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ARCH. MATH. 2, SCRIPTA FAC SCL NAT. UJEP BRUNENSIS 
XVI: 67—80, 1980 

POLYNOMIALS OVER THE PERMUTATION 
GROUP OF THREE ELEMENTS 

YVONA COUFALOVÁ, Brno 

(Received March 26, 1979) 

The purpose of this paper is to determine the number of all the different poly­
nomials of two variables with all the coefficients equal to the unit of the group, over 
the premutation group of three elements. 

Let us first make a few remarks concerning the above problem. By a polynomial 
of n variables where n is an arbitrary positive integer over an arbitrary given group 
(G,.) we generally understand any mapping of the Cartesian product Gn into G, 
in the form 

k 

k is an arbitrary positive integer, ri9si9 ...9tt are, for I <i i £ k9 non-negative 
integers, a09al9 ...9ak are elements of the given group, called coefficients of the 
polynomial; xl9 x2> •••> xn> called the variables of a given polynomial, run over all 
the elements of the group (see e.g. [I]). To determine the number and the list of all 
the different polynomials, thus defined, over an arbitrary group seems a rather 
difficult problem. Trying to solve it, at least a part of it, I proceeded in the following 
way: first, I determined the number and the list of all the polynomials of n variables 
whose coefficients equal the unit of the group, over an arbitrary Abelian group with 
a torsion. The result is given in [2] and proves that the number of all these different 
polynomials equals the least common multiple of the orders of all the elements of the 
given group, raised to n. Further, I considered the number of all the different poly­
nomials of one variable with coefficients equal to the unit of the given group, over 
a non-Abelian group with a torsion. I arrived at the conclusion [3] that the number 
of all these different polynomials equals the least common multiple of the orders 
of all the elements of a given group. Furthermore, I considered the number of all the 
different polynomials of two variables with all the coefficients equal to the unit of the 
group, over a non-Abelian group of a small order. For that purpose I have chosen 
the permutation group of three elements, further denoted by (S3i.) or simply S3. 
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To determine the number of all these different polynomials is the principal object of 
this work. The result is presented in Theorem 1, §2. There is also the list of some 
of the different polynomials in question from which the procedure of determining all 
these polynomials follows (the complete list is in [4]). The number of all the different 
polynomials of three variables with coefficients equal to the unit of the group, 
over S3, is found in § 3; but there is no proof of this formula. The last paragraph 
of the present paper generalizes the above theory for an arbitrary positive integer/? 
and ends with a formula determining the number of all the different polynomials 
of n variables with coefficients equal to the unit of the group, over S3; there is no 
proof of the formula. 

Let us add that by a polynomial we mean, throughout the paper, a polynomial 
over the group S3, all the coefficients of which are equal to the unit of the group S3. 
The equality of two polynomials as well as the elementary notions concerning the 
group S3 are introduced in § 1. 

The problem was suggested to me by RNDr. Milan Sekanina, CSc, to whom 1 am 
grateful for valuable advice concerning the present work. 

§1 . T H E E Q U A L I T Y O F P O L Y N O M I A L S ; G R O U P S3 

Definition 1. Two polynomials f{xx, x2, ..., x.,), g(xx, x2, ..., xn) over the group S3 

are equal iff there holds, for any n elements at e S3, i = 1, 2, ..., n 

/(o.j.,0.2, ,.. ,a„) = g(a ] ? a 2 , ...,<xn). 

Let us denote the elements of the permutation group S3 of three elements as 
follows: 

/123 \ /123\ , /123\ /123 \ . /-123\ , / 123 \ 
e=\n*y a=\mr h=\^^^^ 

For the orders of the above elements there holds: 0(c) = 1, 0(a) = 0(b) = 0(f) = 2, 
0(c) = 0(d) = 3. Let us select, from the six possible pairs of generators of the 
group S3, for example, the pair a, c. There holds 

from which 

and therefore 

ca = ac2 

cam = amc2m 

I t n r - l 

^m„n\r ( a V ) r = amrc "J—i f o r m + 0 . 

Since a, c are generators of S3 and 0(a) = 2, 0(c) = 3, there holds 

(V x e S3) (3 m e {0, 1}) (3 n e {0, 1, 2}) [x = amc"]. 
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§2. P O L Y N O M I A L S / ( * - , *2) OVER 5 3 

Theorem 1. There exist exactly 62 . 33 different polynomials f(xt, x2) of two 
variables over the group S3. 

