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ARCH. MATR 3, SCRIPTA FAC SCL NAT. UJEP BRUNENSIS 
XV: 171—178, 1979 

CONTRIBUTЮN TO THE CHARACTERIZATЮN 
OF THE SPHERE IN E3 

KAREL SVOBODA, Brno 
(Received June 15, 1978) 

The present paper contains a generalization of the results due to A. Svec [ l ] 
and M. Afwat [2]. 

1. Let M be a surface in the 3-dimensional Euclidean space E3 and 8M its boundary. 
Let {M; vl9vl9 vs} be a field of orthonormal frames on M9 vl9v2e T(M)9 T(M) 
being the tangent bundle of M. Then 

(1) dM = colv1 + co2t;2, 

dvt = co\v2 + co\v$9 

dv2 = —co\vx + co\v39 

dv3 = — co\vi — co\v2; 

(2) col
 A col + co2

 A co\ = 0, 

dco1 = -co 2 A co\9 dco2 = co1 A CO2, 

dco\ = — co\ A col9 dcof = co2 A co 19 dco\ = — co\ A co\ 

on M. Following [1] we have 

(3) co\ = aco1 + bco2

9 co\ = bco1 + ceo2; 

(4) da - 2bco\ = aco1 + j8co2, 

db + (a - c) co\ = pco1 + yco2

9 

dc + 2bco\ = yco1 + ^co2; 

(5) da - 3pco\ = Aco1 + (B - bK) co2, 

dp + (a - 2y)co\ = (B + bK)col + (C + aK)co2, 

dy + (2$ - S)co\ = (C + cK)c» l + (D + bK)co2

9 

dS + 3yco\ = (D - 6X) co1 + £co2, 

where 

(6) K = ac~b2 
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is the Gauss curvature of M. Denote further 

(7) H = ±(a + c) 

the mean curvature of M and define 

(8) / = 2(H2 - K) = ~ (a - c)2 + 2b2. 

Let F be a real-valued function on M. Its covariant derivatives Fi9 FtJ QJ =1 ,2 ) 
on M with respect to the given field of tangent frames are defined by 

(9) dF = Fxa>1 + F2o)2, 

dFx - F2(o
2
x = Fxxcol + FX2co2, dF2 + Fxa)2

x = F21co1 + F22co2. 

Using (9), we get for the functions K, H,/introduced by (6), (7), (8), respectively. 

(10) Kx = ay - 2bp + c<x, 
K2 = ad - 2by + cjff. 

Ku = aC - 2bB + cA + 2(oiy - fi2) + (ac - 2b2) K, 
KX2 = aD - 26C + c£ + a<5 - fiy - £(a + c) K, 
K22 = a£ - 2W) + cC + 2(05 - y2) + (ac - 2b2) K; 

(11) 2HX = a + y, 
2H2 =j8 + <5, 
2/Ij! = At + C + cK, 
2H12 = B + D, 
2H22 = C + E + aK; 

(12) fxx = ( a - c)(A - C) + 4bB + (a - y)2 + 4p2 + [-c(a - c) + 462] K, 
/ 1 2 = (a - c)(5 - D) + 4bC + (a - y)(p - 8) + 4j?y + 2b(a + c)K, 
f22 = (a-c)(C-E) + 4bD + (fi - d)2 + 4y2 + \a(a - c) + 4Z>2] K. 

To complete the preliminaries, we formulate the maximum principle in the form 
used in [1]: 

Let M be a surface in E3, F: M -»&a, function with covariant derivatives Ft, FiS = 
= Fjt (i,j =1 ,2) given by (9). Let (a) F ^ 0 on M; (b) F = 0 on dM; (c) F satisfy 
on M the equation 

0ii^n + 2aX2Fx2 + a22F22 + axFx + a2F2 + a0F = a, 

where a0 ^ 0, fl ̂  0 and the quadratic form aijx
ixJ is positive definite. Then F = 0 

on M. 
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Note that the function / introduced by (8) satisfies obviously the conditions (a) 
and (b) supposing that BM consists of umbilical points (a = c, b =- 0). 

