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INTRODUCTION

Let us denote by N the set of all positive integers, Ny = N u {0}. Partition of
a number n € N into k summands is every k-tuple of positive integers a,, ..., aq, € N
such that
a, +a;+ ...+ a, =n

and it does not depend on the order of summands. With respect to this fact it can be
supposed that every partition is normally written in the form of non-increasing
sequence '

a 2a,=..2a,.

Let k, n € N be arbitrary. Let us denote by P(n, k) the number of partitions of the
integer n into k summands. It is evident that for example

P(n, 1) = P(n,n) = 1 for everyne N
and ‘
Pin,k) =0 for n<k.

It is well known (see e.g. [1], Chap. 4) that values P(n, k) can be calculated from
the recurrent formula

0 P(n, k) = fj P(n — k, i).
i=1

Let us denote by p(n) the number of all partitions of the integer n, i.e.

@ p(n) =.§1 P(n, k).

Finally let us denote by Q(n, k) the number of all partitions of the integer » into
at most k summands, i.e.

k
€) on, k) = ‘; P(n, i).



Thus the formula (1) can be rewritten in the form

0] P(n, k) = Q(n — k, k)
ie.
©) On, k) = P(n + k, k).
With respect to (5) we define for every ke N
6) 0(0, k) = 1.
From the equations (2), (3) and (5) it follows
M pn) = Qn, n) = P(2n, n).

The following geometric interpretation of partitions is useful in many considera-
tions. A partition a, = a, = ... = a, of integer n€ N into k summands can be
denoted by a point diagram in the plane so that on i-th row there are a; points and
each row starting from the same line parallel to the long edge of the page. Thus e.g.

the partition
52322222121

of the number 14 is denoted by the following diagram
00000

000

oo

0o

o

o

If we now rotate the diagram of a partition a, = a, = ... 2 g, so that the rows
become columns we get the diagram of the partition b, = b, = ... 2 b; which is
called the partition conjugated to the partition a; = a, = ... 2 b;.

Thus e.g. the partition 6 = 4 = 2 > 1 = 1 is conjugated to the partition 5 > 3 >
>2222121.

§1. PARTITIONS WITH LIMITED SUMMANDS

Definition. Let k, n, s€ N be arbitrary. Let us denote by Py(n, k) the number of
all partitions of the integer n into k summands not exceeding the integer s.
Further we put

k
8 Qs(ns k) = iZIPs(na i),
® psn) = Q,(n, n).
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Finally for arbitrary k€ N, n, s€ N, we define

for n =0,

1
(10) Qs(m. k) = {o for n # 0,5 =0.

Remark. Thus the integer P(n, k) gives the number of solutions of the equation

n=x1 +x2+..- +xk
such that
S22 X 2X, = ...

v

x, 21, X1 Xpy eees X €N,

the integer Q,(n, k) gives the number of solutions of this equation such that

SZX 22X =..2%20, Xis Xz, eery X € Ng.
It is evident that there holds
Theorem 1. Let k, n, s € N be arbitrary. Then
0 for s < —:—,
(11) P(n, k) =
P(n, k) for s>n —k,
(12) O, n, k)= Q(n,k) for s =n.

Theorem 2. Let k, n, s€ N be arbitrary. Then it holds
(13) Qs(n3 k) = Qk(n’ S).

Proof: Let A be the set of all the partitions of the integer n into at
most k summands not exceeding s, B be the set of all partitions of the integer n
into at most s summands not exceeding the integer k. Let us define the mapping
f: A— B as follows: For x € A, f(x) is the partition conjugated to the partition x.
Then evidently fis a bijection 4 onto B, thus the sets 4, B have the same number
of elements.

From Theorem 2 there follows a well known theorem (see e.g. [2], p. 268):

Theorem 3. The number of partitions of the integer k + n into k summands is equal
to the number of partitions of the integer n into at most k summands and to the number
of all the partitions of the integer n into summands not exceeding the integer k.

Proof: It is necessary to prove that

P(n + k’ k) = Q(ﬂ, k) = pk(n)'



The first equality has been mentioned in (5) yet, the second follows from (9), (12)
and (13):
plc(n) = Qk(n’ n) = Qn(n1 k) = Q(n9 k)'

The calculation of the values P,(n, k) enables the following reccurent formula.

Theorem 4. Let k, n, s € N be arbitrary. Then

k
(14) Ps+1(n: k) = Z Py(n — k, i),
=1
when
’ 1 =k,
as) Py, k) = {0 P

Proof: The equality (15) is evident. Thus let us prove the formula (14) which can
be written in the form

(16) Ps+ 1(”9 k) = Qs(n - k9 k)'

Let A4 be the set of all partitions of the integer n — k into at most k summands
not exceeding the number s, let B be the set of all partitions of the integer n into
k summands not exceeding the number s + 1. Let us define the mapping f: 4 - B
as follows: Let x € 4 be the following partition

a2a,2...2a, p=k

Then f(x) € B is the partition
byz2b,=2...25
defined as follows

b__'a,.+1 fori=1,..,p,
R b fori=p+1,..,k

Tten evidently f is a bijection of 4 onto B so that (16) and consequently also (14)
are valid.

