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Let 2 and J be the class of all partially ordered sets and topological spaces in the
sense of Cech, respectively. Consider a mapping F: # — J such that for every
(4, =) e 2, F(4, <) is a topological space with the underlying set 4 and with a topo-
logy convexly compatible (or convexly weakly compatible) with the ordering <,
(for these notions, cf. [3]). Such a mapping will be called an a-mapping (or a f-map-
ping, respectively) provided that F is a covariant functor of the category B of all
partially ordered sets with isomorphisms as morphisms to the category ¥ of all
topological spaces with homeomorphisms as morphisms, putting F(¢) = ¢ for
every ¢ € Mor . Denote by a(#, 7°) and f(#, ) the class of all a- and f-mappings,
respectively. On these classes there can be defined an ordering relation in a natural
way. The aim of this paper is to investigate some properties of the partially ordered
classes a(2, 7), f(2, 7). The idea of the investigation came from [2].

1. PRELIMINARIES

For the sake of completeness let us recall some definitions introduced in [3].
Denote by 2° the system of all subsets of a set P.

1.1. Definition. Let P be a given set. A mapping u : 2° — 27 is said to be a topology
on P, if the following three axioms are satisfied:

(1) ug =9,

(2) Mc P=> M < uM,

G MycM,cP> uM, < uM,.
If u is a topology on P, the pair (P, u) is called a topological space The system of all
topologies on P is denoted by T(P).

1.2. Definition. 4 set O < P is said to be a neighborhood of an element’ x € P
in the space (P, u), if x ¢ u(P — O). The notation D(x) is used for the system of wall
neighborhoods of x in (P, u).
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The following statement enables one to introduce a topology into a set P

(f. [1], 4.1).

1.3. Theorem. Let P be a set and let D(x) be a nonvoid family of subsets of P,
assigned to each element x € P, satisfying:

(1) Oe D(x)= x€ O,

2) O 0,, O€ D(x)=> 0, € D(x).
If we define a mapping u :2F — 2% in such a way that x e uM(M < P) if and only
if P — M ¢ D(x), then u is a topology on P and for each x € P it is D(x) = D(x).

1.4. Definition. Let (P, u), (Q, v) be topological spaces, ¢ a mapping of P to G.
Then ¢ is called a homeomorphism of (P, u) onto (Q, v) if ¢ is one-to-one, onto and
o(uM) = v(p(M)) for every M  P.

It is easy to verify that the following theorem holds.

1.5. Theorem. Let (P, u), (Q, v) be topological spaces. A one-to-one mapping ¢
of P onto Q is a homeomorphism of (P, u) onto (Q,v) if and only if D(¢(x)) =
= {p(0) : O € D(x)} for every x € P.

1.6. Definition. Let (A, <) be a partially ordered set. A topology u on A is said
to be convexly compatible with the ordering <, if it has the following property:

(x) If a, b € A and if U is a neighborhood of a with b ¢ U, then there exists a convex
neighborhood V of a such that b ¢ V.

1.7. Definition. Let (A, <) be a partially ordered set. A topology u on A is called
convexly weakly compatible with the ordering <, if it has the following property:

(B) If a and b are comparable elements of A and U is a neighborhood of a with b ¢ U,
then there exists a convex neighborhood V of a such that b¢ V.

Let (4, <) be a partially ordered set. Denote by a(4, <) and (4, <) the set of all
topologies on 4, which are convexly compatible and convexly weakly compatible with
the ordering <, respectively. Clearly a(4, £) < B(4, £) = T(A). For u, v e T(A) set
u < vif and only if uM < vM for every M = A. Then T(A), and hence also a(4, <)
and B(4, <), turn out to be partially ordered sets. The following theorems hold
(1.8 is easy to verify; for 1.9 and 1.10, cf. [4]).