1. We are going to formulate the 

Theorem 1. Let M be a surface in E3, 8M its boundary and A, /*: M -» 3$ functions 
on M satisfying 

(13) A + H/x > 0, 

(14) A2 + 2HXfi + K[x2 > 0. 

Lef 
(i) K > 0 on M; 

(ii) otf Af , 

(15) 2k[(a - c) (H l t - H22) + 4bH12] + j*[(a - c) (Kti - K22) + 4bKl2] £ 0 

and 

fl6) y (A + /ifci) ^ + ^ 2 . 1 3(A + iikx\ 

kt, k2 being the principal curvatures of M; 
(iii) BM consist of umbilical points. 
Then M is a part of a sphere in E3. 
Proof. Following [1], p. 32-33, we have, according to (10), (11), (12) 

(H) / l l + j 2 2 ~ 4 K / = 

= 2[(a - c) (Hit - H22) + 4MI12] + (a - y)2 + (/? - S)2 + 4(02 + y2) 

and 

(18) c / n - 2b/12 + af22 - 4 W = 
= ( a - c ) ( K t l - K 2 2 ) + 46K12 + 

+ a(52 + 2y2 + 3j82 - 2ay) ~ 26(a + y) (0 + <5) + c(a2 + 2jS2 + 3y2 - 2)85). 

Multiplying (17) by A, (18) by /* and adding these equations we obtain 

(19) (A + iic)flt - 2biifi2 + (A + tia)f22 - 4(A + Hfi Kf = 
- 2A[(a - c) (J?n - #2 2) + 46#12] + fi[(a - c) (Kn - K22) + 46K12] + *, 

where 

(20) <S> = A[(a - y)2 + (j? - 5)2 + 4(02 + y2)] + 
+ ti[a(S2 + 2y2 + 3jB2 - 2ocy) - 26(a + y) (fi + 5) + c(a2 + 202 + 3y2 - 2#5)]. 

It is easy to see that the coefficients of A, \i (20) are invariant on M. Therefore, it 
is possible to examine the expression # in a generic point meM and choose the field 
of moving frames arround m in such a way that b » 0 at m. Then a, c are principal 
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curvatures and, according to (13), (14), X + pa > 0, X + pc > 0 at m. Taking regard 
of these relations, we have, from (20), 

* = TT^.7[a + ̂  ~{X + ̂ W + Tr^í{X + ̂  "(A + ílc)/?]2 + 

+ 2(A + tt/i) \ j ^ m + A*-) - tf + A«)] !32 + YTi^ [3(A + ̂  " (A + ̂  y4 

and thus $ ^ 0 at w, according to (16). Using the inequalities mentioned in the 
theorem and applying the maximum principle, we obtain / = 0 on M. 

Remark. Taking X = 0, p = 1, resp. X = 1, p = 0, we get the theorem 4.2, 
resp. 4.3, of [1]. Further, supposing X *> 0, p —• 0 on M, the relation (20) can be 
written in the form 

* = A[(a - y)2 + (]J - 5)2 + 4(J52 + y2)] + 
+ p{c-\ca - ay)2 + a~l(ad - cj?)2 + 2#[<T!(3a - c)02 + C-H3C - a)y2]}; 

and thus, for # being non-negative, it is sufficient to consider 

3 = kx * 
instead of (16). 

As a consequence of the proceeding result we get the 

Theorem 2. Let M be a surface in E3, dM its boundary and A, p: M -> 3$ functions 
on M satisfying (13) and (14). 2>f 

(i) K > 0 on M; 
(ii) there exist a net of lines of curvature on M with the unit tangent vector fields 

VX,V2; 
(iii) on M9 

(21) 2X(kx - k2) (Vx Vx - V2V2) H + p(kt - A:2) (KtVj - V2V2) K £ 0 

and 

(22) JL (A + pkt)
2 £ (X + /ife2)

2 £ - j - (A + Mi)2, 

&i»fc2 being the principal curvatures of M; 
(iv) dM consist of umbilical points. 

