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POLYNOMIALS OVER THE PERMUTATION
GROUP OF THREE ELEMENTS

YVONA COUFALOVA, Brno
(Received March 26, 1979)

The purpose of this paper is to determine the number of all the different poly-
nomials of two variables with all the coefficients equal to the unit of the group, over
the premutation group of three elements.

Let us first make a few remarks concerning the above problem. By a polynomial
of n variables where #n is an arbitrary positive integer over an arbitrary given group
(G, .) we generally understand any mapping of the Cartesian product G" into G,
in the form

k
Ty S ti .
ao [1 x1x3 ... xa;;
i=1

k is an arbitrary positive integer, r;, s, ..., t; are, for 1 < i £ k, non-negative
integers, a,, a,, ..., a; are elements of the given group, called coefficients of the
polynomial; x,, x,, ..., X,, called the variables of a given polynomial, run over all
the elements of the group (see e.g. [1]). To determine the number and the list of all
the different polynomials, thus defined, over an arbitrary group seems a rather
difficult problem. Trying to solve it, at least a part of it, I proceeded in the following
way: first, I determined the number and the list of all the polynomials of » variables
whose coefficients equal the unit of the group, over an arbitrary Abelian group with
a torsion. The result is given in [2] and proves that the number of all these different
polynomials equals the least common multiple of the orders of all the elements of the
given group, raised to n. Further, I considered the number of all the different poly-
nomials of one variable with coefficients equal to the unit of the given group, over
a non-Abelian group with a torsion. I arrived at the conclusion [3] that the number
of all these different polynomials equals the least common multiple of the orders
of all the elements of a given group. Furthermore, I considered the number of all the
different polynomials of two variables with all the coefficients equal to the unit of the
group, over a non-Abelian group of a small order. For that purpose I have chosen
the permutation group of three elements, further denoted by (S3,.) or simply S;.
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To determine the number of all these different polynomials is the principal object of
this woik. The result is presented in Theorem 1, § 2. There is also the list of some
of the different polynomials in question from which the procedure of determining all
these polynomials follows (the complete list is in [4]). The number of all the different
polynomials of three variables with coefficients equal to the unit of the group,
over S;, is found in § 3; but there is no proof of this formula. The last paragraph
of the present paper generalizes the above theory for an arbitrary positive integer n
and ends with a formula determining the number of all the different polynomials
of n variables with coefficients equal to the unit of the group, over S;; there is no
proof of the formula.
" Let us add that by a polynomial we mean, throughout the paper, a polynomial
over the group Sj;, all the coefficients of which are equal to the unit of the group S;.
The equality of two polynomials as well as the elementary notions concerning the
group S5 are introduced in § 1.

The problem was suggested to me by RNDr. Milan Sekanina, CSc., to whom 1 am
grateful for valuable advice concerning the present work.

§1. THE EQUALITY OF POLYNOMIALS; GROUP S,

Definition 1. Two polynomials f(x,, x5, ..., X,), g(x,, X5, ..., X,) over the group S,
are equal iff there holds, for any n clements 0;€ Sy, i =1,2,...,n

Slag, o, oy o) = g(0tys 0y y vy 0)

Let us denote the clements of the permutation group S; of three elements as
follows:

(123 _(123\ , _(123) _ (123} ,_ (123 (123
=\iz) 2=\l 2= las) <=l ) 4= 2) L = s )

For the orders of the above elements there holds: 0(e) = 1, 0(a) = 0(b) = 0(f) = 2,
0(c) = 0(d) = 3. Let us select, from the six possible pairs of generators of the
group S5, for example, the pair a, c. There holds

ca = ac
from which
Cam arnCZM
and therefore
n 2"1!'_1
(@"c™ = a"c 2m-1 for m = 0.

Since a, ¢ are generators of S5 and 0(a) = 2, 0(c) = 3, there holds

VxeS)@mef{0,1})(3ne{0,1,2}) [x = a"c"].
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§2. POLYNOMIALS f(x,, x;) OVER 8,

Theorem 1. There exist exactly 62 .33 different polynomials f(x, x,) of two
variables over the group S,.

