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NOTE ON CATEGORY OF SPACES
OF PARALLELISM

PAVEL HORAK, Brno
(Received January 19, 1979)

The notion of the space of parallelism was introduced and a special case of
parallelism on the set of non-negative integers was investigated in [4] and [5].
A proximity space (see e.g. [6]) is also another special case of a space of parallelism.
The aim of this note is to study spaces of parallelism from the categorical point of
view and to give characterisation of some basic categorical notions for this case.
The definitions of basic notions of the theory of categories are taken from [3].
Moreover, following [1] and [2], if f, g are morphisms in a category, we put f{ g
iff from fou = fouv it follows g o u = g o v. Dual notion to 1 will be denoted by |.
Particularly, if f: X — Y then fis a monomorphism iff f4 1y (fis an epimorphism
iff f{1y).

A morphism f is called a strict monomorphism iff f is a monomorphism and if
every morphism g for which f| g factors through f, i.e. there exists a'morphism h
such that g = fo . An object in a category will be called strictly injective iff it
satisfies the usual injectivity condition wiht respect to strict monomorphism. Dual
notion to strict monomorphism is that of a strict epimorphism. It is easy to show
that a morphism f'in a category is an isomorphism iff it is both an epimorphism and
a strict monomorphism. , ' A

A morphism fis called an essential monomorphism iff fis a strict monomorphism,
and if any morphism g such that gof is a strict monomorphism is itself a strict
monomorphism. '

1. FUNDAMENTAL CONCEPTS

1.1 Let R be an arbitrary set, ¢ be a binary relation in the system 2%, The pair
(R, @) is then called a space of parallelism or briefly a space. If ¢ = 28 x 2R then
(R, o) is called a total space of parallelism, if ¢ = 0 then (R, @) is called a discrete
space of parallelism.




Let (R, 0), (P, n) be spaces of parallelism, f be 3 mapping of the set R into the
set P such that for any X, ¥ < R, XgY it holds f(X) #f(Y). The triple (f; o, 7) is
called a homomorphism of the space (R, o) into the space (P, ). We write f: (R, @) =
— (P, ) and usually speak briefly about a homomorphism f.

Let f: (R,0) » (P,m) be a one-to-one mapping such that for X,Y & R,
J(X)nf(Y) it holds XpY. Then fis called an embedding of (R, o) into (P, n). If an
embedding is an onto mapping it is called an isomorphism.

1.2. Let (R, @), (P, m) be spaces of parallelism, let R S P and g be the restriction
of n on 2R, i.e. XpY iff XnY for X, ¥ < R. Then (P, n) is called an extension of the
space (R, @). If R = P then the extension is called a proper extension. The mapping
J: R — P defined by j(r) = r for all r € R is obviously an embedding which is called
the natural embedding.

1.3. Let (R, @) be a space, # be a partition of R and ¢ be the canonical mapping
of R onto &. For &, % < # we put Zp¥ iff there exist X, Y & R such that XpY
and ¢(X) = 4, ¢(Y) = %. Then (@, p) is a space of parallelism which will be called
a quotient space of the space (R, ¢). The mapping ¢ is a homomorphism called the
canonical homomorphism of (R, g¢) on (&, p). Obviously, g is the smallest relation
in 2% such that ¢ is a homomorphism.

1.4. Let (R, ) be a space. An element u € R is called a universal element of (R, @)
if for every X, Y < R such that ¥ € X it holds both XpY and YpX.

Let us define a space (Ry, @y) in the following way: if there is a universal element
of (R, ¢) we put R; = Rand gy = g. If there is no universal element of (R, g) we put
Ry = Ry {w} where w¢ R and for X, Y € Ry such that X, Y < R we put Xg,Y
iff XoY, otherwise we put XpyY and Yp,X. Obviously, (Ry, gy) is an extension of
(R, 0) which has a universal element.

