4 € RN, in all
cases except (a), (b) from 2.10(2). The possibility (a) does never arise because P,
has not a least element for all ie . If (b) is true then there is k € ¥ such that
#cP,nAcP,. By P,e{P? P’} c #5 and by 3.19 it follows P, " AeR,, U
U &p,[P] U wp[P]. This gives A e R, U &[P] U 0, [P] regarding 2.5 and then
Pe Pg by 3.19.

The following example is a negative answer to the question whether Gs(P) e
€ Gy = P € P for each poset P. '

3.22. Example. Consider the poset Q from Fig. 2and put 4 = {aq, b}, B = {a, b,d},
C={a,c,d},D=1{ab,c,d},E={ab,c,d, e} One can easily verify that Gs(Q)
is the complete lattice from Fig. 2 where, for example, the generating system R, U
U {4, C} is denoted by 4, C.

Gs(Q) € Gy obviously and, at the same time, Q ¢ #5 by 3.19 because 4 € O, —
— R v 5[ P] U wp[P)).
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Figure 2

4. COMPLEMENTATION IN THE CLASS G

4.1. Lemma. Let P be a poset, AcOp — Np and & = (Np, A). Then & has
a complement in Gs(P) if and only if A€gp[P — Vp).

Proof. If A¢&p[P — Vp] then A ¢ &;[P] according to 4 ¢ N, and 3.10(i). This
and 1.7(iv) give 4 ¢ IR}. Then there is a system B, 8 = B < O, satisfying 4 =
= NB, 4 ¢ B with respect to 4 = P and 1.4(iii). Let us admit that ® has a comple-
ment H in Gs(P). Then O, =6 VH = {CnD; Ce® and DeH} by 1.133).
Especially, for each BeB there are Cze ®, Dye H such that B = Cz n Dy. By
this, A « B< Cp and 1.13(ii) we have CzeM, = H. We obtain consecutively
" BeH, BcH and A€ H. But then A€ ® n H = N, which is a contradiction.
 If Aeg[P — V;] then there is ae P — V, such that 4 = ¢pa. Put §, = $571
and H = (N U H,).

® v H = Op: It is sufficient to prove that O, =€ G v . For the sake of this let
us take B e Op arbitrarily. If wya < B=>aeBthen BeH, = H< GV H. In case
wpa S B, a¢ B denote B, = Bu {a}. Then B,eH,< $ and B = gan B, e
eG vy

®NH=N,: We prove the inclusion & N H = N,. Thus, let BeSG N H be
arbitrary. Since Be ® and & = (RN;, £,a), there are C, € N and D, € ({epa}) =
= {P, &pa} with the property B = C; n D, by 1.12. If B = C, then BeR,. If
B < C, then D, = &pa, a is the least element in C; — B and, clearly, wpa = B.
Regarding 1.12 and 3.12, § = {Cn D; CeRNp, De $,}. By this and by Be H we
obtain B = C, n D, where C,eRp, D, €9H,. Since wpa< B< D,, we have
aeD,; this and a¢ B give a¢ C,. Then B= C, n C,, a is a least element
in C, — B and a¢ C,. It is now obvious that B = C; N C, €R,.
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4.2. Definition. We denote by G, the class of all complete lattices L e G such
that each element of IR, has a complement in L.
The class of all posets P satisfying Gs(P) € G, will be denoted by Z..

4.3. Theorem. Let P be a poset. Then the assertions (i), (ii), (iii) are equivalent.
(i) Pe ..

(i) Op = Np U £ P].

(iii) Gs(P) = 2PV~

Proof. (i) = (ii): If there is 4€Dp — (RNp U &[P]) then (Np, 4D €IRg,p)
by 1.15 and {Np, 4A) has not a complement in Gs(P) according to 4.1. Hence P ¢ 2.

(ii) = (iii): If Op = Np U £p[P] then Op — Np = [P — V] regarding 3.10().
By this, 1.7(i), (iv) and 1.8 it follows that the map 1: 2°7Y? — Gs(P) defined by 1X =
= N, U gp[X] is an isomorphism.

(iii) = (i) holds trivially.

‘4.4. Theorem. G = I1{2}.
Proof. Gc € IT{2} is true by 4.3. The validity of the converse inclusion can be
verified by the method used in the proof of 3.21. )

4.5. Definition. We denote by 2 the class of all posets with a trivial (one-element)
gs-lattice.

4.6. Theorem. P € P <> Op = N, for each poset P.
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