Proof. From the introduction of the present paper there follows that every
polynomial of two variables over S5 has the form

d S 21 St r 52 Tk Sk
SO, x) = x7 x5y xPoxP .o xP XY

Since x,, x, run over all the elements of S5, there holds f(x,, x,) = (a"c")".
L(@Pe®)’ L (@"e™)? . (@Peh) L (@)™ L (aPe?), where m, pe {0, 1} A n,qe{0, 1, 2}.
The values f(x,, x,) for m = 0 A p * 0, i.e., the following forms of the numbers
22,23, 24, 28, 29, 30, 34, 35, 36 in Table 1, can easily be determined by means of the
formula
S(x1,x5) = (@M (@’ .. (™M™ (aPct)* =

K K
mYritpls;
1 1
=aq . ¢FXPx
where
K K k K
n mri+pXs; mYri+pXs;
1 1 2 1 N DS
EXP, = ————( -2 o 2MEPS PS4
Kk K K K
(1 mYritpXs; mIri+pIs;
2 2 2
) -2 F o2 ),
27 — 1

Thus we get, on the whole, the following possibilities of the values of the polynomial
S(xy, x;) = a~*Pr= B¢ (we write only the exponents Exp,,, Exp;,):

Table 1
m|n|p| q Expy, Exp;.
1, 0lo |0 0o 0
k
20000110 3 s
1
k
3lo /00210 23 s
1
k
400 1]0 Yy 0
1
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Table 1 (Vorsetzung)

mion p l, q ‘( Exp,, Exp,,
I B ! i S _ o
k Y
5100 |1 1 | Y 2t
1
T L #u - \" .
XS
61010 1|2 X 2.2" —1)
1
e B _ o
7001 (0|00 3
1
[ P D e o
8 0ol 1]0/{11]0 S+ Y
1 1
[ I A S
9/ 0] 1 0|20 Sr+23 s
1 1
l k S P
101 0 1 1 0 | X re 20 4 2 4 2%
1
O e b fa b N "
M) o0 | 1 1 12 r,z‘s+2“+r,2‘n+...+r~2s‘<——1
1
M T T k k‘m;k 13
k s, s Xs;
1200 (1 1|2 le, r2' +2.20 427 42 —2
U N . k
13lofl2to0]o0}|o0 23 n
1
k k
14 0|20 |1]0 2+ Y
1 1
S k k
15 0 2 0 2 0 22’1+2251
1 1
N - k .}k;s.' }SS,‘
16/ 0 | 2 |1 [0 |Xs 2.(r2" 4120 4 4129
1
k gs.‘ }’351 ES:
1700 [ 2 |1 |1 |Xs 20 1+ 2.2 27 .+ r2™
1
k k k k
s s s
181 0 | 2 | 1 |2 |Xs 2.2 —D+2.(2" +r27 + ... +r2%)
1
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Table 1 (Vorsetzung)

l m n P Exp,, Exp,,
i k
191100 S 0
1
k é'i ‘En
0 0 ;rl s,.zz +S2.23 ST
K b & )
21 1 0 0 ;r' 2.(5122 ‘{'.5‘22J +...+Sk)
k k B
21 o1 Sr+Ysl 0
1 1 .
“ k k irﬁ‘is; .‘l.(’,r,+'}:'.s‘- Err}),:*:, B
2301 |0 1 2t Xs 27 —2% T 42 —_ 1
1 1
Kok Lefa  Srba B
2401 10 |1 T+ s 2.7 o —2t rp L 4am)
1 1
| P R T T _
I L:
50110 S P
1
|
{ —_— S e e e e
k ;:n i‘:n !’En
26b1 1|0 ;r: 20 14 (5027 4520 A 5
g k é‘:r( ;}r.- )’.‘lrt
il 110 ;r« 20 142,527 #5220 4+ s
b k| Enrbe Eerke
28| 1 1 1 Sri+ XS 2! —2? b 4 2tk 0%k
1 1
k k k k
. Er+ 3
29| 1 1 1 Zr,-g-zs‘ 21n Si-—-l
1 1
k k {n*'isi ),.‘.r,+£s; Er(+},.".s‘
3001 (1|1 Trn+Xs| 2t T _pg2 2 4y
1 1
k £
31} 1 2 0 > 2‘(2‘”_...1)
1
! k K K k
Xrg Xrg Xry
i1 |20 ;n 2.2 —D 452" +52° 4.+ s
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Table 1 (Vorsetzung)

m| n| p| g Exp,, Expy,
® x

k . Xr )'.‘r }..r'