Proof. From the introduction of the present paper there follows that every 
polynomial of two variables over S3 has the form 

j(xi j x2) = xX . x2 . xt
2. x2 xt . x2

k. 

Since xt,x2 run over all the elements of S3, there holds f(xl9x2) = (amcn)ri. 
. (apcq)Sl . (amcn)r2. (apcq)S2 (amcn)rk. (apcq)Sk, where m, p e {0, 1} A n9 qe{0, 1, 2}. 

The valuesf(xX, x2) for m =}= 0 A p 4= 0, i.e., the following forms of the numbers 
22, 23, 24, 28, 29, 30, 34, 35, 36 in Table 1, can easily be determined by means of the 
formula 

f(xl9x2) = (amcn)ri (apcq)Sl ... (amcn)rk (apcq)Sk = 

müri + p £ 5,-

a . C 
E X P k 

where 

mUri+pH Si mHri + pUsi 

EXPfc = ( 2 * ' - 2 2 ' + ... + 2mrk +pSk - 2pSk) + 
2 r a - 1 

m)LГi+ pÎL. .v,- m E r i + p ï . .s 

+ — ? - (2 
2" - 1 

+ ... + 2 p Ѕ k - 1). 

Thus we get, on the whole, the following possibilities of the values of the polynomial 
f(xx, x2) = aExpfa. cExpft (we write only the exponents Exp / a, Exp / c): 

Table 1 

m n P E X P / a Exp / c 

1 0 0 0 0 0 0 0 

k 

2 0 0 0 1 0 z^« 
1 

k 

3 0 0 0 2 0 2 2>, 
1 

0 

k 

4 0 0 1 0 I> 
1 

0 
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Table 1 (Vorsetzung) 
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Table 1 (Vorsetzung) 

m n P ч Exp / в Exp / c 

33 1 2 0 2 2>. 
1 

k k k 

£ r, £ r, £ r, 

2.(2* — 1) + 2 . ( ^ 2 2 + í 2 2 3 + ... + **) 

34 1 2 1 0 
k k 

2>* + I>. 
i i 

k k k k 

£ r, + £ s, £ r, + £ s, 

2 . Q 1 * — 2 2 ł + ... + 2Я*+*'* — 2Я») 

35 1 2 1 1 
k k 

2>i + 2>. 
i i 

k k k k 

£ r, + £ s, £ r, + £ s, 

2 . 2 1 å — ( 2 2 "å — . . . 4 - 2 ^ — 1) 

36 1 2 1 2 
k k 

2>- + 2> 
i i 

k k 

£r ,+ £s , 
2 Д 2 1 * —1) 

If, for two polynomials f(xt, x2), g f o , x2) over S3, there holds f(xx, JC2) = 

= g(*i» #2)* then there must, by Definition 1, hold 

1 2 1 2 

(¥ m)(¥ n)(¥ /?)(¥ q)[(aV)fl . ( aV/ 1 ... ( a V f . (apcqfk « 
o o o o 

= (aV) t t l . (aV)"1... ( a V f . (apcq)Vkl 

thus 

so that 

дЕ*Р/« ^Exp/e __ Д Н*Р*« ^.Ezp,, 

[Exp / a ss Expffa (mod 2)] A [Exp / c = Exp g c (mod 3)]. 

Hence, from the conditions 1—36, we get exactly five independent conditions: 

k k 
A a : Z r i s £ Mf (mod 6), 

i 1 

ic k 

A2: £ S | S £ vt (mod 6), 
1 1 

4% k k k 

2*1 Zst £t>, £ 0 , 

kl:r%2% + r 2 2 2 + ... + r 4 2 * a a l 2
1 + w222 + ... + uk2Wk(mod3), 

k* k k k 

Zn £ r , £u, £»i 

A2: St22 + s 2 2 3 + . . . + s k s ^ 2 2 +t?223 + ... + vk (mod 3), 

£ r i + £ s , Xti + ^si . 

*. *>a * _ 2
2 2 + . . . + 2 S f c - l s 2 2 * - 2 2 2 + . . . + 2 * - l (mod 3). 

k k k k 

£ и , + £t?i £мi + £i?, 

As
2: 2 
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In fact, if we prove that the above 5 conditions are really independent, then the number 
of all the different polynomials of two variables over S3 will equal the number 

62 . 33 = 972. 

