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ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XV: 19—36, 1979 

SOME RESULTS ON THE OSCILLATORY 
AND ASYMPTOTIC BEHAVIOR 

OF THE SOLUTIONS OF DIFFERENTIAL 
EQUATIONS WITH DEVIATING ARGUMENTS* 

CH. G. PHILOS, Greece 
(Received August 1, 1977) 

Let r, (i = 0, 1, ..., n) be positive continuous functions on the interval [t0> oo). 
For a real-valued function h on [r , oo), T ^ t0, and any p = 0, 1, . . . , n we define 
the fi-th r-derivative of h by the formula 

D^h = ^. .( . . .(r^ro/,) ') ' . . .) ') ' . 

Then we obviously have 

D(
r
0)h = r0h and D<°fc = T0^h)' (i = 1, 2, ..., n). 

If Dln)h is defined on [r , oo), then the function h is said to be /i-times r-differentiable. 
Now, we consider the w-th order (n > 1) differential equation with deviating 

arguments of the form 

(E9 S) (D™x)(t) + S{£ Pi(t)Fi(x<g(t)» + 

+ G(t; *<<r0(0>, (D^x) <<r1(0>,..., (D?~1}x) <*.-&)>)} - 0, 

where <5 = ± 1 , r0 = /•„ = 1 and 

*<g(t)> = (*fel(0], 4 ? 2 ( 0 ] . • • •, X[gm(t)l), g = (gl,g2>-,gm) 

« (D?x) <*#)> - ((K0*) fai(0]> (K°x) [^(O] , . - , (DPx) [a^COU 
.*! = (0U»*«2> —><Ttmt) 0* = °> *> —»» - !)• 

The continuity of the real-valued functions />, (/ = 1, 2 , . . . , v), ^ (j » 1,2,. . . , m) 
and (T̂  0 = *> 2 , . . . , m,; i = 0 , 1 , . . . , n - 1) on [t0, oo), Ft (j = 1, 2 , . . . , v) on Rm 

* This paper is a part of the author's Doctoral Thesis submitted to the School of Physics and 
Mathematics of the University of Ioannina. 
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and G on [f0, oo)xRm°xRm ix. . . xR"1""1 as well as sufficient smoothness for the 
existence of solutions of (E9 5) on an infinite subinterval of [t0, oo) will be assumed 
without mention. In what follows the term "solution" is always used only for such 
solutions x(t) of (E9 8) which are defined for all large t. The oscillatory character is 
considered in the-usual sense, i.e. a continuous real-valued function which is defined 
on an interval of the form \T09 oo) is called oscillatory if it has no last zero, and other­
wise it is called nonoscillatory. 

Furthermore, the following conditions are assumed to hold throughout the paper: 

(i) The functions Pi (i = 1, 2, ..., v) are nonnegative on the interval [t0, oo). 

(ii) For any i, 1 S i ^ v, the function Ft has the following sign property 

Qfj = 1, 2, ...9m)yj > 0 => Fi(yi9y29 ...9ym) > 0 
and 

(Vj = 1, 2, ..., m)yj < 0 => Ft(yl9 yl9 ...9ym) < 0. 

(Hi) For every j = 1, 2, ..., m 

lim gj(t) = oo. 
r-->oo 

(iv) For i = 0, 1, ..., n — 1 and every j = 1, 2, ..., mf 

limo-f/O = °°-
f->oo 

(v) For every (t;z09zl9 ..., Z-.-Oe [t0, oo)xRm°xRmi x ... xR"""1 

(Vf= 1,2, . . . ,m 0 ) z 0 i >0=>G(t;z0,zi9...9zn_l) ^ 0 
and 

(Vj = 1,2, . . . ,m0)z0 y < O -^G^jZo^i , . . .^ . , . .0 = 0, 

where z0 = (z01, z0 2 , ..., z0mo). 
Also, we suppose that: 
(R) For every i = 1, 2, ..., n - 1 

7 d* 
J r,(0 

For general interest on oscillation results concerning differential equations 
involving the r-derivatives D^x (i = 0 , 1 , . . . , n) of the unknown function x we 
cluose to refer to the papers [2], [5], [6], [8] 4- [14] and [18]-=-[20]. 

The oscillatory character and the asymptotic behavior of the bounded solutions 
of the differential equation (E9 8) are well described by the following theorem. The 
proof of this theorem is omitted, since it follows as in [11, Thm 2] (cf. also [8, Thm 2]). 

Theorem 0. Consider the differential equation (E, 8) subject to the conditions (i) -r (v), 
(R) and: 

(C0) There exists an integer k with 0 ^ k ^ n — 1 and such that 
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fP,o(0dt=7 oo, iffe = n - l 
00 4 oo 4 00 

J - — r . — r - i" "^—i^—r J jpio(s)dsdsf1-.1...dsJk+1 = co, if k<n- 1 
r*+lV5*+lJ 5„-2

 r «- lV 5 n-11 5„-l 

far some /0> 1 = *o --- v-
Fhert etfery bounded solution x of the equation (E, +1) [respectively, of the equation 

(E, —l)]for n even [resp. odd] is oscillatory, while for n odd [resp. even] is either 
oscillatory or such that 

lim(Dj°x)(0 = 0 monotonically (i = 0, 1, ..., n - 1). 

