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ON TOPOLOGIES CONVEXLY COMPATIBLE 
WITH THE ORDERING 

JUDITA LIHOVÁ, Košice 
(Received July 12, 1977) 

Sets with both ordering and topology have been investigated by several authors 
(e.g. [1] —[3], [5], [8], [10]-[12]). In some papers the topology is derived from an 
ordering, in other ones the topology is in a certain sense compatible with an ordering. 

In this note two types of compatibility of a topology with an ordering are introduced 
(convex compatibility and convex weak compatibility). Under a topology we under­
stand here a topology in the sense of Cech. Our conditions of compatibility are 
analogical to those delt with in papers [1], [2], [11] for topologies in Bourbaki's 
sense. 

Let (A, ^ ) be a fixed partially ordered set. The system of all topologies on A will 
be denoted by 3'(A), the symbols OL(A, S) and fi(A, i) will be used for the system of 
all topologies on A convexly compatible and convexly weakly compatible with the 
ordering g, respectively. 

In the first section a formula for the number of topologies on a finite set with the 
trivial ordering is given. Conditions, under which any of the equalities OL(A, S) = 
= P(A, £),<*(A, S) = f(A),p(A, £) = ST (A) holds, are found in the second 
section. In the section 3 there are described all orderings < on A such that OL(A, S) = 
= *(A,<) and P(A,£) = P(A,<). 

The system of all subsets of a set F is denoted by 2P, for the cardinality of P we use 
the symbol card P. 

Let P be a given set. A mapping u : 2P -* 2P is said to be a topology on P, if the 
following three axioms are satisfied: 

(1) u0 = 0, 

f 2) M e P => M c uM, 

(3) Mt c M2 c P => uMt <z uM2. 

If u is a topology on P, the pair (P, u) is called a topological Space. The system of all 
topologies on P is denoted by 9~(P). 
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A set O a P is said to be a neighborhood of a point x e P in the space (P, u), if 
x$u(P — O). The notation <3u(x) is used for the system of all neighborhoods of x 
in (P, u). 

We shall often use the following statement (A), which enables us to introduce 
a topology into a set P (cf. [7], 4.1.). 

(A) 1. Let (P, u) be a topological space, xeP. The system Bu(x) has the following 
properties: 

(i) 9Jix) * 0, 

(ii) Oe®u(x)=>xeO, 

(iii) O c Ol9 0e2)u(x) => Ot e® u (4 

2. Lei1 P fte a« arbitrary set and let 2(x) be a nonvoid family of subsets ofP9 assigned 
to each point xeP9 satisfying: 

(1) O e &(x) => x e 09 

(2) O c Ol9 Oe@(x) => 01 e®(x). 

If we define a mapping u :2P -* 2P in such a manner that x e uM (M <=• P) iffP — M$ 
$ 3(x)9 then u is a topology on P and for each xeP it is 9u(x) ==. @(x). 

1. 

Theorem. Let nbe a positive integer and let P be a set with card P = n. The number 
of alt topologies on P is sn

9 where s is the number ofantichains of the Boolean algebra of 
all subsets of a set of the cardinality n — 1. 

Proof. By (A) each topology on P is uniquely determined by the set {@(x) : x e P}, 
where @(x) is a nonempty system of subsets of P fulfilling conditions (1), (2) from (A). 
Let x be a fixed element from P and let S = S(x) be the number of nonempty systems 
of subsets of P fulfilling (1), (2). Evidently S does not depend on the choice of x e P, 
thus the number of all topologies on P is Sn. We shall show that S = s. The partially 
ordered set of all subsets of P = {x = x09 xl9..., xn„t}9 that contain x9 is obviously 
isomorphic to the Boolean algebra of all subsets of the $et{xl9...9xn~1}. The system 
<B(x) is determined by the set of its minimal elements. This set corresponds to an 
antichain of the Boolean algebra of all subsets of the set {xl9..., *„-.!}. Therefore 
S = s. 

Remark. The problem of the determination of the number of antichains in the 
Boolean algebra of all subsets of a finite set was investigated by several authors 
(of., e.g., [6]f [9]). In the paper [9] there is derived a formula for the number of all 
topologies on a finite set, but more complicated than the above one. 
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2.1. Definition. Let (A, ^ ) be a partially ordered set. A topology u on A will be 
said to be convexly compatible with the ordering ^ , if it has the following property: 

(a) If a, be A and if U is a neighborhood of a with b $ U, then there exists a convex 
neighborhood V of a such that b $ V. 

2.2. Definition. Let (A, ^ ) be a partially ordered set. A topology w on A will be 
called convexly weakly compatible with the ordering ^ , if it has the following property: 

(P) If a and b are comparable elements of A and if U is a neighborhood of a with 
b i U, then there exists a convex neighborhood V of a such that b $ V. 