Now let us prove the independence of the conditions A\ — Al for k = 4, in the 
form: 

(i): £ r f = aj (mod 6), 
I 

4 

(ii): £s* = a2(mod6), 

(iii): r. 21 ' + rг 22 " + r3 2
Sз+S4 + r4 2

S4 - a3 (mod 3), 

iirt 
(iv): s. 22 + s2 2 r i + r 4 + s3 2'4 + s4 - a 4 (mod 3), 

4 4 4 4 4 4 4 4 4 
Zri + Zst Zrt + Xsi Xri + Usi Zri + Xsi r 4 + £ S / 

(v): 22 l - 2 2 2 +2" 2 -2* * +2 3 - 2 f 4 + S 4 + 2 J 4 ~ l s 

= a 5 (mod 3). 
Remark 1. Since 2" =s (-1)" (mod 3), there follows 2 0 d d m , m b e r == - 1 (mod 3) and 

2evcn number __ j ( m o d 3 ) 

The independence of (i)-(v) can be proved by finding their solution by means 
of the method of elimination: 

4 

From the equation (i) there follows rt == at - £ rt ( m o d 6). From the equation 

(ii) we get 
4 

sx ?= a 2 — X si ( m ° d 6). 
2 

The equation (iv) implies 

(a 2 - I s ;). 2 2 + s2 2 r > + r 4 + s3 2 - + s4 ̂  fl4 ( r a o d 3)> 

4 ŹГІ 
3+Г4 

2 

hence 

2r< Sr, 

s 2 ( 2 Г з + Г 4 - 2 2 ) s a 4 + 2 2 (а, + s4 - a 2 ) - j ^ ' . _ S 4 ( m o d 3). 

So that we have 

Şr, 
s2 . 2 Г З + Г 4 . (1 - 2 r г) - «4 + 2 ( j , + s4 - a 2 ) >. ^ , _ s + ( m o d 3 ) 
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Suppose r3 + r4 to be even and r2 odd, that is to say, rl9rl9 r4 will be chosen so that 
the above two conditions are satisfied. Hence we get 

s2 = - a 4 - 2s3 - 2s4 + 2a2 + s32
f4 + s4 (mod 3), 

s2 == — a4 — 2s3 — s4 + 2a2 + s32
r4 (mod 3), 

s2 = —a4 — 2s3 — s4 + 2a2 + s32
r4 + 3/. 

Consequently: 
s2 =- - a 4 + 2a2 - 2s3 - s4 + s32

r4 + 3/. 

From the equation (iii) there follows 
4 

(«i - 2 » . 2*2 + r2 . 2"fl4+3I+S3 + r3 . 2
S3+S4 + r4T* = a3 (mod 3), 

2 

for r4 #- 0. Let all the ri9 shat + 0. So that 

r2(2~*4+S3+31 - 2ar) s a3 + 2fl2. (r3 + r4 - fll) - r32S3+s<~ r42
S4 (mod 3). 

Now consider two cases according as a2 is even or odd. 

A. a2 even 
Furthermore, suppose — a4 + s3 + 3/ is odd. If it were even, then a4 in equation 

(iv) would be greater by 3. This would only change the parity of — a4 + s3 + 3/ 
because we should get — a4 — 3 + s3 + 3/, which would be odd. Consequently, 
whether a4, s3 is odd or even, we can arrange the expression — a4 + s3 + 3/ to be odd 
without changing the validity of the equation (i)—(v). Hence 

r2 = a3 + r3 + r4 - at - r32
83+S4 - r42

S4 (mod 3), 
so that 

^^as-a^rt + rt- r32*3+S4 - r42
S4 + 3/'. 

Since r2 is odd, the above equation is true only if the expression a3 — ax + 3/' is odd. 
If the latter is not odd, we change the parity by increasing a3 by 3. 

From the equation (v) there follows 

^odd + fl2 mmm ^odd—A4 + 3I+S3 i 2cven*"a-J + ^̂  + s3 ytv*n + ss + S4 , yr4 + ss + S4 

- 2'4+S4 + 2s* - 1 a a5 (mod 3), 

hence 
_ 2 * + " + 2r4+S3+S4 - 2r4+S4 + 2'4~l = a5 (mod 3), 

and consequently 

2s*. (1 - 2" + 2r4+H - 253) _ a5 + 1 (mod 3). 

Let us now consider three different cases according as as — 0 (mod 3), or a5 _ 1 
(mod 3), or a5 - 2 (mod 3). 
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I. a5 = 0 (mod 3). 
Then 

254. (l - 2r4 + 2r4+aj - 2") = 1 (mod 3). 