In this paper we study the oscillatory and asymptotic behavior of all solutions of 
the differential equation (E, S). More precisely, we give conditions under which every 
solution x of the equation (E, +1) for n even is oscillatory while for n odd is either 
oscillatory or such that 

lim (D<°x)(0 = 0 monotonically (i = 0, 1, ..., n - 1). 
r-+oo 

Moreover, we classify the solutions of the equation (E, — 1) with respect to their 
oscillatory character and to their behavior at oo. 

For this purpose, we make use of the following two lemmas given by the author 
in [10]. We note that the first of these lemmas is a natural extension of Lemma 1 
in [1], which is a unified adaptation of two well-known lemmas due to Kiguradze 
[3, 4], while the second one is rather technical. 

Lemma 1. Let the condition (R) be satisfied and let h be a positive and n-times 
r-differentiable function on the interval [T, oo), T ^ t0, such that Z)*n)h is of constant 
sign on [T, oo) and not identically zero on any interval of the form [T, oo), t ^ T. 

Then there exists an integer I, 0 g I S n, with n + I odd for D^h ^ 0 or n + I 
even for D^h ^ 0 and such that 

(l%n-\ =>(-l)Uj(D(
r
j)h)(t)> 0 for every f = T(j= I, !+ 1,...,* - 1) 

\l > 1 => (D<'>h) ( 0 > Ofor all large t (i = 1, 2, ..., J - 1). 

Lemma 2. Suppose that the condition (R) is satisfied. Let h be a function whose the 
r-derivative D^^h exists on an interval [T, oo), T ^ t0, and let 

tae»o 1 51 1 Sn'2 1 
* . - i<0- 1 — 7 7 7 ^ 7 7 7 7 - $ r (s ) d **- i - d 5 * d *i , < = 'o. 

r0 ri(Si) to r2V521 t0
 rn-lKsn-l) 

If the lim (/><"-*>/*) (0 exists in R* - {0} (R* = R u {-oo , oo} is the extended 
- • - • a o 

real line), then 
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For our purpose, for any integer X with 0 = A = n - 1 we put 

fl, ifA = 0 
Rx(v; u) = ì 1> = 50 | »1 1 5 Л " 1 1 

I 7--Ч-! 7^*Г— I —7-тЙ5А...д52Й51, ах>о, 
Г. Г Л 5 Л Г. ГЛ5-Л Г. Г ЛЯ Л 

I « ri(Sl) i r

2(s2) " " J ^ A ) 

where v § w = f0, and in particular 

Rx(t)~Rx(t;t0% tgt0. 

Moreover, we consider the function g* which is defined on the interval [to»oo) 
as follows 

g*(t) = min {*, min inf g/s)}. 
l ^ J ^ m s|£f 

Obviously, for every t = t0 we have 

g*(0 £ t and g*(t) £ gj(s) for all s = t (/ = 1, 2, ..., m) 

and, if (iii) is satisfied, it holds 
limg*(*) = oo. 

* - * < © 

Also, we consider the function F defined on Rm by the formula 

F(yi9y2, . . . J« ) = min | Ft(yi,y2i ...,ym) | 

and for any nonnegative numbers <Xj (J = 1, 2 , . . . , m) we set 

SAf*i,*2, ...-am] = 

= mаx Jhmsup-=7 c-> lim sup ' J-ílU.—l. 
y láiž* láji* 

Theorem 1. Consider the differential equation (E, +1) subject to the conditions 

(i)-Kv),(R),(C0W: 
Iff 

(Ct) There exist nonnegative numbers ̂  (j = 1, 2, ...,m) ntft/i J) a, = 1 a/id 
i * i 

Sf[oCi, a2,..., aw] < oo tf«d swcA that for every integer I ntffh 1 £ I £ n - 1 and 
n + t odd exactly one of the following is satisfied: 

(c,) There exists an integer kf I <* k % n - 1, such that for some l0, 1 < t0 < v, 

jftConc^i-iU/o)]^* - oo, if &«n - 1 
i « i 

I r i v - 1 r i t) i *«•(«)fiw-iU/*))]"^^.-! •••^•i - » , 
r* + lV**+l/ » - 2 r»~lVA i f - l /a„- i j « l 

i f f e < » - 1. 
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(c2) It holds 

J — - T ^ - J £ Pi(s)Ul^2(gj(s); g*(0)]"'ds > SF[a i , a2, ..., am], 
to r i - l W j t 1=1 j=l 

.. P 7 > d 5 1 * i • i • ' . . 
1 , m S U p 7Is)V r (s V * r ft . J "-P'<S) 

.-»« L «o r iwJ * ri+i\si+i) «„-2
 r»-nsii-o*,-,.=i 

m 

IlC^i-ifeW; £*(0)]"'<k<k.-i ...ds,+1 > S F [ a i ,a 2 , . . . ,am] , if I < » - L 
j=i 

7%£rt eyery solution x of the equation (E, +1) for n even is oscillatory, while for n odd 
is either oscillatory or such that 

lim (D<0x)(0 = 0 monotonically (i = 0,1, . . . , n - 1). 
f-»oo 

Proof. Let x be an unbounded nonoscillatory solution on an interval [T0, oo), 
TQ = t0, of the equation (E, +1). We assume, without loss of generality, that x(t) # 0 
for all t ^ T0. Furthermore, we restrict ourselves in the case where x is positive, 
since the substitution z = — x transforms (E, +1) into an equation of the same form 
satisfying the assumptions of the theorem. 

