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SOME RESULTS ON THE OSCILLATORY
AND ASYMPTOTIC BEHAVIOR
OF THE SOLUTIONS OF DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENTS*

CH. G. PHILOS, Greece
(Received August 1, 1977)

Let r; (i = 0, 1, ..., n) be positive continuous functions on the interval [#o, o).
For a real-valued function 4 on [T, ), T 2 t,, and any u = 0, 1, ..., n we define
the u-th r-derivative of h by the formula

D®h = r(rye 1o (ri(roh))...)Y.
Then we obviously have
D®r=roh  and DPh=rD YRy (=12, ..,n).

If D™h is defined on [T, o0), then the function 4 is said to be n-times r-differentiable.
Now, we consider the n-th order (n > 1) differential equation with deviating
arguments of the form

(E, 9) (DMx) (1) + 5{‘;?:(!) Fi(x<g(1))) +
+ G(t; x{ao(1)), (D{Vx) <a1(1)), ..., (D" Vx) {0,-1(1)))} = O,
where 6 = +1,ro =r, =1 and

x(g(®)) = (x[2:(], x[22(0)], -, x[8()]), & =(21,825 > &m)
(D¥x) <o (1)) = ((DPx) [014(1)], (Dx) [0:2(D], ..., (D%) [0:m(1)]),

gy = (Jil’ Gi2s o0 abm) (i = Oa 1; ooy B — l)'

The continuity of the real-valued functions p; (i = 1,2,...,v), g, = 1,2,..., m)
and o;; G=1,2,...,m;;i=0,1,...,n — 1) on [t;, ™), F;(i=1,2,...,v) onR"

* This paper is a part of the author’s Doctoral Thesis submitted to the School of Physics and
Mathematics of the University of Ioannina.
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and G on [ty, 0)x R™xR™ X...xR™"* as well as sufficient smoothness for the
existence of solutions of (E, ) on an infinite subinterval of [¢,, c0) will be assumed
without mention. In what follows the term “solution” is always used only for such
solutions x(t) of (E, ) which are defined for all large ¢. The oscillatory character is
considered in the-usual sense, i.e. a continuous real-valued function which is defined
on an interval of the form [T, o0) is called oscillatory if it has no last zero, and other-
wise it is called nonoscillatory.

Furthermore, the following conditions are assumed to hold throughout the paper:

(i) The functions p; (i = 1, 2, ..., v) are nonnegative on the interval [ty, ).
(ii) For any i, 1 < i £ v, the function F; has the following sign property

Vi=1L2...my;>0=>F(,y:, ., Ym) >0
and
(VJ = 1’ 23 "'sm)yj < 0=>Fi()’1,)’z, "')ym) <0
(iii) For every j=1,2,....,m
t— o
(iv) Fori =0,1,....n—1and everyj=1,2,...,m;
llm O'ij(t) = 00.
t—>

(v) For every (t; 2y, 2y, -+, Z,—1) € [9, ) X R™ xR™ x ... x R™"*

(V.] = 19 2’ ""mo)ZOj > 0= GU: 29521, '*')zn—l) g 0
and .
Vi=12,....,mp)z0; < 0= G(t; 29, 2y, s, 2, ) = 0,

Where 29 = (201’ 2025 ++e> zOnro)'
Also, we suppose that:
(R) For everyi=1,2,....,n — 1

T dt
o=
For general interest on oscillation results concerning differential equations
involving the r-derivatives DYx (i = 0, 1, ..., n) of the unknown function x we
chcose to refer to the papers [2], [5], [6], [8]+[14] and [18]+[20].
The oscillatory character and the asymptotic behavior of the bounded solutions
of the differential equation (E, §) are well described by the following theorem. The
proof of this theorem is omitted, since it follows as in [11, Thm 2] (cf. also [8, Thm 2]).

Theorem 0. Consider the differential equation (E, 8) subject to the conditions (i) + (v),
(R) and:
(Co) There exists an integer k with 0 < k < n — 1 and such that
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[pi()dt = 0, ifk=n-1

@ 1 « 1 @ X
O I BT Oy l"_[_lp,-o(s) dsds,_;...dsg.; =00, ifk<n-—1

for some iy, 1 < iy £ v.

Then every bounded solution x of the equation (E, + 1) [respectively, of the equation
(E, —1)] for n even [resp. odd] is oscillatory, while for n odd [resp. even] is either
oscillatory or such that

lim (D¥x) (1) = 0 monotonically (i =0,1, ...,n — 1).
t— o0

In this paper we study the oscillatory and asymptotic behavior of all solutions of
the differential equation (E, 8). More precisely, we give conditions under which every
solution x of the equation (E, +1) for n even is oscillatory while for n odd is either
oscillatory or such that

lim (D®x)(t) =0  monotonically (i = 0,1, ...,n — 1).

t—®
Moreover, we classify the solutions of the equation (E, —1) with respect to their
oscillatory character and to their behavior at co.