1.8. Theorem. The set T(A) of all topologies on a set A is a complete lattice with re-
spect to the relation < defined above. A topology u is a meet of {u; : i€ I} = T(A)
if and only if one of the following two conditions is fulfilled:

@) uM = n{u,M : iel} for every M < A,

(b) D(x) = u{D,(x) : i€ I} for every x € A,
and dually for the join. The least element of T(A) is a topology u® such that i’M = M
for every M < A. The greatest topology u' satisfies u'@ = 8, u'M = A for every
B Mc A
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1.9. Theorem. Let (A, <) be a partially ordered set. The set B(A, ) is a closed
sublattice of the complete lattice T(A).

1.10. Theorem. Let (A, <) be a partially ordered set. The set a(A, £) is a complete
lattice. The meet of a nonempty subset {u, : i € I} of a(A, <) in «(A, S) is the same as
in the complete lattice T(A). The join w of {u, : i€ I} in a(A, <) can be described as
Jfollows: for each ae A,

D,(a) = {OeDya): 0> n{[V]: Ve D,Sa)}},
where v is the join of {u; : iel} in T(A) and [V] is the convex hull of V in (A, S).

Adopt the following convention: The meet and the join in T(4) will be denoted
by the symbols A, V, respectively; the symbol v* will be used for the join in a(4, ).

We shall need the following theorems (cf. [4]):
1.11. Theorem. The lattice (A, <) is completely distributive.

1.12. Theorem. If card A = 2, then the lattices a(A, <), P(4, £) have card A
atoms.

1.13. Theorem. Let ¢ be a cardinal number and let (A, £) be an antichain of the
cardinality &. Then the lattices «(A, £), (A, <) have E(¢ — 1) dual atoms.

2. THE PARTIAL ORDERING ON THE CLASSES a(2,9), J(#, T)

Let us denote by 2 the class of all partially ordered sets and by J~ the class of all
topological spaces. :

2.1. Definition. An a-mapping is a mapping F of P into I such that the following
conditions are fulfilled for each (4, <) e #:

(i) F(4, £) is a topological space with the underlying set A and with a topology
which is convexly compatible with the ordering < on A.

(ii) If ¢ is an isomorphism of (A, £) onto a partially ordered set (4,, <), then @
is a homeomorphism of F(A, <) onto F(A,, <).

A B-mapping is a mapping of P into F satisfying (i*), (ii) for every (4, S)e 2,
where (i*) is obtained from (i) replacing ‘“‘convexly compatible” by ‘‘convexly weakly
compatible”. :

We shall denote by a(2, J) and p(2, I) the class of all a- and f-mappings,
respectively. Clearly a(#, J) < B(#, 7). Elements of p(#, ) will usually be
denoted by capital Latin letters F, G, H and for the topology of F(4, <) and G(4, &)
and H(A, <) the notation f(4, <) and g(4, <) and A(4, <) respectively, will
used. o
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The classes a(?, ), (2, T) can be partially ordered as follows:

2.2. Definition. If F, Ge (P, T) or B(P, T), we put F £ G if and only if
f(4, ) < g(A, £) for every (4, S)e 2.

At first we will show that every subclass of a(£, ) has supremum and infimum
in a(#, 7) and analogously for f(2, 7).

Let F° F! be mappings # — J defined as follows: for every (4, <)e 2 itis
F°(4, £) = (4, u%, F'(4, £) = (4, u'), where u° is the least and u' the greatest
topology on A. It is easy to verify that the following lemma holds.

2.3. Lemma. Let F°, F' be mappings as above. Then F°, F* € a(P, I) and F° is
the least, F' the greatest element of (2, T).

2.4. Lemma. Let {F,; : i € I} be an arbitrary nonempty subclass of «(P, 7). Define
a mapping F © @ — T in the following way:

(4, 5)e 2= F(4, £) = (4, V*{fi4, £) : iel}).

Then Fe o(?, T) and F = sup {F, : i€ I} in the class a(P, T).

Proof. It is obvious that F satisfies (i). From the fact that each F; fulfils the condi-
tion (ii) from 2.1 it follows that F fulfils this condition as well. Evidently, F =
=sup {F,:iel}in (P, 7).