By (iii) and (iv), we choose a T ^ T0 so that for every t = T 

(í) ,OJ(t)^T0 ( j = l , 2 m) 
/ O ž r o Ü - l , 2 , . . . , m . ; í = 0 , l , . . . , i t - l ) . 

fee 
W 

Then, in view of (i), (ii) and (v), from equation (E, +1) we obtain that for all t ^ T 

-(D<">x)(0 = £ p((0F.(x<g(0» + 
*=-l 

+ G(t; x<<ro(0>, (Z^x) <*t(0>. ..., (D^lyx) <an_1(0» £ 0, 
namely 
(2) (D<n)x) (0 ^ 0 for every t = T. 
Moreover, (D(

r
n)x) (t) is not identically zero for all large t. In fact, if for some T ^ T 

we have D^x = 0 on [T, OO), then equation (E, +1), by (i), (ii) and (v), gives that 
all functionspt(i = 1, 2, ..., v) are identically zero on [t, oo), which contradicts (Ct). 
Next, by applying Lemma 1 and taking into account the fact that x is unbounded, 
we conclude that there exists an integer I, 1 £ f £ it — 1, with n + I odd and 
such that 

(3) ( ~ l ) l + i ( / > ^ ) ( 0 > 0 forevery / £ T (j = I, * + 1, . . . ,* - 1) 

and, when ( > 1, for some T* ^ T 

(4) P^JC) (0 > 0 for every t = T* (i - 1,2,..., I - 1). 
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After these, for every t ^ Tit holds 

(5) (Di^HO-

-|(D<n)x)(s)ds, if I = n - 1 
t 

- J „ I . . - f _ * x I (Dj-'xXs) dsd*,^ ... ds,+ 1, if I < n - 1. 
r r l+lV s /+11 Sn-2 rn-l\sn-l) sn-i 

Indeed, by (3), for j = I, I -f 1,..., n - 1 and every f ^ T we have 

(-iy+w^)(o = (-i) / +w^)(« + (-i)i+o+i> |--J7^(D°+i>x)(5)d5 
r r,-+i(_.) 

^ (-l)l+u+*>J L^(DO + i)x)(s)d5 for all i^t, 
t rj+i\s) 

where rn = 1, and consequently 

(-1/+W>*)(0 -̂  (-l) l+u+1) J_2_(Dr l } *)«d5 , 
t rJ+1(s) 

from which (5) can be easily derived. 
Now, in view of (i), (ii) and (v) and the definition of F, from equation (E, +1) it 

follows that 

-(D<">x) (0 £ j] Pi(t) F(x<g(0» __ 0, t ^ T. 
i = l 

Thus, from (5) for all t _ T we obtain 

(D<'>x)(0_ 

]tp i(s)F(x<g(s)»ds, if I = « - 1 
t i*-l 

f . I , - I , fl ^ I __i'i(s)r(x<g(s)»dsdsB_1...ds,+1, 
« r»+iis,+ i ; ,„_2

 rB-ivsB-iJ »„-, i=i 

if / < n - 1 

' ? _ . P i ( s ) f l ^ [ ? / s ) ] d s , if 1 - n - l 
r » = l j = l 

i n f
 f(*<g(s)» 

sžt 
П^8/->] 

У = l 

00 4 00 -I 00 V 

J 7—77— •• J r r_ ^ f S ^( s) 
f r I + l V s l + l ) sn-2 rn-l\sn-l) sn-i i - l 
m 
L l x , , J [«/ s ) ] d s d s »- i •••ds«+i, if l < n - 1. 

"J=I 

So, for every t = T 

(6) 
(fl^XO 

П*ЧШ] 
j = i •S n»ш» J 
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ÎІp.(s)ПЛ.g/s)]ds . ifl = n - l 
I > = 1 , = 1 

0 0 1 VJCW °° 1 oo v m 

ír ( s V * J - (s ч í ІP i(s)П^[g/s)]dsds в_ 1 . . .ds 1 + 1, 
L< Ч+lV^ł+11 s„- 2

 г n- lV s л-11 s„-j i = l j = l Іf I < П — 1 

Furthermore, we set 

Ť [T, if . = 1 
(Г*, if l > 1 

and, by (iii), we choose a 7\ ^ f so that 

g*(t) ^ f for every t^Tt. 