From the equations (10) and (14) there follows immediately

Corollary, For arbitrary k € N and arbitrary n, s € N, it holds
an Q.n, k) = P, ,(n + k, k).

The following relation is more suitable for practical calculation than the
formula (14).
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Theorem 5. Let k, n, s € N be arbitrary. Then it holds

Poos(n — 1,k — 1) + Pyn — k, k).

Ps+ l(n’ k) =

Proof: By (14) it holds

(18)

1

k
Pyyy(n, k)= Y Pn — k,i) = 3 P(n — k, i) + P(n — k, k).
i=1

i=1

Py(n, k)
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Pyo(n, k)

n
k1T 2345 6 7 8 910 11 12 13 14 15
1 (t1111 1 1 1 1 1 0 0 0 0 O
2 |01 122 3 3 4 4 5 5 5 4 4 3
3 |oo112 3 4 5 7 8101213 14 15
4 00011 2 3 5 6 911 15 18 22 25
5 00001 1 2 3 5 710 13 18 23 29
6 100000 1 1 2 3 5 711 14 20 26
7 loooo0oo0o 0 1 1 2 3 5 711 15 21
8 00000 0 0 1 1 2 3 5 7 11 15
9 loooo0o0 0 0 0 1 1 2 3 5 7 11
0 /00000 0 0 0 0 1 1 2 3 5 17
Pom |1 2 3 5 7 11 15 22 30 42 55 75 97 128 164

k-1
But ) P(n — k,i) = P,.4(n — 1, k — 1) again by (14).
i=1

Now without any difficulties we can fill in tables of the values Py(n, k). If se N
is an arbitrary fixed integer, then the integer P(i, j) is in the doint of intersection of
i-th column and j-th row of the table Py(n, k).

Let us give an example of tables P5(n, k), P,(n, k) and P,y(n, k).

It is evident that in any table Py(n, k) there is only finitely many non-zero intégers
in every row and in every column. It holds

Theorem 6. Let s € N be arbitrary. Then in i-th column of the table P(n, k) there is
i- —;—-] + 1 of non-zero values and in i-th row of this table i (s — 1) + 1 of non-zero

values. (At the same time for real x the symbol [x] is the greatest integer smaller or
equal to x.)

Proof: I. Let n, s € N be arbitrary fixed numbers. It is evident that Py(n, k) # 0
for [—:—] <k <Znie. forn — [%] + 1 values of the argument k.

II. Let k,se N be arbitrary fixed numbers. Evidently Pyn, k) # 0 for n =
=kk+1,..,k.s,ie. forks — (k — 1) = k(s — 1) + 1 values of the argument ».

From here there follows

Corollary. Let k, s € N be arbitrary. Then P(n, k) # 0iff n=k +i,i=0,1, ...,
vy k(s — D). .
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Since in every table P,(n, k) there exist in every row and in every column only
finitely many non-zero values thus sums of all values of arbitrary column and
arbitrary row i.e.

i Py(n, k) and i Py(n, k)
k=1 n=1

are finite. The sum of the column, however, is by definition the number py(n) and by
Theorem 3 py(n) = P(n + s, s), i.e. it holds

(19) S P(n, k) = pn) = P(n + 5, 5).
k=1

In § 2 we shall calculate the sum of all values of one row and we shall also show
that the sequence of non zero values in an arbitrary row is “symmetric” (it is the
same if we read it from the front or from behind).

§2. PARTITIONS AND CARDINAL POWERS
OF FINITE CHAINS

By a poset is meant a set with reflexive antisymmetric transitive relation called an
ordering and usually denoted by symbol <.

If A is a poset, /(4) denotes its length and h(x) is the height of an element xe 4 . 4
denotes the poset dually ordered to A, i.e. x < yin 4 iff y < x in A. If posets 4, B
are isomorphic, we write A &~ B.

Finally a cardinal number of a set A4 is denoted by symbol card 4. Definitions of
all here nondefined notions see e.g. in [3].

Definition. Let G, H be posets. The cardinal power G¥ is the poset of all isotone
mappings of the set H into the set G with relation < defined as follows:

For f, g € G there holds f < g if and only if f(x) £ g(x) in G for every xe H.

Definition. Let ne N, be arbitrary. The poset {0 <1 <2< ..<n—1} is
denoted by symbol n.
It evidently holds

Theorem 1. Let G, H be finite chains, card G = n, card H = k. Then it is
GY = n*.
Further it is evident (see e.g. [3], Theorem 2, p. 57) that there holds
Theorem 2. Let G, H be posets. Then 65 ~ GH.
Corollary. Let G, H be finite chains. Then we have G* = G,

Proof: The assertion follows from Theorem 2 and from the evident fact that for
every finite chain A there holds 4 = A. :




Definition. Let k,ne N be arbitrary. The poset &/(n, k) is defined as follows:
The elements of the poset «/(n, k) are all k tuples (ay, a,, ..., @) such that a,e n
fori=1,2,...,k and it holds a; = a, = ... 2 a;. The ordering < on (n, k) is
defined in the following way:

(@,...,aq) < (by,....b)in L k)iff a; < b; innforeveryi = 1,2, ..., k.