The proofs of the following two lemmas are straightforward.
25. Lemma. Let @ + {F,:iel}c «(P,T). Define a mapping G: P - J
as follows: _
4, 2)e 2= G4, 2) = (4, A{f(4, =) :iel}).

Then Geu(P,T), G =inf {F,;:iel} in the class (P, T).

_ 2.6. Lemma. Let 0 + {F,:iel} c (P, T). Define mappings F,G : 9’ -
as follows:

(4, S)e P=> F(4, S) = (4, V{fi4, S) i e},
G4, ) = (4, A{fid, ) :iel)).

ThenF,Ge f(?,T),F =sup {F;:iel}inf(#?,7),G = inf {F, : iel}in (2, 7).
Further we deal with the modularity and distributivity of the classes a(#, 9),

B2, 7).

" 2.1. Theorem. The partially ordered class oz(? T) does not satisfy the modular
identity.

"Proof. Let (4, <) be a partially ordered set representcd by the diagram in Flg.~1.
Define topologies u, v, w on the set 4 = {o, i, a, b, c} as follows:
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Dfa) ={0cA4:0>{o,a} or 0> {a,c}},

D@ ={0<cA4:05{ai}} ’

D(a)={0c A:0> {0,a}},

D(z) = DSz) =D,(2)={A)forze A,z + a.
i

o
Fig. 1

Then evidently the topologies u, v, w are convexly compatible with the ordermg on A
and it holds u < w, u V¥(v A w) % (u V) A w.

Define mappings F, G, H : # - J in the following way:

(1) If a partially ordered set (4,, £,) is isomorphic to (4, £) and ¢ is the unique
isomorphism of (4, <) onto (4,, £,), set F(4,, £,) = (4,, u,), G(4,, £,) =
(44, vy), H(A,, £1) = (4,, wy), where u,, vy, w, are the topologies on 4, such that
xed; = D,(x) = {0 4,:97(0) € Do)}, D, () = {0 < 4, : 9*}(O) €
e D(p ()}, Dy, (¥) = {0 < 4, : 9" 1O) e D (o (X))

(2) If a partially ordered sét (4,, <) is not isomorphic to (4, £), set F(4,, $,) =
= G(4,, £,) = H(4,, £,) = (4,, u®, where 0 is the least topology on 4,.

Obviously F, G, Hea(#?, ), F < H. Denoting the supremum (infimum) in
x(P, ) by the symbol V(A), we have (FV (GA H)(4, ) = (4, uVvi(v A w)),
(FVG)AH)(A, £) = (4, (u V) Aw), hence FV(GAH) + (FVG) A H.

Using 1.11 and 2.6, we have the following theorem.

2.8. Theorem. The partially ordered class (P, ) is completely distributive.

3. COVERING RELATION
Let F, G be a-mappings, F < G. If there is no element H e a(#, J) such that
F < H < G, then we shall say that F is covered by G or that G covers F and we shall
write F <*G. If F <*G, then the mapping G will be also called an atom over F
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and the mapping F a dual atom under G in a(#, 7). The class of all atoms over F
and dual atoms under Fin a(2, 7) will be denoted by #/.(F) and &/ /(F), respectively.
A similar terminology and notation will be used also for f-mappings.

In this section a necessary and sufficient condition for an a-mapping G to cover
an a-mapping F in a(2®, 7)) is given. An analogous result is proved for f-mappings.
It is shown that the classes o (F), os(F), o (F), o;(F) may be empty, but it can
also happen, that they are proper classes.

31. Lemma. If F,Gea(?,T), F <*G and for some partially ordered sets
Ay, £1), (42, S,) itis f(Ay, S) < g4y, S9), f42, £3) < g(4;, £3,), then
(44, £4) and (A,, <,) are isomorphic.