Then, because of (3) for I = 1 or (4) for { > 1, x is increasing on the interval [f, oo) 
and so for any _y and f with s ^ t ^ Tt we have 

x[g/s)] ^ x[g*(0] ( f=l,2,. . . ,/n). 

Thus, (6) gives 

c?) (Dj°*)(or «up K f f •••K" l i-
l__1_im 

f?ipi(s)l l^[g/s)]d5, if/ = n - l 
- > ) » . = 1 y=l 

? r !. r - ? _ !. x ? i_»-<»)ii*" j[_/-)]dsds.-1...ds l + 1, 
U O+iv^+11 s„-2

 rn-iv5rt-i1 s„-i i-=i y=-i if I < n — 1 

for every _ ;> r x . 
Next, we prove that 

(8) xW^iDf-VxHtiRi-Aviu) 

for any vy u with t; ^ u ^ _f . To this end, we easily derive the following generaliza­
tion of the Taylor formula 

x(v)=j?(BPxHu)Rfr;u) + 
.-=o 

f-so 1 5 l 1 5 | _ 1 1 
+ J — 7 - T I — T T - I -7T(-< l ,")(«--»i--«i<-'i. J t-i(si) 2 r2(s_) i rfa) 

which, in view of (3) and (4), leads to (8). 
Consequently, by using the formula (8), for every s, t with s >. t >. Tt we have 

xO/s)] =? (/><'"»>x) [g*(.)] *,.-_(_/-); **(0) (j = 1,2,..., m). 
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Then from (7) for every t J> _*_ we obtain 

(#'>*) (0 
(9) 

(->.'" 1 }*)[g*(0] 
Г sup 
I Уj_-tt7*l 
- ! _ . _ • 

>1\Vľ->-ľ 
(O] F(yt,y2,...,yJ 

_ j _ - ] 
J I Pi(s) Li [«»-2(g/s); g*(0)]a> ds, if / = n - 1 
f. = l i = l 

? r /_ s - f 7 - 4 — T f i ^)ii[««-i(g/»);8*(o)rd.d5._. ... 
» r . + i ( s i + i ) . „ - . r - - i v s „ - i ) «... I - I j - i . . . d s ( + 1 ) i f / < n - . l . 

Because of sf[aj., a2,..., aM] < oo, it holds 

sup 
УľУz-УІЇ 

УjžxløЧTi)-] F(Уl>Уl> •••» Уm) 
lѓJйm 

< 00. 

Hence, from (9) it follows that 

( J I Pfc) ft [Rn-2(gj(.s); g*(T1))]«Ms < oo, if / = n - 1 
I T , i = i _ = i 

! J r !_ v- 1 7 — r r - T I -><(s>fi [«i-i(g_<-);g*(T,.))T'd»d5._. ... 
[T, ri+i(s,+ i) .„-_ r„-ivs»-i) .„-,i=i . = i d . j + i < Q 0 ) i f / < „ _ i 

and consequently 

(Ю) 1 

í E Pi(S) П [Ä.-2(g/»))Г d s < w. if / = П - 1 

i = l i = l 

î r \. y ľ r l ч ľ XPi(s)ñ[*«-i(g/s))ľ'dsdsв_1... 
r l+ivty+11 s-,-2 Г л - l < Л - l J s„-i i = l У=-l 

. . . d s l + 1 < 00, Іf / < П - 1. 
On the other hand, because of (2) for I = n — 1 or (3) for I < n — 1, the function 

D^>x is decreasing on \T, oo) and so (9) gives 

an (PflO-g^P] ["T d 5 l T ,un >•''>'?••• >•:- " K 
U U (/>rx>x)[g*(0] L i m\\JtmJ!.mF(yl,y2,...,ym)\-

_ГT___"| 
e L І '•(»)] 

i _ . _ -

f i P&) ft [«.-2(g/s); g*(0XT d s , if / = n - 1 
t i * l ) * * \ 

00 | 00 4 OO V 

f ,. r. . •• ^ T~7.—T ^ £ p , ( s ) 

r "l+iv'J+iJ _--i r . » - lV s »- l ) » - - t i = l 

ft [Ki-i(g/s); g*(0)Y'dsds._.... ds(+1, if / < n - 1 
J=i 

for all f _. 7*.. 
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Furthermore, we shall prove that 

(12) 

To this end, taking into account the fact that D?x is decreasing on [T, oo), for every 
t _ tvte have 

(D<,-1>x)(f) 
(-***)(')- } J L < 1 f _ i _ (/><'>*) (s)ds - 1 - V ^ - ц w V * !* 
Ð Í - ^ ) ( 0 ř ^ ) = (ЛГ^HO ŕ * ' ) ( Ð ' x ) ( í ) (J>! 

Moreover, it is obvious that 
' ds 
j Ыs) _ . 

lim-Ê 
t-»oo л d s 

,í sT 
So, we have 

(D?x)(t)_ / ds < ! 