For this purpose, we make use of the following two lemmas given by the author
in [10]. We note that the first of these lemmas is a natural extension of Lemma 1
in [1], which is a unified adaptation of two well-known lemmas due to Kiguradze
[3, 4], while the second one is rather technical.

Lemma 1. Let the condition (R) be satisfied and let h be a positive and n-times
r-differentiable function on the interval [T, ), T Z t,, such that D™h is of constant
sign on [T, 00) and not identically zero on any interval of the form [t, 00), t = T.

Then there exists an integer 1,0 < 1 £ n, with n + 1 odd for DPh <0orn+1
even for D™h 2 0 and such that

{l Sn—-1=(=DYDOP)(@t)>0foreveryt 2 T(G=0L1+1,....,n—1)
I>1=(DPh)(t) >0 foralllarget (i=1,2,..,1 —1).

Lemma 2. Suppose that the condition (R) is satisfied. Let h be a function whose the
r-derivative D"~ Vp exists on an interval [T, ), T 2 to, and let -

t=g5g 1 sy 1 Sh-2 1

R""l(t) = j rl(sl) fo rz(sz) to rn—l(sn—l)

to

If the lim (D®-p) (¢) exists in R* — {0} (R* = R U {~00, o0} is the extended
t-w

real line), then

ds”-l...dSZdSh lgto.

tim—"®__ _ tim (0"~ Vh) (1).

t—= Rn-—l(t) t—=®

21




For our purpose, for any integer A with 0 < 2 < n — 1 we put

1, ifA=0
Rijuy=qvs 1 m 1 so |

[

w ri(s) o ra(s2) Ty ra(sy)

Lo dsgds;,  ifA>0,

where v = u 2 ¢,, and in particular
Ry(®) = Ry(t; ty), t=t.

Moreover, we consider the function g* which is defined on the interval [to, )

as follows
g*() = min {1, min inf g(s)}.
1SjSms2t

Obviously, for every ¢t = t, we have
g*®)st and g*t)=sgls) foralls=t (=1,2,....,m)

and, if (iii) is satisfied, it holds
lim g*(t) = 00

1=

Also, we consider the function F defined on R™ by the formula

F(yl’ Y25 ey ym) = min lFi(yl’ Y250 ym)l
‘ 15isy

and for any nonnegative numbers «; (j = 1, 2, ..., m) we set

Sp[“u 03, .0uy a,,,] =

Yi'Ve o Y P2 P Y T B 7
= max {lim su , lim su = .
{ yj..wp F(yla.V2" ’ym) Y= eop F(yl’yz’"-aym) }
1s5jsm 1$J§m

Theorem 1. Consider the differential equation (E, +1) subject to the conditions
(l)+(V), (R)s (CO) a”d'
(Cy) There exist nonnegative numbers o, (j=1,2,...,m) with Za, =1 and

Se[ay, oy, .., dpm] < 00 and such that for every integer 1 with 1 < l S n—1and

n+ 1l odd exactly one of the following is satisfied:
(c,) There exists an integer k, 1 < k < n — 1, such that for some iy, 1 < iy < v,

Tph(t)ijI[Rz-l(g,(t))]" dt =00, ifk=n-1

© 1 @® . a
T T d PO RGO s bt =
ifk<n-—1.




(c;) 1t holds

. g%(t) o v m
i s“p[ 0 ]5 2 PO [Ru-s(e/9; 2O s > S, 52, 0],

t—+ o to =1

ifl=n-1
lim sup ["j?) :i(‘:)]f 1 ojg _f Z pi(s)

t— o0 t rl+l(;l+1) Sn-2 Ty I(S —l)s.. 1i=1

HI[R;_I(gj(s); g*(0)]V dsds,~y ... dspe g > Sp[og, oz, -on, Al ifl<n~—1,
j=

Then every solution x of the equation (E, + 1) for n even is oscillatory, while for n odd

is either oscillatory or such that
lim (D¥x) () =0  monotonically (i = 0,1, ...,n — 1).
t—

Proof. Let x be an unbounded nonoscillatory solution on an interval [Ty, o),
Ty 2 1o, of the equation (E, + 1). We assume, without loss of generality, that x(¢) # 0
for all ¢ > T,. Furthermore, we restrict ourselves in the case where x is positive,
since the substitution z = —x transforms (E, + 1) into an equation of the same form
satisfying the assumptions of the theorem.