Proof. Suppose the assumptions of 3.1 hold but (4,, <,), (4,, £,) are not
isomorphic. Define a mapping H : # —» J as follows:

If a partially ordered set (4, <) is isomorphic to (4,, <,), we put H(4, <) =
= F(A4, £), in the opposite case we set H(4, <) = G(A4, £). Then evidently He
ea(?,J)anditis F < H < G, contrary to F <*G.

32. Lemma. If F,Ge (P, T), F <¢ G and for some partially ordered sets
(A1, S1), Ay, S,) itis f(4y, £)) < g(Ay, £1), fAy, £2) < 84z, £3), then
(4,, £,) and (A,, <,) are isomorphic.

The proof is analogous to that of 3.1.

Let (4, £) be a partially ordered set and let u, v be topologies on 4 with u < v.
Consider the following condition for (4, <), u, v and y € {«, B}:

(p,) If wey(4, £) and u < w < v, then there exists an isomorphism of (4, <)
onto (A, <) which is not a homeomorphism of (A, w) onto (A, w).

33. Lemma, Let F,Ge (P, T), F <*G. If (4, L) is a partially ordered set
with f(A4, £) < g(4, <), then for (A, £), f(4, <), g(4, £), the condition (p.) is
Julfilled.

Proof. Suppose that f(4, <) < g(4, <) and that for some topology w € a(4, <)
with f(4, £) < w < g(4, £), every isomorphism of (4, <) onto (4, <) is a homeo-
morphism of (4, w) onto (4, w).

Define a mapping H : # —» J as follows:

(1) If (4,, £,) is a partially ordered set isomorphic to (4, <), take an arbitrary
fixed isomorphism ¢, of (4, <) onto (4,, <,) and set H(4,, <,) = (4,, wy),
where w, is a topology on A, defined in the following way:

x€Ad; = D,,(x) = {0 < 4, : ;' (0) € D, (97 ' (x))}.
(2) If (4, <,) is a partially ordered set which is not isomorphic to (4, <),

pl'lt H(Al’ .-S_l) = F(Ala él)'
To prove He a(2, J), it is sufficient to show that the condition (ii) of 2.1 is

fulfilled. Let ¢ be an isomorphism of (4;, <,) onto (4, <,). Two possibilities can
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occur: the partially ordered sets (4,, S1), (4,2, S,) are isomorphic to (4, S) or
none of (4,, <,), (4,, S,) is isomorphic to (4, £). In the first case we have
H(A,, £,) = (4,, w,), H(A,, <,) = (4, w,), where w, (i€ {1,2}) is a topology
on A, such that there exists an isomorphism ¢, of (4, S) onto (4,, £,) which is
a homeomorphism of (4, w) onto (4;, w)- Then ¢; ! o @ o @, is an isomorphism of
(4, <) onto (4, £) and hence by assumption @; ' o @ o ¢, is a homeomorphism
of (4,w) onto (4, w). Consequently, @z0@;'c@o@ op;! = ¢ is a homeo-
morphism of (4,, w,) onto (4,, w,). In the second case, H(4,, ) = F(4;, )
together with Fe a(2, ) implies that ¢ is a homeomorphism of H(4,, <,) onto
H(Az, é 2)'

Next we show that F < H < G. If (4,, <,) is a partially ordered set isomorphic
to (4, <), then h(4,, <,)is a topology on 4, such that there exists an isomorphism ¢,
of (4, £) onto (4,, <,) which is a homeomorphism of (4, w) onto (4,, h(4,, S,)).
Since F,Gea(#,7T), ¢, is also a homeomorphism of (4,f(4, S)) onto
(A,f(4,, £,))and of (4, g(4, <)) onto (4,, g(4,, S,)). Theinequalities f(4, S) <
<w< g(A’ §) lmply that f(Al’ §1) < h(Al’ .S.l) < g(Al’ él) When (Al» §1)
is a partially ordered set not isomorphic to (4, <), it is f(4,, S,) = h(4,, S;) £
é g(Al ’ é 1)'

We have a contradiction and hence the proof is complete.

The proof of the following lemma is analogous to that of 3.3.