33/ 11202 ;" 2.2 —D+2.(52% +82° 4. +8)
k k ;.‘.n+§s, {.n+£s,

3001 | 2 11 |0 | En+s| 2.2 1 —2F U 442wt 02w
1 1
k k Ln+}kJS| }’fn+_§n

)1 211 1 ¥n+Xs] 2.2 Y @ T 2w
1 1
k k Boids

36| 1 2 11 2 | T+ 2.(2‘“ 1“__1)
1 1

If, for two polynomials f(x,, x,), g(x;,x,) over S3, there holds f(x;, x,) =
= g(x;, x,), then there must, by Definition 1, hold

1 2 1 2
(¥ m)(* n) (¥ p) (¥ @) [(@"c™)™ . (aPc?)’ ... (a™c")™ . (a"ch)™ =
0 1] 0 0

= (a"c")" . (aPch) ... (@"c")™ . (aPc)™],

thus
aExPI- . cElP!c = al‘;ll’n . cElp”’

so that
[Exp,, = Exp,, (mod 2)] A [Exp, = Exp,_(mod 3)].

Hence, from the conditions 1—36, we get exactly five independent conditions:

Al

u; (mod 6),

A;: v; (mod 6),

"M"' —Mr

g
b

k k k k
s s o T

]
A3 r2' 4120+ 2% =0 2" w2 4+ 2% (mod 3),
k k k k
}iﬂ L;n ?m ?j-'lu
Af: 52" +5,2° 4. +s=0,2" 40,27 + ... + v, (mod 3),

[ x K k K k
?rﬂ-zs; rtls; 2u.+211w TR N

Aj: 2" P -2t p k-1 =2" Y =2 T 4 4+2%—1(mod3).
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In fact, if we prove that the above 5 conditions are really independent, then the number
of all the different polynomials of two variables over S; will equal the number

6%.3% = 972,

Now let us prove the independence of the conditions Al —Aj for k = 4, in the
form:

(i): i r; = a; (mod 6),
1

(ii): i s; = a, (mod 6),
1

4 4

s Is
(ii): 1 2" + 72" 4 ry 297 4 r, 2% = gy (mod 3),

4
Zr

(iv): 5, 2" +5,27% 4 5,2 + 5, = a, (mod 3),

4 4 4 4 4 4 4 4 4
%r,+)lls‘ {"‘+§“ 23n+}22s1 §n+§3u rat+ Yy

W:20 =20 T2 T2 Ty Y g ey
= a4 (mod 3).

Remark 1. Since 2" = (—1)" (mod 3), there follows 20ddnumber = _| (104 3) and
2evennumber =1 (mod 3).

The independence of (i)—(v) can be proved by finding their solution by means
of the method of elimination:

4
From the equation (i) there follows r; = a; — Y, 7; (mod 6). From the equation
2 .

(ii) we get
4
sy = a, — 3. 5; (mod 6).
)
The equation (iv) implies

Zr
2

i
2SS sy (mod ),

4
(az~§2:S;)-2

hence

4 4
Xy Zr

227 =2 Y= a, +27 (s34 54— a2) — 5,0 5, (mod 3).

So that we have
)3 r -

Sy . 2r3+'4 . (1 - 2'2) =a4 + 22 (53 + 54 — az) ~ 532" — S, (mod 3). )
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Suppose r; + r, to be even and r, odd, that is to say, 72, 3, ry will be chosen so that
the above two conditions are satisfied. Hence we get

S; = —ay — 25y — 25, + 2a, + 532" + 54 (mod 3),
S, —ag — 2S3 — 84 + 2‘12 + 532" (mOd 3),
§, = —Qa4 — 253 — 54 + 202 + 532” + 3L

Consequently:
Sz = —a4 + 2a2 - 253 - S4 + 532'.‘ ‘+‘ 31.
From the equation (iii) there follows

4

(ay — Z r).2%+r,. 2maat s ry.2nt + ry2% = a3 (mod 3),
2

for r, + 0. Let all the r;, s;, a; + 0. So that
ry(27o 3 00y = g0 4 2% (ry 41y — ay) — P32 21— £, 2" (mod 3).
Now consider two cases according as a, is even or odd.