(^'"^(Ói^5) 
which implies (12), since lim g*(t) = oo. 

f-*oo 

Now, since x is increasing and unbounded, we have lim x(t) = oo and therefore 
f-*00 

,• r y'lVi-ym 1 ,• iW^L^cr, » „i 
hm sup / * •K2 £=--- -. hm sup g, 7 7 s S ^ ! , a2 a„J. 
t^Jyjzxirm F(yi>y2,--,ym)j ?,-><» *Kyi,yz,—>ym) 

HJSm lSJZm 

In view of this and (12), from (11) we obtain 

(13) sF[ai.<-2 ««] ^ 

èlirHÎ^)] 
S E PM П [ Ä - - 3 ( Í / » ) ; **(ö)ľ" ds. if / - n - 1 
ř i=-l i » l 

í 
co 1 00 r 

- 2

r ц - l t 5 n - 1 1 s„-i í = l t n+i í s i+i ) J„-2'«-

fí [«'-i(g/ s); ř*(0)]*y ds d«--i - d s«+i. if / < « - 1 . 
І--1 

We remark that (10) and (13) contradicts the condition (CJ. 
Finally, the proof of our theorem can be completed by applying Theorem 0. 

Remark 1. By a light modification of the proof of Theorem 1 we verify that in 
this theorem the condition (Cx) can be replaced by the following one: 
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(C5) It holds 

c* — fi:~~»~ yi + y2 + - + y™ u„ „„ I yi I +1 y21 + - +1 ym i ] ,̂ _ 
5F -= max < lim sup —=-, r—, lim sup =-- V < oo 

l , ^ o o F(y1,y2,...,ym) , „ _ „ F(yl9 y2, ..., ym) J 
t£J£m % l£J£m 

and for every integer I with 1 51 I S n — 1 *md« 4- t odd exactly one of the following 
is satisfied: 

(c*) There exists an integer k, I ̂  k <J n — 1, such /hat 
oo 

J pIO(0 Ki-i(gy„(0) dt = oo, if fc = n - 1 
00 j 00 -I 00 

$T~T*—T- J 7—~i—T 1 P/o(s)^i-i(g;o(S))dsds»-i-ds*+i = °°* 
r*+lVs*+li s„-j r»-llsil-l>> J„-I ^ fc < n _ J 

/or some i0, 1 ^ /0 < v, a«dj0, 1 S j 0 £ m. 
(c*) /< holds 

lim sup 
í-*oo 

lim sup 

i / / « и - l 
~0*(O ^ „ "I m co v 

J T ^ T a £ J I Pi(s)«n-2(gy(s); g*(0)ds > S*F, 
„ -o r « - l W J j « l * l»l 
*>*(0 (fo "1 W °° 1 °° 1 o o v 

I TTyT I J r> r , N - J 7 71 T J I Pi(s) 
^ t0

 rIWji=-l t rl+l\st+l) s„-2
 r«-lV5n-11 sn-ii-=l 

-Ri-i(g/5); g*(0)ds d s „ - i . . . ds l + 1 > S*, i/ / < n - 1. 

Theorem 2. Consider the differential equation (E, —1) subject to the conditions 

(i)-(v),(R),(C0)^d; 
(C2) For some /0 , 1 51 i0 ;S v, the function Fio is increasing on Rm and such that for 

every nonzero constant c 

00 

J Puff) I FJo(cK1,-.i[gi(0], c«._i[g2(0], •••, c*--i[g«(0]) I dt - oo. 
m 

(C3) 7jf/i > 2, rhe« /hereex/sf nonnegative numbers <Xj(j ~ 1,2,..., m) w//h £ ctj = 
J = i 

-*= 1 andSF\al9 a2, . . . , «OT] < oo and such that for every integer I with 1 <I t <I # — 2 
and n + I even either (ct) or (c3) below is satisfied: 

(c3) It holds 

[0*<O dS 1°° i °° i °° v 

J ~7T I 7 7 ••• I 7 r $ I- ^*(s) 
*0 r*V5/ J t rl+lV5l+lj S„~2

 r»-l(SII-l/ Sn-H'-U 
I ] [«i-i(g/(s);g*(0)Fds d*„-i .. dS|+i > SF\al9<x2,..., a j . 
i * i 

Jhe« e#erj> solution x of the equation (E9 — 1) satisfies exactly one of the following: 
(I) x is oscillatory. 

(II) x is such that 

lim(I>Px)(0 « 0 monotonically (i « 0 ,1 , . . . , » - 1). 
f-*oo 
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(Ill) It holds 

Km (D</>x)(0 = 00 for all i - 0,1, ..., n - 1 
f-*00 

or 

Km(D<°x)(0 = - oo /or all i = 0,1, ..., n - 1. 
f-+00 

Moreover, (II) occurs OH/J I/I the case of even n. Also, every solution x of (E, - 1 ) 
with x(t) — 0(Rn„x(t)) as t -• oo for « odd is oscillatory while for n even is oscillatory 
or satisfies (II). 