For an arbitrary fixed partially ordered set (A, ^ ) let us denote a(AI, ^ ) and 
P(A, S) the set of all topologies on A, which are convexly compatible and convexly 
weakly compatible with the ordering ^ , respectively. Clearly, a(A, ^ ) a p(A, c ) . 

The converse inclusion does not hold in general, as shown by the following theorem. 
If X, Yare partially ordered sets, we denote by X© Y their ordinal sum (cf. [4]). 

2.3. Theorem. Let (A, ^ ) be a partially ordered set. Then oc(A, ^ ) = p(A9 ^ ) if < 
and only if one of the following conditions holds: 

(1) Every element of A is maximal or minimal. 
(2) It is A = A1 © A2® A3, where Al9 A3 are antichains, A2 is a nonempty chain 

(Al9 A3 can be empty). 

Proof. Suppose that (A, ^ ) satisfies (1) or (2). Take ue P(A, g) and noncompara-
ble elements a, be A such that there exists a neighborhood U eQ)u(d) not contain­
ing b. Then b is maximal or minimal and hence it cannot belong to the convex hull [U] 
of U, which is evidently a neighborhood of a. Therefore u e a(A, ^ ) . 

Conversely, suppose that a(A, ^ ) = P(A, ^ ) and (A, S) is not a chain. Let a, b 
be noncomparable elements of A. We shall show that each of a, b is maximal or 
minimal. Define @(a) = {A — {b}, A}, 3)(z) = {A} for every zeA, z ^ a. The 
topology u such that 2u(y) = Q)(y) for every ye A obviously belongs to P(A9 S) and 
hence by assumption u e a(A, ^ ) . This implies that A — {b} is a convex set, i.e. b is 
maximal or minimal. Analogously a is maximal or minimal. Denote Ax and A3 the 
set of all minimal and maximal elements of .A, respectively. If Ax u A3 = A9 we have 
(1). Assume At u A3 ^ A. Denote A2 = A — (At u A3) and pick any ceA2. 
Since c is neither maximal nor minimal, it is comparable with each element of A. 
Thus o x and c < y for every x e Ax and yeA3. Further arbitrary two elements 
of A2 are comparable. We conclude A = Ax © A2 © At3. 

The following theorem gives a necessary and sufficient condition under which 
each topology on a partially ordered set (A9 ;§) is convexly compatible and convexly 
weakly compatible with the ordering ^ , respectively. 
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2.4. Theorem. Let (A, S) be a partially ordered set. The following conditions are 
equivalent: 

(i) u(A, «5) = 3-(A). 
(ii) ftA, *) = F(A). 
(iii) Every element of A is maximal or minimal. 

Proof. Since a(A, S) c p(A, S), the condition (i) implies (ii). To prove that (ii) 
implies (iii), suppose that there exists an element be A that is neither maximal nor 
minimal. Then there exist a, x e A such that a < b < x. Put B(a) = {A — {b}, A}, 
B(z) = {A} for every z e A, z #= a. The topology u such that 2u(y) = B(y) for each 
ye A obviously does not belong to f}(A, £). Finally we shall prove that (iii) implies 
(i). Take a topology u e ̂ (A) and arbitrary elements a, be A such that there exists 
Ue@iu(a) not containing b. By (iii), b does not belong to the convex hull [U] of U. 
Hence ueot(A, g). 

3. 

In this section conditions for the validity of the relations ot(A, S) = OL(A, <), 
P(A, S) = /?(A, <) are investigated, where S - ^ are two partial orderings on AL 

If M is a subset of A, then the convex hull of M in the partially ordered set (A, ^ ) 
and (A, ;<) will be denoted by [M]^ and [M]<, respectively. We shall say that an 
element x e A lies between elements a, be A in the partially ordered set (A, S), if 
either a<x<b or a>x>b holds. The relation of betweenness in (A, ;<) is 
defined analogously. 

3.1. Theorem. Let S,<be two partial orderings on the set A. Then the following 
conditions are equivalent: 

(i)a(A,i)cza(A,<). 
(ii) If a subset M of A is convex in (A, S)9 then M is convex in (A, K) as well. 

(iii) If an element xe A lies between elements a, be A in the partially ordered set 

(A9 <), then the same holds in (A, £). 

(}y) P(A, S)czf}(A,<). 

Proof. First we prove that the conditions (i) and (ii) are equivalent. Let OL(A9 <.) c 
c: a(A9 <) and let M be an arbitrary convex subset of (A9 &). If M = 0, then M is 
obviously convex in (A9 <)9 too. Thus we can suppose that M #= 0. Pick an arbitrary 
ixed element ae M. Consider the topology u on A such that Bu(d) = 
« {O c A : M c 0},3iu(z) = {A.} for each ze ,4, z # a. Then evidently w e a(A9 S) 
and consequently w e u(A9 ^ ) . For an arbitrary element d € *4 — M there exists 
a neighborhood of s not containing b9 hence there exists a set XbeBm(a) convex 
in (>t, <) such that b$Xb. Since M c l ^ w e have [M]< c Jffr which shows that 
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o $ [M]<. It follows [M]< c M. Hence M is convex also in (A9 <). It is easy to see 
that (ii) implies (i). 