A. a, even

Furthermore, suppose —a, + s; + 3/ is odd. If it were even, then a, in equation
(iv) would be greater by 3. This would only change the parity of —a, + s; + 3!
because we should get —a, — 3 + s; + 3/, which would be odd. Consequently,
whether a,, s, is odd or even, we can arrange the expression —a, + s3 + 3/to be odd
without changing the validity of the equation (i)—(v). Hence

r,=ay+ry +ry —a; — ry22%% — 2% (mod 3),
so that
"2 = a3 - a1 + r3 + r4 - "3283+s‘ — "42“ + 31'-

Since r, is odd, the above equation is true only if the expression a; — a, + 3!’ is odd.
If the latter is not odd, we change the parity by increasing a; by 3.
From the equation (v) there follows

20dd+lz - 20dd—1u+3!+s; + 2even—a4+31+33 - 2evon+s;+s4 + 2r4+33+54 —
— 2M*se 4 2% — 1 = ag (mod 3),

hence
— 233+n + 2r4+33+.u - 2r4+34 + 234 —1= as (mod 3)’

and consequently
2%, (1 =24 2% — 2%) = g5 + 1 (mod 3).
Let us now consider three different cases according as a5 = 0 (mod 3), or a5 = 1

(mod 3), or a5 = 2 (mod 3).
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I. as = 0 (mod 3).
Then

2% . (1 — Qre + zu+s, - 23;) = l(mod 3)‘
The above equation is true if we choose s, even and r, odd and s, odd bccause

L =27, (1 —209d 4 geven — 204d) = _2 = | = R(mod 3).
Hence s; = 22 + 1. Insérting into r,, 5,, 5,, 7y, we get the solution of equations
)-):
ri=2a; +6n, —ay—30' = 2r; — 2ry +ry 220 1080 L 28
ro=a3+ 3 —a; +ry+ry—ry. 20y 28
sy =a,+6n, +a,—2a, —2a.2™ —~2" -3l + 20 + 1,
—as+2a;, —4a—2 — s, +20.2™ + 2™ 4 31,

52

II. a5 = 1 (mod 3)
Then

2% (1 =2 4 27%% — 2%) = 2 (mod 3).
This equation is true if we choose s, odd and s, odd and r, odd because
L =20 (1 — 2004 4 20ven _ 204d) = 2 = R (mod 3).

Consequently s; = 2« + 1. The solution of equation (i) —(v) is the same as in A.L but
for a different condition as to s,.

IIL. a5 = 2 (mod 3)
Then

2 (1 = 2™ 4 2% _ 2%) = 0 (mod 3).
This equation is true if we choose s4 even and r, even because
L =2 (1—2%"+4 2"~ 2" = 0 = R (mod 3).

Hence s, = 2a. Inserting into r,, 53, 51, 7y, we obtain the solution of equations
(i)—=(v) of the form
ry=2a; —as+6ny —2ry — 2r, + ry2* 4 r 2" - 3/’
ry=a3—a; +r3+rg—ry2%—r2%+ 30’
Sy = —a2+a‘+6ng—3l
S, = —a, +2a, — 2a — 54 + 3/
53 = 20

Now it remains to consider the case

1




B. a; odd

Suppose that —a, + s3 + 3/ is even. Again, as in case A., this condition can
always be satisfied. Thus _

r, = —az — 2ry — 2ry + 2a; + ry2%% 4 r,2° (mod 3),
so that
r, = —a, + 31” bl 2"3 - 2"4 + 2a1 + r32"’+" + r42".
Now,. on condition that r, is odd, we get that —a; + 3!” is odd, which can always
be arranged by a convenient choice of a;. From the equation (v) there follows
2%, (1 =274 = 2% _ 2%) = g4 4+ 1 (mod 3),
which is the same equation as in case A. and the theorem is proved.

Remark 2. So we have proved that, to enumerate all the polynomials, it is sufficient
to consider the products of eight factors. From the enumeration in [4] it is clear that
even six factors are sufficient.

For k = 3 the equations (i) —(v) have the form (we write only the left sides of these
equations): .

ry + r, + ry(mod 6)
s, + 5, + 53 (mod 6)
p 28t setes g g 252t 4 2% (mod 3)
5,277 4 5,2 + 55 (mod 3)
2r;+r;+n+sg+a; _ 2r2+r3+sz+s; + 2r3+sz+.13 - 2r3+sg +2% -1 (mod 3);

so that the polynomials f(x,, x,) can be written in the form

Table 2

S(x1, x2) @ (i) (iii) (iv) \))

Lo x2.x2. 22,22 9. x3 0(mod6) | 0(mod6) | 0(mod3) | 0(mod3) |0 (mod 3)