By (iii) and (iv), we choose a T = T, so that for every t > T

{gj(t) 2T, (G=12,....m)

1
( ) O'U(t)g To (j= 112’ ~"9mj;i=0’ 1’ "'!n_ 1)‘

Then, in view of (i), (ii) and (v), from equation (E, + 1) we obtain that forallt = T

— (™) (1) = ):1 pi(1) Fi(edg(0)) +

+ G(t; x("'o(‘)): (Dfl)x) <0’1(t)>, cecy (Dg"-l)x) <an— 1(‘))) g 0:_
namely
) DO"x)(t) <0 foreveryt=T.
Moreover, (D™x) (t) is not identically zero for all large ¢. In fact, if for somet = T
we have D™x = 0 on [1, ), then equation (E, +1), by (i), (ii) and (v), gives that
all functions p; (i = 1, 2, ..., v) are identically zero on [, o), which contradicts (C,).
Next, by applying Lemma 1 and taking into account the fact that x is unbounded,
we conclude that there exists an integer I, 1 S I S n — 1, with n + | odd and
such that

3) (=D DD () >0 foreveryt 2T (G=ULI+1,...,n—1)
and, when I > 1, for some T* =2 T

@ DOx)() >0 foreveryt2T* (i=12,..,1-1).




After these, for every ¢ 2 T it holds

©) DO (1) 2
—TOPs)ds,  ifl=n-1

2{ L .

t rl+1(sl+l) “'s,.- n— l(sn 1)s

_\' (DPx) (s)ds ds,_q ... ds;4q, ifl<n-—1.
Indeed, by (3), forj= 1, 1 + 1,...,n — 1 and every t = T we have

(=103 (1) = (=D OP) @ + (—nurD L ()
t _,+1
1

——U(Df" *Dx)(s)ds  forall € > ¢,

(DY*Vx) (s) ds
2 ( 1)'+(]+1)I

where r, = 1, and consequently

(ﬂWWMm><wwms

‘ —J:ﬁ (DY*Vx) (s) ds,

from which (5) can be easily derived.

Now, in view of (i), (ii) and (v) and the definition of F, from equation (E, +1) it
follows that

—PP)(O 2 ¥ ) Fx(g®) 20, 12 T.
i=1
Thus, from (5) for all ¢+ = T we obtain
(DPx) (1) 2
!lgl p{s) F(x{g(s)>)ds, ifl=n—-1

: . j Z pi(s) F(x(g(s))) dsds,—y ... dsi4q,

t T141(S141) ms,.-z n=1(5n—1) s —yi=1

ifl<n-1
f Z p()[1x*[g()]ds, ifl=n—-1
inf F(x{g(s)) ri=t =t v
2= e e R 0
jI;lea‘J[gjl(s)] t Tee1(Sie1y s Ta=1(Sn-1)  sooy =1
[1x"[gfs))dsds,_, ...ds;y, ifl<n—1,

So, foreveryt 2 T

© » [ H x“[gs)] }
OO |swp oy | 2
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i pi(s) ﬁ x“’[g,-(s)] ds, ifl=n-1
i=1 j=1

-
]
t
A D T |
!

v

= a dsds,_, ...ds;,,,
Ty l(sl+1) sn-2 Tn— l(sn 1) ij lz pl(S) n * [gj(S)] ’ B if ;‘;ln -1

Furthermore, we set

T =

T, ifl=1
T*, if 1>1

and, by (iii), we choose a T, = T so that

g*®) =T foreveryt>T,.

Then, because of (3) for I = 1 or (4) for I > 1, x is increasing on the interval [T, o)
and so for any 5 and ¢ with s = ¢ = T, we have

x[gi(s)] = x[g*()] (G=12,...,m).
Thus, (6) gives
ag . 22 Im
7 DWx) (t su Y1Y2 - Ym >
( ) ( )() yjlgsx;gi:(t)] F(yly Y2y oo ym) -

) Z1 pis) H x[g(s)]ds, ifl=n—1
Z ti=
=9, . . .
{ "1+1(S¢+1) _zmsnf ) E p{s) H x*[g(s)]dsds,_y ... ds;44,

1fl<n-1

for everyt = T,.
Next, we prove that

®) x(v) 2 (DY V%) (u) Ry—4(v; u)

for any v, u with v = u = T. To this end, we easily derive the following generaliza-
tion of the Taylor formula

x(©) = ¥ (DV%) () Riv; u) +
i=0
S1 1 -1

£ "1(51) 'E ra(sy) { "l(s)

which, in.view of (3) and (4), leads to (8).
Consequently, by using the formula (8), for every s, ¢ with s =2 ¢t =2 T, we have

x[g$)] 2 (D{'~Vx) [g*N)] Ri-1(g();8*®) (= 1,2, ..., m).

(Du)x) (s1) ds; ... dsy dsy,




Then from (7) for every t = T, we obtain

) O/ [OMN R o’ S5 -l [N
(D¢~ Vx) [g*(1] 712318 0) FOi,yz,nym) |

v

})1211"( ﬁ n z(g;(s); g*(t))]aj ds, ifl=n-1
i o)

L Ty p.(s)n[R, (&9); g* )" dsds,._, .