Evidently the condition (iii) implies (ii). To verify the converse implication, 
suppose that a < x < b. By (ii) the set [{a, 6}].g is convex in (A9 <). This together 
with a,be[{a96}]g yields that xe[{a9b}]s. Since xe[{a9b}]s - { a , 6 } , the 
elements a, b must be comparable in (A9 g). Hence either a < x < 6 o r a > x > £ > . 

Finally we prove the equivalence of the conditions (iii), (iv). Let the condition (iii) 
hold. Take an arbitrary topology uep(A9 g) and elements a9beA comparable 
in (A, <) such that there exists a neighborhood Ue@u(a) not containing b. If b is 
maximal or minimal in (A9 <)9 then .A — {b} is a neighborhood of a and A — {b} is 
convex in (A, l l ) . Hence we can suppose that b is neither maximal nor minimal in 
(A9 <). Then there exist elements c,deA such that c <b <d. If a<b9 from 
a < b < d by the condition (iii) we get either a<b<dota>b>d. Analogously, 
from a> * we obtain that 6 lies between a, c in (A9 S). Since u € fi(Af £)9 Us&u(a)9 

b$U and a9b are comparable in (.4, g), there exists a neighborhood Ve2u(a)9 

convex in (A9 g), not containing b. Evidently [V]< e@u(a)9 [V]< is a convex set in 
(A, <). It remains to show that b $ [V]<. Suppose that for some elements x9yeV 
x <b <y holds. By the condition (iii) b lies between x9 y in (A9 ^ ) . Then b € [V]^ = 
= V, which is a contradiction. Conversely, let us suppose that (iv) holds. Pick 
elements a9x9be A with a <x <b. Let u be a topology on A such that 3#u(d) = 
= {O c A : [{a, £}],g c O}, Bu(z) = {A} for every zeA9 z =f= a. Then evidently 
« e /?(v4, S) and hence w e P(A9 <). It is x 6 [{a, ft}]^. For, if this were false, then, 
since a < x9 [{a, 6}]^ e9u(a) and uef}(A9<)9 we should have x #[[{a, A}]^]<, 
contrary to a -< x < b. According t o x e [{a, 6}]^, the elements a, ft are comparable 
in (A9 S) and it is a < x < b or a > x > b. 

3.2. Corollary. Let S9<be two partial orderings on the set A. Then the following 
conditions are equivalent: 

(i*)oe(A, <) = a(A,<). 
(ii*) A subset M of A is convex in (A9 S) if and only if it is convex in (A9 <). 

(iii*) An element x lies between elements a, bin(A9 :Q if and only if the same holds 
in (A9 <). 

(iv*) j ? ( ^ ) = /?(^<). 

3.3. Theorem. Let S>< be two partial orderings on the set A with card - 4 ^ 3 , 
where (A9 <) is directed. Then each of the conditions (i)—(iv) of the theorem 3J. is 
equivalent to the condition that the identical mapping t: (A9 <) -* (A9 S) is isotone 
or antitone. 

Proof. If the identical mapping i: (A9 <) -> (A9 g ) is isotone or antitone, then 
obviously the condition (iii) is satisfied. Conversely, let us suppose that the equivalent 
conditions (i)—(iv) hold. First we shall prove that a9b&A9 a<b implies a < b or 
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a > b. Suppose that for some a, b e A with a < b each element of A - {a, b} is 
noncomparable in (A, <) with some of a, b. Pick ceA - {a, b). If c is noncomparable 
in (A, <) with a, then for arbitrary dt with dt <a, dx< c we have dx<a<b, 
a contradiction. Analogously we get a contradiction assuming that c is noncomparable 
in (A, <) with b. Hence if a < b, then there exists an element c e A such that 
c <a<b or a <c <b or a < b < c. In each case we get by (iii) that a, b are 
comparable in (A, ^ ) . 

Now suppose that for some a, b, c, d e A it is a < b, a < b, c < d, c > d. Let e and 
/ be an arbitrary lower and upper bound of a, c and b, d in (A, <), respectively. 
Assume that e = a and f= b, simultaneously. Then a<c<d<b and since 
clearly either a #= c or b # d, we get by (iii) a ^ c < d ^ b or a ^ c > d ^ by 

a contradiction. Hence either e < a or b <f Using (iii) we obtain from e <a < 
< b <f that e < f On the other hand e<c<d <f implies e > f This contradiction 
shows that i is either isotone or antitone. 

3.4. Corollary. Let g, < be two partial orderings on the set A with card A ^ 3 
such that either (A, ^)or(A,<) is a directed set. Then each of the conditions (i*) — (iv*) 
of 3.2. is equivalent to the condition that the orderings i,<are identical or dual. 
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