34. Lemma. Let F,Ge (P, T), F <P G. If (4, £) is a partially ordered set
with f(A4, £) < g(4, £), then for (4, £), f(4, £), g(4, S), the condition (ps) is
fulfilled.

3.5. Lemma. Let F, G be y-mappings, y € {a, B}, F < G and suppose that the follow-
ing two conditions are satisfied:

(1) There exists a partially ordered set (A, ) with f(4, <) < g(A4, £) and for
(4, =), f(4, L), g(4, L), the condition (py) is fulfilled.

(2) If a partially ordered set (A, <) is not isomorphic to (4, <), thenf(A;, S,) =
= g(4,, <))

Then F =< G holds.

Proof. We prove the part of the statement concerning «-mappings. The proof
of the second part is analogous. Suppose a-mappings F, G with F < G satisfy con-
ditions (1), (2), but that it is not F =<* G. Then there exists an a-mapping H with
F < H < G. It follows the existence of partially ordered sets (4, S,), (43, £3)
with f(4,, ) < h(4,, £y), h(4,, £,) < g(4,, S,). By (2), the partially ordered
sets (4,, <)), (4,, <,) are isomorphic to (4, <). Let ¢, (i € {1, 2}) be an arbitrary
fixed isomorphism of (4, £) onto (4,;, <,). Since F, He «(?, ), ¢, is a homeo-
morphism of (4, f(4, <)) onto (4,,f(4,, S,)) and also of (4, h(4, S)) onto
(4, h(Ay, S,)). The inequality f(4,, <,) < h(4,, S,) then implies f(4, £) <
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f< h(A, £). The relation h(A4, <) < g(4, <) can be obtained analogously. Hence
f(A, =) < h(4, £) < g(4, £) and (1) implies the existence of an isomorphism of
(4, =) onto (A4, =) whichis not a homeomorphism of (4, /i(4, <)) onto (4, h(4, £)).
Since H is an a-mapping, we have a contradiction.

The following theorem is a straightforward consequence of Lemmas 3.1 —3.5.

3.6. Theorem. Let F, G be y-mappings, v € {a, B}, and let F < G. Then F is covered
by G in y(2, T) if and only if the following two conditions are satisfied:

(1) There exists a partially ordered set (A, <) with f(A, <) < g(A4, <) and for
(4, ), 4, ), g(4, L), the condition (p,) is fulfilled.

(2) If a partially ordered set (A,, <,) is not isomorphic to (A, <), then it is
(4y, 1) = g(4,, £y).

3.7. Corollary. Let Fe y(2,7), y€ {a, B}, and let F be not the least element of
WP, T). Then F is an atom of y(P, T) if and only if the following two conditions are
satisfied:

(1) There exists a partially ordered set (A, <) such that f(A, <) is not the least
topology on A and either f(A, <) is an atom of y(A, <) or for every topology w e
€ y(4, L) different from the least one, with w < f(A, <), there exists an isomorphism
of (4, £) onto (A, <) which is not a homeomorphism of (A, w) onto (A4, w).

(2) If a partially ordered set (A,, <,) is not isomorphic to (A, <), then f(4,, <)
is the least topology on A,.

If we choose one partially ordered set from every maximal class of mutually
isomorphic partially ordered sets, we obtain a proper class. Hence, by 3.7 and 1.12
we have:

3.8. Corollary. The class of all atoms of a(2, ) and the class of all atoms of
B(P, T) are proper classes.

3.9. Corollary. Let Fe y(?, 7), y € {«, B}, and let F be not the greatest element
of (2, F). Then F is a dual atom of y(#, ) if and only if the following two condi-
tions are satisfied: '

(1) There exists a partially ordered set (4, <) such that f(4, <) is not the greatest
topology on 4, and either f(4, <) is a dual atom of y(4, <) or for every topology
we y(4, £) different from the greatest one, with f(4, ) < w, there exists an iso-
morphism of (4, £) onto (4, <) which is not a homeomorphism of (4, w) onto (4, w).