Then M is a part of a sphere in E3. 
Proof. Let us choose the tangent frames on M in such a way that vt = Vl9 

v2 =s V2. Then b = 0 on M and a, c are the principal curvatures of M. 
Let <p be a real-valued function on M. Then, from (9), 

Vt<p~<pl9 V2<p**<p2 
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and 
VxVxq> = <pxx + q>2<o\(Vx)y V2V2<p » <jp22 - q>x(ol(Vz\ 

From (4), 
(a - c) G>J » jSa)1 + ym2 

and hence 

(23) (a - c) F ^ - (a - c) g>n + M , 
(a - c) V2F29 - (a - c) <p22 - yq>x. 

Applying (23) to the functions H, K, we obtain from (19) putting 6 «. o, 

(A + fic)fxx + (A + fia)f22 - 4(A + if/*) K/ = 
- 2A(a - c)(F1F1 - V2V2)H + M* - c)(VxVx - K2F2) * + y, 

where 

(24) !P = A[(a - y)2 + (jS - <S)2 + 4(fl2 + y2) - y(a + y) - 0 0 + <J)] + 
+ /i[a(<52 + y2 + 3j?2 - 2ay - /») + c(a2 + P2 + 3y2 - 20<5 - ay)]. 

By an easy calculation we get 

. . a + *,[, _ (1 + 4±^),J+a + ,c[a - (1 + j±a),J + 

L 4 a + i_,2J L 4 (~ + /~)2_r 
and hence f > 0 because of A + /ia > 0 and A + /ic > 0. Thus the inequalities 
(13), (14), (21), (22) ensure that, using the maximum principle, our assertion is true. 

Remark. For A = 1, \i = 0 and A -= 0, \i = 1 we get the results of the theorem 1 
and 2 of [2], respectively. Again, considering A ^ 0, ft j£ 0 on Af, (24) has the form 

«P = A [(a - y y j + (5 - i-/,)2 + 1(/J2 + y2)] + 

+4*-(i+i>j:(4-£H+ 
+ '4-(T + T)'] , + ( -7- - -?M 

and thus the inequality 
4 _ fc? _. u 
11 * k2 " 4 

implies that f ^ 0 on M. 
3. To the end of this paper we introduce the following results concerning the 

generalized Weingarten surfaces. 
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Corollary 1. Let M be a surface in E3, dM its boundary and F(H, K) a function 
on M such that 

(25) FH + 2HFK > 0, 

(26) Fw + 4HFHFK + 4KF2
K > 0. 

Let M satisfy the conditions (i), (iii) of the theorem 1 and, on M, 

(a-c)(Flt-F22) + 4bFl2-

-(a-c) [FHH(H\ - H2
2) + 2FHK(HlKl - H2K2) + FKK(K\ - K^)] -

- 4blFHHHlH2 + 2FHK(HtK2 + H2Kt) + FKKKtK2] £ 0 

and 

j(FH + 2ktFK) g FH + 2k2FK «£ 3(FH + 2fc.FK), 

kt, k2 being the principal curvatures of M. Then M is a part of a sphere in E3. 

Proof. It is sufficient to put k = — FH, \i = FK in the theorem 1 and take into 

account the relations 

(27) Ftj = FmHtHj + Fn^H.Kj + HjKt) + FKKKtKj + FHHtj + FKKU 

o;J= 1,2) 
for the covariant derivatives of F. 

Corollary 2. Let M be a surface in F3 , dM its boundary and F(H, K) a function 
on M such that (25) and (26) are fulfilled. Let M satisfy the conditions (i), (ii) and (iv) 
of the theorem 2 and, on M, 

(kt -k^iV.V,- V2V2)F-

- (*i " k2) (V, + V2) HlF^iV, -V2)H+ FHK(Vt - F2) K] -

- (kt - k2) (Vt + V2) K{FHK{Vt -V2)H+ FKK(Vt - V2) K] = 0 

and 

A ( F H + 2fc1FK)2 S (FH + 2k2FKf S ^(FH + 2kxFK)\ 

kt, k2 being the principal curvatures of M. Then M is a part of a sphere in E3. 

Proof. The result follows from the theorem 2 for X = — FH, \i - FK when using 

(23) and (27). 

Remark. Supposing FH = 0, FK = 0, we get from this corollary the theorem 3 
of [2], 
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