The above equation is true if we choose s4 even and r4 odd and s3 odd because 

L = 2even . (I - 2°°** + 2even - 2odd) is - 2 s 1 * R (mod 3). 

Hence s3 = 2a + 1. Inserting into r2,s2,s,yr,> we get the solution of equations 
(0-(v): 

r, = 2a, + 6n, - a3 - 3/' - 2r3 - 2r4 + r3 . 2
2*+1+ '4 + r42*4, 

r2 = az + 3/' - fll + r 3 + r4 - r3 . 2
2«+1+S4 - r4 . 2*4, 

Sl - a2 + 6n2 + a4 - 2a2 - 2a. 2f4 - 2f4 - 3/ + 2a + 1, 
s2 = - a 4 + 2a2 - 4a - 2 - s4 + 2a . 2r4 + 2f4 + 3/. 

II. a5 = 1 (mod 3) 
Then 

2-41 ( 1 _ 2,4 + 2r4+.« __ 2s*) = 2 (mod 3). 

This equation is true if we choose s4 odd and s3 odd and r4 odd because 

L = 2odd . (1 - 20dd + 2even - 20dd) = 2 = /t (mod 3). 

Consequently s3 = 2a + 1. The solution of equation (i)-(v) is the same as in A.I. but 
for a different condition as to s4. 

III. a5 = 2 (mod 3) 
Then 

254. (1 - 2r4 + 2f4+S3 ~ 2") - 0 (mod 3). 

This equation is true if we choose s3 even and r4 even because 

L = 2S4. (1 - 2even + 2even - 2even) a 0 - R (mod 3). 

Hence y3 = 2a. Inserting into r2, s2, s,, rt, we obtain the solution of equations 
(i)-(v) of the form 

r, = 2a, - a3 + 6n, - 2r3 - 2r4 + r32
54 + r42

54 - 3/' 
r2 = a3 - a, + r3 + r4 - r32

54 - r42'4 + 3/ ' 

st = - a 2 + a4 + 6/i2 - 3/ 

52 = - a 4 + 2a2 - 2a - sA + 3/ 

j 3 = 2a. 

Now it remains to consider the case 
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B. a2 odd 
Suppose that — a4 + s3 + 3/ is even. Again, as in case A., this condition can 

always be satisfied. Thus 

r2 a - a 3 - 2r3 - 2r4 + 2ax + r32
S3+S4 + r42

S4 (mod 3), 
so that 

r2** ~~a3 + 3/" - 2r3 - 2r4 + 2ax + r32
S3+S4 + r42s\ 

Now, on condition that r2 is odd, we get that ~a3 + 3/* is odd, which can always 
be arranged by a convenient choice of a3. From the equation (v) there follows 

2*4 ( 1 _ 2
r4 - 2r4+S3 - 2S3) s a5 + 1 (mod 3), 

which is the same equation as in case A. and the theorem is proved. 

Remark 2. So we have proved that, to enumerate all the polynomials, it is sufficient 
to consider the products of eight factors. From the enumeration in [4] it is clear that 
even six factors are sufficient. 

For k -= 3 the equations (i)—(v) have the form (we write only the left sides of these 
equations): 

rx + r2 + r3 (mod 6) 

si + s2 + s3 (mod 6) 
r12I1+S2+53 + r22

S2+S3 + r32*3 (mod 3) 
512r2+f3 + s22

r3 + 53(mod3) 
2n+r$+si+s2+33 _ 2 r 2 + r 3 + , 2 + $ 3 4. 2 f3+S2+S3 — 2r3+S3 + 2S3 — 1 (mod 3)* 

so that the polynomials/(.*!, x2) can be written in the form 

Table 2 

f{Xi,X2) (0 (ü) (Ш) (ív) (v) 

1. o o o o o o 
x t . X% . Xt . X% . Xt . x% 0 (mod 6) 0 (mod 6) 0 (mod 3) 0 (mod 3) 0 (mod 3) 

. 2. x% » X%,. Xi . X% . Xt * x% 0 (mod 6) 0 (mod 6) 0 (mod 3) 0(mod3) 1 (mod 3) 

3. 3 3 3 3 0 0 
Xt . X% . Xt . X% . Xt . x% 0 (mod 6) 0 (mod 6) 0 (mod 3) 0 (mod 3) 2 (mod 3) 

4. 1 4 S 2 V Ô 0 
Xt • X% . XX * -^2 • лj . X% 0 (mod 6) 0 (mod 6) 0 (mod 3) 1 (mod 3) 0(mod3) 