Proof. Let x be an unbounded nonoscillatory solution on an interval \T0, oo), 
T0> t0, of the equation (E, — 1). We suppose, without loss of generality, that x(t) # 
7-- 0 for all t _• T0 and, furthermore, since the substitution z = — x transforms 
(E, — 1) into an equation of the same form satisfying the assumptions of the theorem, 
we restrict ourselves in the case of positive x. Next, by (iii) and (iv), we choose a T g 
^ T0 so that, for every t ;> T, (1) holds. Then, in view of (i), (ii) and (v), from equa­
tion (E, — 1) it follows that 

(14) (D(
r
tt)x) (t) £ 0 for every t^T. 

Moreover, if D{n)x = 0 on [T, oo), % ;> T, then, in view again of (i), (ii) and (v), all 
functions p{ (i = 1, 2,. . . , v) are identically zero on [T, oo). This contradicts (C2) 
and hence (D(n)x) (t) is not identically zero for all large t. Consequently, by taking 
into account the fact that x is unbounded, Lemma 1 implies the existence of an 
integer I, 1 «£ I <; n, with n + I even and such that, if I < n — 1, (3) holds and, 
when I > 1, (4) is satisfied for some T* g> T. Since n 4- / is even, we have I # n — 1. 
So, we consider the following two cases: 

Case 1. ( = n. In this case, because of (4) and (14), it holds 

lim(i><',-1)jc)(0>0 
t-*oo 

and hence, in view of Lemma 2, 

i i m_*> >o. 

Therefore, there exists a positive constant c such that 

x(t) ;> cRn„t(t) for every t J> TQ 

and consequently, since, by (C2), the function Fh is increasing on R"\ 

Thus, by virtue of (i), (ii) and (v), we obtain for t ^ r 

(D<"> x)(r) fc ̂ (OF|.(A-i[*i(0l * - i W 0 1 . . . . ^-i[g,(0]) 2 0 
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and, furthermore, for every t _: T we have 

(Df."-l>x)(0__ 

i_ (tfrUx)<T) + hio(s)Fio(CRn-ilgl(s)l CU._.[g.(5)], ..., cH,_.[g_(s)]) ds. 

r 

This, because of condition (C2), gives 
lim(D^~1>x)(0 = oo. 
f-*00 

Therefore, it is easy to derive that 

lim(Dj°x)(0 =oo (i = 0,1 , . . . , n - 1) 

l ->00 

and hence x satisfies (III). Moreover, by Lemma 2, we have lim —------ = oo and 

so the solution x has not the property x(t) = 0(-f?n_!(*)) as t -* oo. 
Case 2.1 _g / _f_ « — 2. An argument similar to that used in the proof of Theorem 1 

gives 
00 4 00 -J 00 V HI 

J. r. v J _ f, x J Ep,(»)nMj(»))],'<-(_1.1 ...dsl+1 <oo 
ri+l\si+l) sn-i r « - l V s n - l / s„-_i-*l i=-l 

and 

[0*0 d s " ! 0 0 j °° j G O V 

f "7T 1 ? — r ••• J ; r 1 £ Jfcfa) fo ri(s)J f r,+i(s,+1) J-2 rm-%(8m-t) J^fff* 
m » 
n[« i - i (g / s ) ; g*(0XTds ds^ i . . . ds l+1 £ SF[at, a2, ..., aw], 

J = i 

which contradicts the condition (C3). 
Finally, Theorem 0 completes the proof of the theorem. 

Remark 2. In Theorem 2 the condition (C3) can be replaced by the following one: 
(C|) Ifn > 2, then S* < oo and for every integer I with 1 < I S n — 2 and « + I 

ê en eftfter (c*) or (ef ) fee/ow is satisfied: 
(c|) It Mds 

[0*(O J 5 1 « » j oo j o o v 

1 ~ T T £ f 7—r ••• I r — r I £ Pt(s) fo r,(s) J fit \ rl+1(s,+ 1) J_a r . . _.(«._. t) J ^ | t lF i V 

«i^i(gj(s); g*(0)ds d s ^ . . . ds,+1 > Sj . 

Remark 3. In the proof of Theorem 2 the condition (C2) is used only in Case 1 
where we have 

l m " S — ( E > 0 > 
•t«*m % - l W 
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which is a contradiction, when the solution x has the asymptotic property x(t) = 
= o(Rn^.l(t)) as t -> oo. Thus, we derive the following result: 

If the conditions (i)-r(v), (R), (C0) and (C3) are satisfied, then every solution x with 
x(t) = ofa-^t)) as t -> oo of the differential equation (E, — I) for n odd is oscillatory 
while for n even is either oscillatory or such that 

lim (D(
r°x)(0 = 0 monotonically (i = 0,1, ..., n - 1). 

t-*oo 

Consider now the special case where for some integer N with 1 <; N ^ n — 1 
we have 

rt = 1 for i & n — N and >*„_* = r. 