Theorem 3. Let k, n € N be arbitrary. Then it holds
n* =~ A(n, k).

Proof: Let us define a mapping F : n* > o(n, k) as follows: For fe n* we put
F(f) = (ftk = 1), f(k — 2), ..., f(0)). Then Fis evidently an isomorphism of posets n*
and o (n, k).

Remark. In what follows we shall identify posets n* and &#(n, k) and we shall not
differentiate the element fe n* from k tuple (f(k — 1), ..., f(0)) € Z(n, k).

Example. On Fig. 1 we have the Hasse diagram of the cardinal power 4°. The
element (a,, a,, a3) is briefly written in the form a,a,a;.

333
332
/
3 322
330/ \321/ \222.

T

32 21

310 220 241

—
300 240 114
NN

200 410

0

|

000



If k,n € N are arbitrary, then (0,0, ..., 0) is evidently the least element and
(n—1,n—1,...,n — 1) the greatest element of the cardinal power n* and evidently
one and only one element (1,0, ..., 0) is of the height 1.

Evidently it holds in general

Theorem 4. Let k, n e N be arbitrary, let f = (a,, ..., a,) € n*. Then

k
(20) h(f) = :Zxa"
Theorem 5. Let k, ne N be arbitrary. Then it holds
#1)) I(n* = k(n - 1),
(22) card n* = (n + : - 1).

Proof: I The length of the power n* is evidently equal to the height of the
greatest element (n — 1, ..., n — 1). The relation (21) now follows from (20).

IL. 1t holds card n* = card &/(n, k). But card #(n, k) is equal to the number of all
combinations of k-th class with repetition formed of »n elements which is, as well-
n+k-— 1)

known, equal to the combination number ( k

Definition. Let A be a poset, let i € N, be arbitrary. The set
H(A) = {x;x€ A, h(x) = i}

is called the i-th layer of the poset A.

Theorem 6. Let k, n € N be arbitrary. Then for every i € N, it holds
(23) card H(n*) = @,_,@, k).

Proof: Let fen*, f = (a;, ..., @) be arbitrary. By (20) we have A(f) = ia, 50
that all elements (ay, ---, @) € n* such that =

a, + ... +a =i n—-12a2a2..2620

have the height i € Ny. By the remark ahead of Theorem 1, § 1, the number of these
elements is equal to the integer Q,.,(, k).

Corollary. For arbitrary k,ne N, i€ N, it holds
(24) card H(n*) = P,(k + i, k).

Proof: The assertion follows from the relations (17) and (23).




By (24) the sequence of non zero values in k-th row of the table P(n, k) gives the
number of elements in layers of the cardinal power s,

Example. From Fig. 1 it is evident that the number of elements in layers of the
cardinal power 4° is succesively

1,1,2,3,3,3,3,2,1,1

which are only and only fon zero values in the 3 rd row of the table P,(n, k) given
in § 1.

Now we shall prove that non-zero values in every row of the arbitrary table P(n, k)
form a symmetric sequence. Let us realize at the same time that by Corollary of
Theorem 6, § 1, it holds P(n, k) £ 0iff n =k + i,i =0,1, ..., k(s — 1).

Theorem 7. Let k, s € N be arbitrary. Then for every i€ N,, i < k(s — 1) it holds
(25) Pk + i, k) = Py(ks — i, k).

Proof: By (24) we have P,k + i, k) = card H(s*). However by corollary of
Theorem 2 it holds s* = s* so that

card Hy(s*) = card Hy-1)- (s%).
By (24), however, we have
card Hy-1)- (8%) = Pk + ks — k — i, k) = Pyks — i, k).

This proves the equality (25).

Corollary. Let k, s € N be arbitrary. Then for every ne Ny, n < ks hoids
(26) 0., k) = Q sk — n, k).

Proof: By (;7) and (25) it holds

Qfn, k) = Py (n + k, k) = Py, (ks + k — n, k) = Q(sk — n, k).

Theorem 8. The sum of all values in k-th row of the table P(n, k) is equal to

(s + k — 1) .
k le.
had s+k—1
@n . n;P,(n, k) =( & )

k(s-1)
Proof: By Theorem 6, § 1, we have ZP,(n, k) = Z P(k + i, k). But by (24),

(21) and (22) it holds

k(s=1) K(s=1) K(s—1) s+ k—1
Y Pk+ik)= Z card H(s*) = card U H(s*) = card s —-( X )
i=0

i=0
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