5. ү
2 t 3 1 1 4 

<*! • X% . Xt • X% . Xt . X% 0 (mod 6) 0 (mod 6) 0(mod3) 1 (mod 3) 1 (mod 3) 5. 

l 

m. 0 3 S 3 0 5 

#t • x%. xt • x%. Xt • x% 5(mod6) 5 (mod 6) 2 (mod 3) 2 (mod 3) 2 (mod 3) 
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§3. POLYNOMIALS /(*i»*2»*3) OVER S3 

Every polynomial of three variables over S3 is of the form 

JV^1> **2> * 3 / "~ x l • *2 * x 3 * *1 * **2 • *3 *1 • x2 • * 3 -

Since x t , x2, *3 r u n o v e r aH ^ e elements of 5 3 , there holds 

f{xi9x29 x3) » (aM . cw)ri. (ap . cq)St • («a . ^ ) " . ... . («"! . cjk • (a* • ^ T . (** . «*/*. 

where m,p9 a e {0,1} and n9q9pe {0,1, 2}. So we get 23 . 3* diffarent possibilities 
of the values of the polynomial f(xt, x2> x3). But from these possibilities we only 
get the following probably independent conditions for the equality of two poly-
nomials (we write only the left sides of the congruences): 

A\: i r ^ m o d e ) 
i 
* 

A|: $>i(mod6) 
i 

A|: £f,(mod6) 
i 

k 

A$: r^ + ... + rk2
Sfe(mod3) 

k 

A|: r 1 2 , " + . . . + rt2"'(mod3) 
k k 
Esi + Eli 

A6
3: r{ll ' + . . .+ rfc2*k+*'(mod3) 

k 
Er, 

Aj: st2 + ... + S|t(mod3) 

Si l 

A^: Sil1 + ... +sk2'k(mod3) 
k k 

%2 1 
A9

3: Sl2* l + . . .+ s»2"'(mod3) 
fc 
S r í 

A|°: hl* + ... + í*(mod3) 
k 

Za 
Aj l : hl1 +. . • + t*(mfcd3) 

Aj1: ít2
a a +.... + í*(mod5) 



A\3: 22 ' - 2 2 2 + ... + 2 * - l (mod 3) 
k k k k 

Er, + Ef| Ere + Sfi 

Aj4: 22 * ~-22 2 +... + 2'*-l(mod3) 
k k k h 

Esi + E*i Esi + Eti 

A|5 : 22 ' - 22 2 + ... + 2,k - 1 (mod 3) 
ft k k k k k 

E n + Es j+Et i Ert + Esi + E** 

A\6: 22 2 ' - 2 2 2 2 + ... + 2 ' k - l(mod3) 
k k k k k k 

2r i + E.f* + E*f Eri + Es< + Eri 

A|7: 22 l l - 22 2 l + ... + 2Sk+fk - 2,k(mod 3). 

From these conditions it follows that the number of polynomials of three variables 
over *S3 equals the number 63 . 314. 

§4. POLYNOMIALS f(xl9x29 ...9 x„) OVER 5 3 

In the same way as in § 2. we could derive the conditions for the equality of two 
polynomials of n variables over S$, namely n conditions with regard to modul 6. 
The number of conditions with regard to modul 3 is: 

(„-.>B+(YHv>+H->+ 

+(HM;K •(:>-»-
-[(v)+C-HV)+-+C-i)]+K-0-

P Q 

Hence P - n. (2"_1 - 1) and for Q we get 

*+»(*:.)-(• i1)-

i :.>(i+,i :>)-(*:.)• 
»(40-C-H:0-

H:0-J.C;0-£(-:0-^-*+ 1 ! 
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so that P + Q = (2* - 1) . (n - 1) and we can say that the number of different poly­
nomials of n variables over S3 is equal to 

C O N C L U S I O N 

The basic relation of the present paper is the relation ca -» ac2 between the gene­
rators a, c of the group S3; that means that the product xy of two arbitrary elements 
of S3 may be expressed in the form yu. xv where u, v are integers. This is no longer 
possible for the group S4. Consequently, the question of the number of all the differen 
polynomials over the group Sn (n > 3) and, therefore, even over an arbitrary non-
Abelian group, will probably have to be solved in a different way. The answer to this 
question will help to answer the original question proposed in the Introduction, 
concerning the number and the list of all the different polynomials of n variables with 
arbitrary coefficients over an arbitrary group. 
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