In this case the differential equation (E, 8) takes the form 

(E, 5) [K0 x("-N)(0]w + <H £ MO ̂ (*<g(0» + 
.-=i 

+ G(f; x<«-0(0>, x'<«-.(0>,.... x("-N-1)<ff„_JV_1(0>, 

Irx*'-"*] <<TB_JV(0>, Ox<"-*>]' <<r.-,+i(0>, .... [ ^ - T " 1 3 < * - » ( 0 » } = 0 

and the condition (R) becomes: 

dt_ 

K0 
(R) Г - т V = oo. 

We shall apply our main results in the considered special case. For this purpose, 
for any integer X with n — N^Ag/i— l w e define 

Px(v;u)=SV—V Vu> ds,vZu%to 

and in particular 
Px(t) = Px(t;t0\ t^t0. 

Corollaries 1 and 2 below are new and follow from Theorems 1 and 2 respectively. 

Corollary 1. Consider the differential equation (E9 +1) subject to the conditions 
(}) + (v), (R) and: 

(C0) For some /0, 1 ^ i0 ^ v, e/7/r̂ r 

or 
oo ..Ji-iY-l oo 

J - ^ p J (» - 0*" ' P&) ds d. - co. 
m 

(CA) Titere ex/sf nonnegative numbers OL^ (j = 1,2, ...,w) wit/i £ a j = 1 cw<f 
j*- i 

£jp[ai> a2> ••» «m] < °° and such that: 
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W)IfN<n- \andla = {I: I is integer with \ &l£n-N- \andn+lodd}& 
# 0, then for every integer lel& exactly one of the following is satisfied: 

(aj) For some i0, 1 g i0 <; v, efther 

j^woncg/o^^di-oo 
j=i 

or 
oo ^n — N—I— 1 oo m 

i .™ J(s - i)"~1 p*® n bx-)](,-i),ydsdt=«>• 

(a2) J* ho/ds 

lim sup g*(0 J ( j ~ ' L " ' ' ] (« " ^ f " 1 1 P.00 ft C*X«0 - **(0] c ," l ) ' i 

.-•oo t T\S) 5 i=*l J = l 

d« ds > (n - N - I - 1)! (N - 1)! (/ - 1)! SF[«U a2 « J . 
(A2) / / JV is odd, then exactly one of the following is satisfied: 
(a3) For some /„, 1 ^ i0 g v, 

itN-won[g/o](n-N-i)ajd. = oo. 
i = l 

(a4) // holds 
f0*(t) A„ "1 oo v m 

lim sup J - 5 1 . J (S - t)»-1 £ p,(s) I ] [«/«) - ^ 0 ] ( " - ' f - 1 ) ' y ds > 
f-*oo L <o r w J - *«1 J = l 

> (N - l)!(n - N - 1 ) ! ^ , ^ , . . . ,am] . 

(A3) IfN > 1, then for every integer I with n — N-f-l^l^fl — 1 a«dn + I odd 
exactly one of the following is satisfied: 

(a5) For some i0, \ S i0 S v, 

^"'"WoncPi-iU/oH^di-oo. 
i « i 

(a6) Jr /b/ds 

lim sup g*(() J (s - O"-'"1 Z P'(s) ft [Pi-i(g/-)J g*(0)]"y ds > 
*-*oo t i=- t i = l 

> (« - i - 1)! (« - iV - 1)! [f - 1 - („ - N)J\ SF[au a2, ..., « J . 

Then every solution x of the equation (E, -f l)/0r n even is oscillatory^ while for n odd 
is either oscillatory or such that 

lim x{i) (t) = 0 monotonically (i -* 0 , 1 , . . . , n - N - 1) 
r-*ao 

lim [ - ( f y - ^ O ) ] 0 ' = 0 monotonically (J = 0 ,1 , . . . , At - 1). 
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Corollary 2. Consider the differential equation (E, —1) subject to the conditions 
(\) + (v), (R),(C0) and: 

(C2) For some i0,\ ^ i0 <, v, the function Fio is increasing on Rm and such that for 
every nonzero constant c 

W ) I f i o K - i U i W ] , c-».-il>2(0]. •», c- ' . - ibJO]) I dt = 00. 
m 

(C3) 7/n > 2, then fhere cx/sf nonnegativenumbers OLJ (j = 1,2,..., w) w/Yh £ ay = 
1=i 

= 1 and Sf[ai, a2, ..., am] < oo and such that: 
(A\) IfN<n-landIe={l:l is integer with \<>l<n-N-\andn+l 

even) =£ 0, then for every integer I e Ie either (ax) or (a2) is satisfied. 
(A2) If N > 1 and N is even, then either (a3) or (a4) is satisfied. 
(Ae

3) If N > 2, then for every integer I with n-N+\<il<zn-2andn + l 
even either (a5) or (a6) is satisfied. 

Then every solution x of the equation (E, — 1) satisfies exactly one of the following: 
(I)* x is oscillatory. 

(II)* x is such that 

limx(I)(0 = 0 monotonically (i = 0, 1, ..., n - N - 1) 
r->oo 

lira [K0*0,-* )(0]O) =- 0 monotonically (j = 0, 1, ..., At - 1). 