"1+1(31+1) -2 Ta-1(Sn=1) somy i< e dsy g flen— 1
’

Because of Sg[a, @5, ..., &,] < 00, it holds

Xy A2 Am
sup Y1)2 - Vm

< .
yszxlg* @) FV1s V25 -y Ym)
1sjSm

Hence, from (9) it follows that

_f Z pi(s) H [R,-2(g;(s); g*(T))]" ds < oo, ifl=n-1

T, i=
© = 1 .
r (S ) e r (S I Z pl(s)l—l [Rl l(gj(s) g*(Tl))] ’ds dS,, 1-

Ty "1+1\01+1 Sn-2 'n—=1\®n—-1) sp-yi= ds‘_*’.1 < 0, lfl< n— 1

and consequently
jizxpi(S)jﬂx [R,,_z(gj(s))]"’ ds<o, ifl=n-1
(10$) < 1 © 1 .
rl+l(sl+1) ‘”s - rn—l(s - ss =Z p‘(S) H [R‘ ‘(gj(s»] jds ds” L

ds,+1<w 1f’<n"'l.

On the other hand, because of (2) for I = n — 1 or (3) for I < n — 1, the function
D®x is decreasing on [T, c) and so (9) gives

(0x) [g*(0)] ["“’ dS] yiyg ...y
v of O] L4 7 [,,i‘}};im, Fvi, s - .,y,.)] 2

?‘;p.@)jgl [R,-2(gf9); g*(®)]¥ds, if I=n—1
a*(1) ds © 1 ®© 1
g['{ 7"(8)] ! rl+l(sl+1) .“s,.-z ru-l,(su-l) s,.j', z; p‘(S)
II;II[RI—I(&I(S); M)V dsds,_y ... dsp,q, Fl<n—1
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Furthermore, we shall prove that

D" [g*®] ds ds
(D¢ Vx) [g*®] ‘o

To this end, taking into account the fact that D®x is decreasing on [T, c0), for every
t 2 T we have

(12) hm sup

(D¢ Vx) (D)
(D¢~ Vx) (1)

DOPx) (@) . ds

(D V%) (1) !':(9 - (D“ %) (1)

j’ D(’)x) (S) ds=1-—

Moreover, it is obvious that
t ds
lim 2Ty,
t—+ ;- S
to r‘(s)
So, we have
Q) ¢
lim sup D)) g5 1,

i~ (DY V%) (1) 1o THS) T

which implies (12), since lim g*(t) = co.
t= o0

Now, since x is increasing and unbounded, we have lim x(f) = oo and therefore

t—-+o0

YiVE o Y ] MV
lim su = lim sup SSe[ag, a3, ..., o]
!-*ool:)'lzs"‘[ig(t)] F(yla Y2 ---yym) 1{;«)’" F(yl’yz""’y"')

In view of this and (12), from (11) we obtain-
(13) SF[al, UAyy eees U] 2
X, ps) n [R,-z(g,(s), grO)Vds, ifl=n-1

L f—L Z ps)

"1+1(St+1) Sn-2 Tn— 1(5.. 1) sp-1 i=1

[Rz—x(gj(s); 8'(‘))]" dsds,-y ... dsiyq, ifl<n-1.

e 8 Nt 8

O
2 lim su
- t— p[ t{ rl(s)]

=

We remark that (10) and (13) contradicts the condition (C,).
Finally, the proof of our theorem can be completed by applying Theorem 0.

Remark 1. By a light modification of the proof of Theorem 1 we verify that in
this theorem the condition (C,) can be replaced by the following one:
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C3) It holds

S —max{hmsup y2+ +ym’hmsup'yll+ly2l++'ym'}<w

yj—> o F(.Vla)’l’ ".Vm) yj——o F(Yl’yZ,---’ym)
1sjsm 15jsm

and for every integer L with1 < 1 < n — 1 and n + I odd exactly one of the following
is satisfied:
(c}) There exists an integer k, | < k < n — 1, such that

§ P Rioy(g;o(0)dt = 00,  ifk=n—1

© 1 © 1 4
r (S ) v r (S j pio(s) R’—l(gjo(s)) ds dsn—1 o dsk+1 = 00,
k+1\0k+1 sn-2 'n=1\"n~1) sn-y lf k<n-—1

Jor some iy, 1 < iy £ v, and jo, 1 £ j, < m.