1.5. Let I # 6 and for every iel let (R;, @) be a space. Let R =[]R, (iel)
denote the cartesian product and p, the projection of R on R;. For X, Y & R we put
XeY iff p{X) @.p(Y) for every i e I. Then (R, ¢) is a space of parallelism which is
called a product of spaces (R,, ¢;), i € I. Projections p; (i e I) are homomorphisms
and ¢ is obviously the largest relation in 2® such that g, is homomorphism for every
iel
Let S denote disjoint union of sets R;, i.e. S = UR; (ieI) where R} =
= {(r,i)| re R;}. For X, ¥ S we put XoY'iff there exists j € I such that X, Y < R;
and {reR,|(r,j)e X} ¢,{re R;| (r,j)e Y}. Then (S, o) is a space of parallelism
which is called a coproduct of spaces (R;, g;), i-€ I. If we put s,(r) = (r, i) for every
re R, we get a mapping of R, into S, called injection. Cleatly s, (R;, ¢;) = (S, o)
and ¢ is the smallest relation in 25 such that s, is a homomorphism for every i€ I.




2. THE CATEGORY P OF SPACES OF PARALLELISM

2.1. The spaces of parallelism with homomorphisms form a category where the
composition of morphisms is the usual composition of mappings. This category will
be called a category of spaces of parallelism and denoted by B.

It is obvious that null objects are one-element total spaces, conull object is the
empty discrete space and hence there are no zero objects in PB. Also quite natural
are constructions of equalizers, coequalizers, pullbacks and pushouts in .

2.2.1. Let f: (R,0) > (P, ), g: (R, @) > (P',n'). Then f4g in P iff it holds:
r, s € R, fir) = f(s) = g(r) = g(s).

2. Letf: (R,0) » (P, n), &: (R, ¢') » (P, m). Then f| g in B iff f(R) 2 g(R).

Proof. Sufficiency of both conditions is obvious. To prove necessity we take
in 2.2.1. a discrete space ({x}, ¢) and put u(x) = r, v(x) = s. In 2.2.2. we take a total
space ({x, ¥}, ¢) and put u(p) = x for every p € P and further we put v(p) = x for
every p € f(R), and v(p) = y for every pe P — f(R).

2.3. Let f: (R, ¢) - (P, 7). Then
1. fis @ monomorphism in B iff f is a one-to-one mapping
2. fis an epimorphism in P iff f is an onto mapping.

Both assertions follow from 2.2. by putting g = 1; or g = 1, respectively. More-
over, from 2.3. it follows that B is not a balanced category.

2.4.Let f: (R, @) = (P, n). Then f is a strict monomorphism in B iff f is an embedding
of (R, g) into (P, n). Consequently, f is an isomorphism in the category B iff f is an
isomorphism.

Proof. If fis a strict monomorphism it is a one-to-one mapping, according
to 2.3.1. Let X, Y < R such that f(X) nf(Y). Let S = f(R) and o be the restriction
of m on 25. By 2.2.2., f | j where j: (S, 6) = (P, n) is the natural embedding and hence
there exists h: (S, o) > (R, ) such thatfo & = j. Obviously, it holds h(f(X)) eh(f(Y)).
Since 4 is a bijection, we have A(f(X)) = X, h(f(Y)) = Y and consequently XgY.
This shows that fis an embedding. '

Conversely, if fis an embedding of (R, ¢) into (P, #) then f is a monomorphism
and if f| g where g: (R, ¢") = (P, m) then by 2.2.2. we have f(R) 2 g(R’). Hence for
every r’ € R’ there exists exactly one r € R such that f(r) = g(r) If weput h(r') = r
we get h: (R, @) = (R,0) and foh =g.

The second assertion follows immediately from the ﬁrst one and from 22 2.

2.5. Let f: (R,0) = (P, ). Then f is a strict epimorphism in P iff there. exists
a quotient space (R, 0) of the space (R, @) and an isomorphism g: (&, @) — (P, n)
such that g o ¢ = f where ¢ denotes the canonical homomorphism of (R, @) on (R, p).
Proof. Let f be a strict epimorphism, let & be the partition of R induced by the
mapping f and (&, g) be the corresponding quotient space. For an arbitrary W € #
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we put g(¥) = f(a) where a€ R such that ¢(@) = U. Clearly, g: (&, g) = (P, n),
gis an epimorphism and g o ¢ = f. We have /1 ¢ and hence there exists h: (P, x) =
— (@, ) such that hof = ¢@. Since ¢ is an epimorphism we get hog = I, and
thus g is an isomorphism.