(Ill)* It holds 

flim x(i)(0 = oo (i = 0,1, ..., n - N - 1) 
) « -»00 

jlim [K0^"~W)(0]a) = «> 0* = 0 ,1 , . . . , N - 1) 
. - >00 

Urn x(O(0 = - oo (i = 0,1, ..., n - N - 1) 
f-+QO 

lim [KOx^-^O]0^ = -oo (j = 0,1, ..., N - 1). 
If -* 00 

Moreover, (II)* occurs on/y in the case of even n. Also, every solution xof(£, —1) 
with x(t) = O(P„_i(0) as t -* co for n odd is oscillatory while for n even is oscillatory 
or satisfies (II)*. 

It is easy to verify that in the considered particular case for any integer A with 
O ^ A r g n — lwe have 

(15) Rx(v; u) = ^ 
J _ ( » - t i ) * , if X<n-N 

1 Px(v;u), if Xìn-N 
( и - Л Г - l ) ! [ A - ( п - J V ) ] ! 
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for every v, u with v ^ u S: t0 and in particular 

(16) Rx(t) -
jт(t-to)x, if X<n-N 

1 Pл(í), if X £ n - ІV 
( n - j V - l ) ! [ A - ( n - j V ) ] ! 

for all t *z t0. On the other hand, we have the formula 

(17) J J (w - s)" «(w) dw ds -= J ^ " P P «(-) d s ' 

where ju is a nonnegative integer and the function q is continuous and nonnegative 
on [£, oo). By (15), (16) and (17), it is a matter of elementary calculus to see that in the 
considered case the conditions (C0), (Cx\ (C2) and (C3) follow from (C0), (Cx), (C2) 
and (C3) respectively. So, Corollaries 1 and 2 follow from Theorems 1 and 2 
respectively. 

Remark 4. Corollaries 1 and 2 for N = 1 improve two recent results due to Sficas 
and Stavroulakis [17, Theorems 2 and 4]. 

Now, from Theorems 1 and 2, by applying them in the usual case where 

rt = r2 = ... = -V-! = 1, 

we obtain the following Corollaries 1' and 2' respectively concerning the differential 
equation 

(I«) *(n)(0 + <K £ Pit) ^(x<g(0» + 
f = i 

+ G(t; x<(70(0>, *'<*i(0>, ..., * (""1 )<^.i(0»} - 0. 

Corollary 1'. Consider the differential equation (£, +1) subject to the conditions 
(i)-f-(v) and: 

(C0) For some /0, 1 g i0 g v, 

~ m 

(Ci) There ex/si* nonnegative numbers <x.j (j = 1,2, ...,m) wfh ][]ay = * a w^ 
5F[aly a2, ..., aM] < oo awd such that for every integer I with 1 ^ J _ n — 1 a/id 
n + I odd exactly one of the following is satisfied: 

(d,) For some i0, 1 ^ i0 ^ v, 
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(d2) It holds 

lira sup g*(0 ] (s - O" - ' " 1 1 Pi(s) f [ lgj(s) - g*(0] ( '_ 1 )" ds > 
t-KX> t <=-l J = - l 

> ( „ - I - ! ) ! ( / _ l ) !S f [ a . , a, , . . . ,«„]. 

Then every solution of the equation (E, +1) for n even is oscillatory, while for n odd 
is either oscillatory or tending monotonically to zero as t -> oo together with its first 
n — 1 derivatives. 

Corollary 2'. Consider the differential equation (E, — 1) subject to the conditions 
(O-Jv), (C0) and: 

(C2) For some i0, 1 ^ i0 _i v, the function Fio is increasing on Rm and such that 
for every nonzero constant'c 

] P,«(01 Fi0(c[g1(t)r
1> cfo©]""1 , »., c[gM(0]"_1) I d. _ oo. 

m 

(C3) Ifn > 2, then there exist nonnegative numbers OLJ (j = 1,2,. . . , m) >v/rh J. aj — 
J- i 

= 1 and 5F[ai, a2, ..., am] < oo and such that for every integer I with 1 S I __ « - 2 
awd w + I ez;ert e/fher (dx) or (d2) /s satisfied. 

Then every solution x of the equation (E, — 1) satisfies exactly one of the following: 
(I)' x is oscillatory. 

(II)' x and its first n — 1 derivatives tend monotonically to zero as t-+ oo. 
(Ill)' if /zoWs 

lim x{i\t) = oo for all i = 0 , 1 , . . . , n - 1 
t->ao 

0r 

lim x ( 0(0 = - oo for all i = 0,1, ..., n - 1. 
r-*oo 

Moreover, (II)' occurs only in the case of even n. Also, every solution x of (E, — 1) 
with x(t) = 0(tn~ l)ast ~* oofor « odd /s oscillatory while for n even is either oscillatory 
or tending monotonically to zero as t -» oo together with its first n — 1 derivatives. 

Remark 5. Corollaries V and 2' improve two results due to Stavroulakis [21, 
Theorems 1.2 and 1.3]. For earlier related results concerning particular cases 
of the differential equation (E, b) we refer to Lovelady [7] and Sficas [15, 16]. 
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