(c}) It holds

g‘(t) m o v
lim sup[ 1(5)] Z .f Z pi(s) Rn—Z(gj(s); g*(t)) ds > S;’ lf I=n-1

t— to j=1 i=1
a*(t) dS 3 1 0 1 o Vv
lim su — i(s
t—= o p[ t{ rl(s)Jjgl ! rl+1(sl+1) s,.‘[z rn—l(sn—l s,.}:liglp( )
Ri_1(g,(s); g*(1))dsds,_y ...ds;s g > S§,  ifl<n—1

Theorem 2. Consider the differential equation (E, —1) subject to the conditions
@)=+ (), (R), (Cp) and:

(C,) For some iy, 1 = ig S v, the function F, is increasing on R™ and such that for
every nonzero constant ¢

_“Pio(t) | Fio(CRn*l[gl(t)]’ CRn—l[gZ(t)]’ cers CRn—l[gm(t)]) |dt = co.
(C3) If n > 2, then there exist nonnegative numbers a; (j = 1, 2, ..., m) with jzla ;=

= 1 and Si[o,, a3, ..., tm] < 00 and such that for every integer Lwith1 < 1 S n — 2
and n + 1 even either (c,) or (c3) below is satisfied:
(c3) It holds
. 9*(t) ds TN 1 =) 1 ® v
lim sup[ ] r,(s)J'( o { XY pds)

t-+ to t Tre1(S141) Sne2 Ta-1(Sn-1) 5L, <1

m
jnl[Rl—i(gj(s);g*(t))Jajds ds,—y ... dsppy > Spfayg, a5, .0y 0]

Then every solution x of the equation (E, — 1) satisfies exactly one of the following:
() x is oscillatory.
(1) x is such that
lim(DPx)(H) =0  monotonically (i = 0,1, ...,n — 1).

1t~ ®
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(L) It holds

}im(fo)x)(t) = foralli=0,1,..,n—1
or
lim (DPx)(t) = —c0  foralli=0,1,...,n — 1.

t=

Moreover, (I1) occurs only in the case of even n. Also, every solution x of (E, —1)
with x(t) = O(R,_ (1)) as t » oo for n odd is oscillatory while for n even is oscillatory
or satisfies (I).

Proof. Let x be an unbounded nonoscillatory solution on an interval [T, o),
T, > t,, of the equation (E, —1). We suppose, without loss of generality, that x(¢) #
# 0 for all ¢t = T, and, furthermore, since the substitution z = —x transforms
(E, —1) into an equation of the same form satisfying the assumptions of the theorem,
we restrict ourselves in the case of positive x. Next, by (iii) and (iv), we choose a T =
= T, so that, for every t = T, (1) holds. Then, in view of (i), (ii) and (v), from equa-
tion (E, —1) it follows that

(14) (D™x)(t)=0 forevery t > T.

Moreover, if D™x = 0 on [, o), © = T, then, in view again of (i), (ii) and (v), all
functions p; (i = 1, 2, ..., v) are identically zero on [r, ). This contradicts (C,)
and hence (D™x) () is not identically zero for all large ¢. Consequently, by taking
into account the fact that x is unbounded, Lemma 1 implies the existence of an
integer I, 1 £ 1 < n, with n + I even and such that, if I < n — 1, (3) holds and,
when I > 1, (4) is satisfied for some T* = T. Sincen + liseven, we have I # n — 1.
So, we consider the following two cases:

Case 1. | = n. In this case, because of (4) and (14), it holds
lim (D"~ Vx)(#) > 0

t— o

and hence, in view of Lemma 2,

. x(t)
lim ——~-—->0.
t-}: Rn-l(‘)

Therefore, there exists a positive constant ¢ such that
x(t) = cR,_((t) forevery t = T,
and consequently, since, by (C,), the function F;, is increasing on R™,
Fi(x{8(t)>) Z Fi,(cR,-1[81(®)], cR,-1[€2(®)]); .., cR,—1[8n(D]), 2 T.
Thus, by virtue of (i), (ii) and (v), we obtain for # = T
(D™Mx) () = pi(t) Fio(cRa-1[8:1(0]; cR,-1[82(D], ..., cR,_,[g(0]) 2 0
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and, furthermore, for every # = T we have
(DF Vx) (1) 2
, .
2 (D" Vx)(T) + ; PiolS) FiocRu— 1[4()], cRy-1[82(9)], ..., cR,— 1[ n(5)]) ds.

This, because of condition (C,), gives

lim (D" Vx) (1) = o0

t— oo

Therefore, it is easy to derive that

lim(DPx) () =0 (=0,1,...,n—1)

t— o0

and hence x satisfies (III). Moreover, by Lemma 2, we have lim Rxm(t) = o0 and
t-o00 n—1
so the solution x has not the property x(t) = O(R,-(?)) as t - co.

Case2.1 < I < n — 2. Anargument similar to that used in the proof of Theorem 1
gives
T 1 < 1
R “dsd ..d < ©
j L4 l(sl+ 1) s,.j_z n—'l(sn—l) sj Z pi(S) H [ - l(gj(S))] S O%n-1- S+t

n~1i=1

and

. 'O s = 1 < 1 T
lim sup[ I Tl(z)]"; rivi(Sien) j ’- Z Pds)

t— 00 to Sn-2 rn—l(sn—l) sn-1i=1
.]»_II[R‘-I(gj(s); g*(t))]aj dS ds,,._l see ds,+1 é SF[al, az, ooy d,n],
j=

which contradicts the condition (C;).
Finally, Theorem 0 completes the proof of the theorem.