S 2| xi.x.xi.x3.x{.x; | 0(mod6) | 0(mod6) | 0(mod3) | 0(mod3) |1 (mod3)

3. | x3.x3.x3.x3.x3.x3 | 0(mod6) | 0(mod6) | 0(mod3) | O(mod3) |2 (mod3)

4. | xt.xt.oxd o x2 a2 .0(m0d6) 0(mod6) | 0(mod3) | 1(mod3) |0 (mod3)

Sl xd.xs xdxg.x)at 0(mod6) | 0(mod 6) | 0(mod3) | 1(mod3) |1 (mod3)

972. | x3.x3.x¥.x3.x0. x5 5(mod6) | 5(modé6) | 2(mod3) | 2 (mod3) |2 (mod3)
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§3. POLYNOMIALS f(x,, X,, x3) OVER S,

Every polynomial of three variables over S, is of the form
F(x1s X2, x3) = xT o x3 . xS xPoxP XL xE L xr L xl
Since x,, x,, x5 run over all the elements of S, there holds
F(xy, X2, %3) = (@™ . . @ . )" . (@ . P . ....@@". Y. (@ . ™. (. ),

where m,p,x € {0, 1} and n, ¢, B € {0, 1, 2}. So we get 23 . 3? different possibilities
of the values of the polynomial f(x;, x,, X3). But from these possibilities we only
get the following probably independent conditions for the equality of two poly-
nomials (we write only the left sides of the congruences):

s
A% r2' 4+ ..+ r2%(mod3)
, };-‘ft
Al: r2' + ..+ r2%(mod3)

AS: 20 442%™ (mod 3) |

Al: 52" + ...+ s (mod 3)

k
P
A% 52" + ...+ 52™(mod 3)

k k
Xr+ly
2 1

A 52 + ... + 52 (mod 3
3 )

Kk
Xry

A 12" + ...+ t,(mod 3)

[
PN

All: 42" 4 ..+, (mod3)

I::I‘"F%l‘ . ‘
Al%: 1,2 + ... + t(mod 3)

n




A% 20 P -2 ' 4 42%—1(mod3)

}z:r,+¥t| ‘;‘.n-&}z:!.

ALt 2 -2 + ... + 2™ — 1 (mod 3)
k k
22314‘}:!‘ Ts+Zy

Al 28 Y =2 7 4 4+ 2% —1(mod3)

k k k 1.1 k k
}Er.+§22:.+§ln Iz:ri+§sl+z}h
A3S: 2 -2 + ...+ 2% — 1 (mod 3)
k )3 k k k k
%"(*’}Ell""%'l %rg‘*?ll"'?n
AY: 2 -2 + ... 4 2%t _ 2% (mod 3).

From these conditions it follows that the number of polynomials of three variables
over S, equals the number 63, 34,

§4. POLYNOMIALS f(x;, x5, ..., ¥,) OVER S,

In the same way as in § 2. we could derive the conditions for the equality of two
polynomials of n variables over S;, namely n conditions with regard to modul 6.
The number of conditions with regard to modul 3 is:

(n—1)n+(n_2-1)n+(n;1)n+...+(::})n+
+(§)+('3’)2+(2)3+...+(;’)(n—1)=
n-1 n—1 n-—1 n—1 nl n
[0+ (3 (5 -+ (IR )
Hence P = n.(2""! - 1) and for Q we get

K + 1)(k11)= n(" P 1),
d) =0 0(elo)- (e 0)
Hs) () -G

n~-1 n n—1 n—1 n—1 n o )
élk(k“)ﬂk;( . )_kg‘(k+l)=z n—2)+1;
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sothat P + Q = (2" — 1).(n — 1) and we can say that the number of different poly-
nomials of n variables over S, is equal to

6" 3(n—1).(2"-1)

CONCLUSION

The basic relation of the present paper is the relation ca = ac? between the gene-
rators a, ¢ of the group S,; that means that the product xy of two arbitrary elements
of §; may be expressed in the form y*. x* where u, v are integers. This is no longer
possible for the group S, . Consequently, the question of the number of all the differen
polynomials over the group S, (n > 3) and, therefore, even over an arbitrary non-
Abelian group, will probably have to be solved in a different way. The answer to this
question will help to answer the original question proposed in the Introduction, "
concerning the number and the list of all the different polynomials of n variables with
arbitrary coefficients over an arbitrary group.
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