Conversely, let (#, ) be a quotient space of (R, ¢) and g: (&, ) — (P, n) be an
isomorphism such that g o ¢ = f. Then fis an epimorphism. Let k: (R, g) — (P’, n")
and f4 k. If for every A € # we put h(A) = k(x) where x € R such that ¢(x) = U,
thenitis easy to show that k: (#, g) = (P’, ), ho @ = k and hencek = (hog ') o f.
This shows that f'is a strict epimorphism.

2.6. Let f: (R, @) = (P, m). Then f is an essential monomorphism in B iff either f is
an isomorphism or f is an embedding and P — f(R) = {u} ‘where u is the only universal
element of (P, ).

Proof. If fis an essential monomorphism then it is also an embedding. Let S =
= f(R), o be the restriction of = on 25 and

t forteS
gt) = w forteP — S

where w denotes a fixed universal element of (Sy, oy). Then g: (P, ©) = (Sy, oyp),
g of is a strict monomorphism and hence g is a strict monomorphism, i.e. an embedd-
ing. Thus either S = P and fis an isomorphism or P — S = {u} where u is the only
universal element of (P, n).

To prove the converse is straightforward.

2.7. Definition. An extension (P, n) of the space (R, @) is called an essential
extension iff the natural embedding is an essential monomorphism. Further, (R, @)
is called a retract of an extension (P, n) iff the natural embedding is a coretraction.

2.8. Let (R, ) be a nonempty space of parallelism. Then the following statements
are equivalent.

(1) (R, @) has a universal element

(2) (R, 0) is strictly injective in B

(3) (R, @) is a retract of every extension

(4) (R, 0) has no proper essential extensions

Proof. (1) = (2). Let u be a universal element of (R, ). Let f: (P, n) — (R, o),
g: (P, m) - (S, ), g be a strict monomorphism. For an arbitrary s .S we put

hs) = f(x) for seg(P)where xe P, g(x) = s

u forseS — g(P).
Then h: (S, ) » (R, ) and hog = f.
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(2) = (3). Let (R, @) be strictly injective and (P, n) be an arbitrary extension
of (R, ¢). The natural embedding j: R — P is a strict monomorphism and hence
there exists h: (P, m) = (R, @) such that hoj = 1.

(3) = (4). If (P, m) is a proper essential extension of (R, ¢) then by 2.6. we have
P — R = {u} where u is the only universal element of (P, 7). According to (3) there
exists f: (P, m) = (R, @) such that foj = 1, where j denotes the natural embedding.
Then f(u) is a universal element of (P, n) and f(u4) # u which is a contradiction.

(4)=(1). (Ry, @) is clearly an essential extension of (R, ¢). By (4) it holds
Ry = R and hence (R, ¢) has a universal element.

2.9. Let (R, @) be a space of parallelism. Then

1. (R, ) is injective in B iff it is a total space
2. (R, o) is projective in B iff it is a discrete space.

Proof. 1. Let (R, @) be a total space, let f: (P, n) = (R, @), & (P, m) > (S, 0),
g be a monomorphism. For s € g(P) there is x € P such that g(x) = s. We then put
h(s) = f(x). For se S — g(P) we put h(s) being an arbitrary element of R. Then
h: (S, 6) = (R, @) and hog = f. Conversely, let (R, @) be injective in P and not
a total space, i.e. there exist X, Y < R, X non oY. If we put © = 2% x 2% then from
injectivity of (R, g) we get 1z: (R, ©) — (R, @) which implies XgY, a contradiction.

2. Let (R, g) be projective in B and not a discrete space. Then thereexist X, ¥ < R,
XoY. If we put w = 0 then 1g: (R, 0) = (R, @), 1z: (R, @) = (R, @), 1g is an epi-
morphism and there is obviously no homomorphism of (R, @) into (R, w). The
converse is clear.

2.10. Let I # 0 and for every i e I let (R,, ¢;) be a space of parallelism. If (R, @)
denotes the product of spaces (R;, g,), and p; the projections then it is easy to show
that {p;: (R, @) = (Ri, @)}ier is the product of the family {(R;,@)}s in the
category P.

Similarly, if (S, o) denotes the coproduct of spaces (R;, ¢;), and s, the injections
then {s;: (Ri, @) = (S, 0)};es is the coproduct of the family {(R;, ¢))};¢r in .
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