Remark 2. In Theorem 2 the condition (C,) can be replaced by the following one:

(CY) Ifn > 2, then S§ < oo and for every integer L with1 S 1 < n—2andn + 1
even either (c}) or (c3) below is satisfied:

(c3) It holds

9*(t) m o ®
lim sup[ [} r?(i):lz [} 1 e f 1 j' Zpi(s)

t>w fo 21t Mei(Sie1) e Ta=1(Sa=1) sniyi=

‘Ry-1(8/(5); g*(®))ds ds,_y ... dsy41 > Sp.

Remark 3. In the proof of Theorem 2 the condition (C,) is used only in Case 1
where we have

lim =22 x(1)

>0,
‘'t 0 n— 1(‘)
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which is a contradiction, when the solution x has the asymptoti¢ property x(t) =
= o(R,-4(t)) as t » co0. Thus, we derive the following result:

If the conditions (i)+ (v), (R), (C,) and (C,) are satisfied, then every solution x with
x(t) = o(R,-4(?)) as t - o of the differential equation (E, —1) for n odd is oscillatory
while for n even is either oscillatory or such that

lim (DPx) (1) = 0 monotonically i =0,1, ...,n — 1),
t- o0

Consider now the special case where for some integer N with 1 S N<n -1

we have
rp=1 fori#n—- N and Po_n=Tr.

In this case the differential equation (E, J) takes the form

(& 9) [r) X1 + 5 T p0) Fi(x<a(0) +

+ G(t; x{ao(D)), X'(a1(1), ..., x" N g, _y_, (D),
[rx® ™1 C0n-p(®)), [rx*™™T Oy a1 DD, ey [T "D La, (D)} = 0
and the condition (R) becomes:

® [ =

We shall apply our main results in the considered special case. For this purpose,
for any integer A withn — N £ 1 < n — 1 we define
v (U - s)n’N—l (S - u)).—(n-N)

Py(v;u) = I s)

ds,o=2uzxt,

and in particular
Py(t) = P,(t; to), t2t.
Corollaries 1 and 2 below are new and follow from Theorems 1 and 2 respectively.

Corollary 1, Consider the differential equation (E, +1) subject to the conditions
@) -:-A(v), (R) and:
(Co) For some iy, 1 < iy < v, either

@
[ p(Odt =

or
© tn—N—l ® N-1
IT(t)_ ! (s = ¥ ! p(s)dsdt = oo.
(C)) There exist nonnegative numbers a; (j=1,2,...,m) with Y u; =1 and

=1
Selay, @y, ..., a,] < 0 and such that:
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ADIfN<n-—1landl, = {l:lisintegerwithl <1 <n— N — landn+ lodd} #
# 0, then for every integer 1€ I, exactly one of the following is satisfied:
(a,) For some iy, 1 £ iy, S v, either

0

| R X () ﬁ[gj(t)]""‘)"f dt = 0

or
® tn—N—-l-—] ® m '
] r(t) J s =" pi(s) [T [2/9]" ™ V* dsdt = co.
t i=1
(a,) It holds

t)n-N—l-—l ©

im sup 820 [ = —— [ (@ = 9" %, p0 [] [of0) ~ £°01*
duds>(m - N—=1—-DI(N =D — 1)! S[ay, oz, ...y Ol

(A%) If N is odd, then exactly one of the following is satisfied:
(a;) For some iy, 1 < iy < v,

T N7 p (1) ﬁ [g(n]" """V dt = oo.
j=1

(a,) It holds
g*(t) © v m
lim ?p[ J —r%—] f-" PRLOJINEIC) —g*®)]" NP ds >

S(N=-D!(n~=N =D Spfay, a5, oevy @]

(A3) If N > 1, then for every integer lwithn — N+ 1 <1 <n—landn + lodd
exactly one of the following is satisfied:
(as) For some iy, 1 < iy £ v,

|
8

Of " g (t) I;Il [Pi-i(gf(1)]¥ dt =
(ag) 1t holds

lim sup g*(¢) D_lf) (s—or ! gé:xpi(S)jf-’Ix[P 1-1(g5(9); g*(®)]V ds >

t— o t

Sa—1-D'a—=N-=DI[I -1~ (@n— N Sefay, az, -ocs %]

Then every solution x of the equation (E', + 1) for n even is oscillatory, while for n odd
is either oscillatory or such that
lim x (f) = 0 monotonically (i =0,1,...,n — N —1)
t=* 0

lim [r(t)x®"M(0)]P = 0 monotonically (j = 0,1, ..., N — 1).

t=* o
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Corollary 2. Consider the differential equation (E, —1) subject to the conditions
=), (R), (€o) and:

(C,) For some iy, 1 £ iy < v, the function F,  is increasing on R™ and such that for
every nonzero constant c

fpi(®] Fio(CPn—l[gl(t)]’ cP,_,[2,(0)], .-, CPn—x[gm(')]) | dt = co.
m
(C;) If n > 2, then there exist nonnegative numbers o; (j = 1, 2, ..., m) with j;a ;=

=1 and Sg[ay, a5, ..., a,,] < 0o and such that:

(ADIfN<n—1landI,={l:1isinteger with1 S1<n—-N-—1landn+ 1
even} # @, then for every integer 1€ I, either (a,) or (a,) is satisfied.