(2) If a partially ordered set (4,, <) is not isomorphic to (4, <), then f(4,, <,)
is the greatest topology on 4.

Using 1.13, we have:
B 3,10. Corollary. The class of all dual atoms of a(2, I) and the class of all dual
atoms of (2, I) are proper classes.
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Next we shall show that the classes o(F), #s(F), (F), o 4(F) can be empty.

Let N be the set of all positive integers and let 4 = {x;:ie N} u {y,:ie N}.
Define an ordering relation on 4 in such a way that the set {x, : ie N}and {y, :ie N }
is the set of all minimal and maximal elements of A, respectively, and for ieN,yed
it is x; < y if and only if y € {);, 141> --+» Y2u~1}. Further consider a topology u
on A such that D(a) = {O = A : ae O, card O = N,} for every ae A.

3.11. Lemma. Let (A, <) be the partially ordered set and u the topology on A
defined above. Then u is convexly compatible with the ordering < on A and there is
no atom over u and no dual atom under u in both of the lattices a(A, S), P(A, ).

Proof. Every topology on A is convexly compatible with the ordering < on A.
Hence it is sufficient to prove that if v, is a topology on 4 with v, > u, then there
exists a topology w, on A4 such that vy; > w, > u, and the dual condition. .

If v, > u, then there exists a, € A4 such that D, (a,) = D(ay), D,,(a;) # D,a,)
and for every z€ A, z + a, it is D, (z) = D(z). Take an arbitrary fixed set Ue
€ D(a,) — D,,(a;) and define a topology w, on 4 as follows: D, (a;) = Da,) —
- {0cA:0cU 0 + U}, D, (2) = DJ2) for every ze 4, z # a,. It is clear
that < w, < v,. Since Ue D,,(a;) — D, (ay), and for arbitrary be U, b * a,
itis U — {b} € D(a,) - D,,(a,), we have u < w, < v;.

Assume v, < u. Then there exists a, € 4 such that D(a,) = D,,(a;), D(a;) +
+ D, (a,) and for every z€ 4, z # a, it is D(z) = D,(z). Take an arbitrary fixed
set Ve D,,(a;) — DJfa,) and define a topology w, on A in the following way:
D, (a,) = D,(a)) — {Oc 4:0 <V}, D,(2) = Dz) for every z€ A, z * a,.
Evidently v, < w, < u, butsince Ve D, (a;) — D,,(a,) and for arbitraryce 4 — V
itis ¥V u {c} € D,,(a;) — D,(a,), we obtain v, < w, < u.

Define the mappings F,, F, : # =+ J by the following rules:

(a) If a partially ordered set (4;, <,) is isomorphic to above-mentioned (4, <)
and ¢ is the unique isomorphism of (4, £) onto (4,, S,), set Fi(4,, £,) =
= F)(4,, £1) = (4, u,), where u; is the topology on A4, such that D, (x) =
={0 c 4, : 9~ (0) e D (¢~ 1(x))} for every x € A, and u as above.

(b) If a partially ordered set (4,, £,) is not isomorphic to (A4, <), set
F(4,, £)) = (4;,u'), F)(4,, £,) = (4,, u°), where u* and u° is the greatest
and the least topology on A,, respectively.

Obviously F;, F, e a(#, 9) and the following theorem holds.

3.12 Theorem. The classes s (F,), o s(F,), A F,), o )(F,) are empty.

Proof. We shall show, for example, that of.(F;) = 8. Suppose this is not the
case. Then there exists G € (2, J) with F;" <* G.-By 3.6 it must be u <.g(4, ).
Using 3.11 we obtain that there exists a topology w € a(4, <) such that ¥ < w <
< g(4, £). Again 3.6 ensures the existence of an isomorphism of (4, ) onto
(4, =) which is not a homeomorphism of (4, w) onto (4, w). Since the unique
isomorphism of (4, £) onto (4, <) is the identity mapping, we have a contradiction.
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