(A3) If N > 1 and N is even, then either (a,) or (a4) is satisfied.

(A3) If N > 2, then for every integer L withn — N+ 1 <1<n—2andn+1
even either (as) or (ag) is satisfied.

Then every solution x of the equation (E, —1) satisfies exactly one of the following:

(D* x is oscillatory.

(ID)* x is such that

lim x() = 0 monotonically (i=0,1,...,n— N — 1)

t— oo
lim [r(t) xX*~M(£)]9 = 0 monotonically (j =0,1,..., N — 1).
t— o
(ID* It holds
limxP() =0 (i=0,1,...,n— N = 1)

t— o

lim [r(t) x* M)]? =0 (j=0,1,...,N — 1)

or
limx?(f) = —0 (i=0,1,....,n = N — 1)

t= o

lim [r(t) x" MH)]P = =0 (j=0,1,..., N = 1).

Moreover, (I)* occurs only in the case of even n. Also, every solution x-of (E, —1)
with x(t) = O(P,_,(t)) as t » oo for n odd is oscillatory while for n even is oscillatory
or satisfies (I1)*.

It is easy to verify that in the considered particular case for any integer A with
0<A1=n-1wehave

—lr(v—u)", if Al<n—-N

1
n—N=DI[A=(n=N]

(I5)  Ryw;u) =
P;(v; u), if AZn—-N
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for every v, u with v 2 u = ¢, and in particular

—AIT(t—tO)‘, if A<n—-N

1
(n—- N - 1)![}[ —(n=N)]! Py(0),

(16) Ry () =

ifAizn—-N
for all # = ;. On the other hand, we have the formula

(17

Tw e §
% e, §

) _ n+1
(w—s)'q(w)ydwds = é[ —(s—uTOI——Q(s) ds,

where u is a nonnegative integer and the function ¢ is continuous and nonnegative
on [£, o). By (15), (16) and (17), it is a matter of elementary calculus to see that in the
considered case the conditions (Cy), (C,), (C,) and (C;) follow from (éo), (€), (&)
and (é,) respectively. So, Corollaries 1 and 2 follow from Theorems 1 and 2
respectively.

Remark 4. Corollaries 1 and 2 for N = 1 improve two recent results due to Sficas
and Stavroulakis [17, Theorems 2 and 4].
Now, from Theorems 1 and 2, by applying them in the usual case where

we obtain the following Corollaries 1’ and 2’ respectively concerning the differential
equation

(E,9) X)) + 6{ T, p6) Fi(xCe())) +
+ G(t; x¢ao()), X<o1()); ..., x*" Ko, (D))} = .

Corollary 1'. Consider the differential equation (E, +1) subject to the conditions
(@)= () and:
(Cy) For some iy, 1 < iy < v,
@
[P () dt = 0.
m
(C,) There exist nonnegative numbers o; (j=1,2,...,m) with Zaj =1 and
i=1
Selety, 0z, ..., o] < 00 and such that for every integer 1 with 1 <1< n—1 and
n + 1 odd exactly one of the following is satisfied:
(d,) For some iy, 1 < iy < v,

? !"_'_ lpio(t)jli [gj(t)](l— 1)ay dt = 0.



(d,) It holds

lim sup g*(t) | (5 — 0"~ S p(s) [T [9) — g*@1 1% ds >
i=1 j=1

t— o0 t
> (n - , - l)! (l - 1)! SF[al, az, seey a,,,].

Then every solution of the equation (E, +1) for n even is oscillatory, while for n odd
is either oscillatory or tending monotonically to zero as t — oo together with its first
n — 1 derivatives.

Corollary 2'. Consider the differential equation (E, —1) subject to the conditions
)+ ), (€o) and:

(C,) For some iy, 1 £ iy < v, the function F,  is increasing on R™ and such that
for every nonzero constant-c

§ i Fioc[g1(D]" ™%, c[g201" 7, ..., c[em®] ™) | dt = co.
((~33) Ifn > 2, then there exist nonnegative numbers o; (j = 1,2, ..., m) with Z o; =
j=1

= 1 and Sg[a,, ay, ..., &,] < 00 and such that for every integer Iwith1 < 1 < n — 2
and n + 1 even either (d,) or (d,) is satisfied.
Then every solution x of the equation (E, — 1) satisfies exactly one of the following:
(D)’ x is oscillatory.
(L) x and its first n — 1 derivatives tend monotonically to zero as t - .
(II1)’ It holds

lim x(t) = o forall i=0,1,...,n—1
t— o0

or
limx(f) = =0 forall i=0,1,...,n— 1.
t—> o

Moreover, (II)' occurs only in the case of even n. Also, every solution x of (E, —1)
with x(t) = O(t"~ ') as t - o for n odd is oscillatory while for n even is either oscillatory
or tending monotonically to zero as t — oo together with its first n — 1 derivatives.

Remark 5. Corollaries 1’ and 2’ improve two results due to Stavroulakis [21,
Theorems 1.2 and 1.3]. For earlier related results concerning particular cases
of the differential equation (E, 8) we refer to Lovelady [7] and Sficas [15, 16].

Acknowledgment. The author would like to thank Professor V. A. Staikos for
his helpful suggestions concerning this paper.

REFERENCES

[1] M. K. Grammatikopoulos, Y. G. Sficas and V. A. Staikos: Oscillatory properties of
strongly superlinear differential equations with deviating arguments, J. Math. Anal. Appl.
67 (1979), 171—187.

35




[2] A. G. Kartsatos: Oscillation properties of solutions of even order differential equations, Bull.
Fac. Sci., Ibaraki Univ., Math., 2 (1969), 9—14.

[3] 1. T. Kiguradze: On the oscillation of solutions of the equation f—; + ot)u" sgnu =0
(Russian), Mat. Sb. 65 (1964), 172—187. at
[4] 1. T. Kiguradze: The problem of oscillation of solutions of nonlinear differential equations
(Russian), Differencial’nye Uravnenija 1 (1965), 995—1006.
[5] T. Kusano and H. Onose: Asymptotic behavior of nonoscillatory solutions of functiona
equations of arbitrary order, J. London Math. Soc. 14 (1976), 106—112.
[6] T. Kusano and H. Onose: Nonoscillation theore ns for differential equations with deviating
argument, Pacific J. Math. 63 (1976), 185—192.
[71 D. L. Lovelady: Oscillation and even order linear differential equations, Rocky Mountain
J. Math. 6 (1976), 299—304.
[8] Ch. G. Philos: Oscillatory and asymptotic behavior of the bounded solutions of differential
equations with deviating arguments, Hiroshima Math. J. 8 (1978), 31—48.
[9] Ch. G. Philos: An oscillatory and asymptotic classification of the solutions of differential
equations with deviating arguments, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.,
63 (1977), 195—203.
[10] Ch. G. Philos: Oscillatory and asymptotic behavior of all solutions of differential equations
with deviating arguments, Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 195—210.
[11] Ch. G. Philos: On the oscillatory and asymptotic behavior of the bounded solutions of differential
equations with deviating arguments, Ann. Mat. Pura Appl., in press.
[12] Ch. G. Philos, Y. G. Sficas and V. A. Staikos: Some results on the asymptotic behavior
of nonoscillatory solutions of differential equations with deviating arguments, to appear.
[13] Ch. G. Philosand V. A. Staikos: Non-slow oscillations with damping, University of Ioannina,
Technical Report No 92, March 1977.
[14] Ch. G. Philos and V. A. Staikos: Quick oscillations with damping, Math. Nachr., to appear.

[15] Y. G. Sficas: Retarded actions on oscillations, Bull. Soc. Math. Grece 17 (1976), 1—10.

[16] Y. G. Sficas: The effect of the delay on the oscillatory and asymptotic behavior of n-th order
retarded differential equations, J. Math. Anal. Appl. 49 (1975), 748—757.

[17] Y. G. Sficas and 1. P. Stavroulakis: On the oscillatory and asymptotic behavior of a class
of differential equations with de.iating arguments, SIAM J. Math. Anal., 9 (1978), 956—966.

[18] V. A. Staikos and Ch. G. Philos: On the asymptotic behavior of nonoscillatory solutions of
differential equations with deviating arguments, Hiroshima Math. J. 7 (1977), 9—31.

[19] V. A. Staikosand Ch. G. Philos: Asymptotic properties of nonoscillatory solutions of differen-
tial equations with deviating argument, Pacific J. Math., 70 (1977), 221—242.

[2C] V. A. Staikos and Ch. G. Philos: Nonoscillatory phenomena and damped oscillations, Non-
linear 4 nalysis, Theory, Methods and Applications, 2 (1977), 197—210.

[21] 1. P. Stavroulakis: Differential Equations with Deviating Arguments-Contribution to the study
of oscillatory and asymptotic properties of the solutions (Greek), Ph. D. Thesis, University of
Ioannina, 1976.

Ch. G. Philos

Department of Mathematics
University of Ioannina
Ioannina

Greece



		webmaster@dml.cz
	2012-05-09T17:08:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




