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I N T R O D U C T I O N 

Let us denote by N the set of all positive integers, N0 = N u {0}. Partition of 
a number n e N into k summands is every k-tuple of positive integers ai9 ...9ake N 
such that 

ai + a2 + ••• + ak = n 

and it does not depend on the order of summands. With respect to this fact it can be 
supposed that every partition is normally written in the form of non-increasing 
sequence 

al=a2^ ... ^ ak. 

Let k9 n e N be arbitrary. Let us denote by P(n9 k) the number of partitions of the 
integer n into k summands. It is evident that for example 

P(n9 1) = P(n9 n) = 1 for every neN 
and 

P(n9 k) = 0 for n < k. 

It is well known (see e.g. [1], Chap. 4) that values P(n9 k) can be calculated from 
the recurrent formula 

(1) P(n, k) = £ P(n - fc, 0. 
*-=i 

Let us denote by p(n) the number of all partitions of the integer n9 i.e. 

(2) K") - I P(n, k). 
* « 1 

Finally let us denote by Q(n9 k) the number of all partitions of the integer n into 
at most k summands, i.e. 

(3) Q(n9 fc) = l P(n9 i). 
Í-- I 



Thus the formula (1) can be rewritten in the form 

(4) P(n, k) = Q(n -k,k) 

i.e. 

(5) Q(n,k) = P(n + k,k). 

With respect to (5) we define for every k e N 

(6) Q(0,k)=l. 

From the equations (2), (3) and (5) it follows 

(7) p(n) = Q(n,n) = P(2n,n). 

The following geometric interpretation of partitions is useful in many considera­
tions. A partition ax _ a2 _ ... = ak of integer neN into k summands can be 
denoted by a point diagram in the plane so that on i-th row there are at points and 
each row starting from the same line parallel to the long edge of the page. Thus e.g. 
the partition 

5 = 3 = 2 = 2 = 1 = 1 

of the number 14 is denoted by the following diagram 

o o o o o 

o o X) 
o o 
o o 
o 
o 

If we now rotate the diagram of a partition ax = a2 = ... — ak so that the rows 
become columns we get the diagram of the partition b1=b2 = ... = b, which is 
called the partition conjugated to the partition at — a2 _• ... *£ bk. 

Thus e.g. the partition 6 = 4 = 2 = l _ l i s conjugated to the partition 5 _ 3 _ 
= 2 = 2 = 1 = 1. 

§1. PARTITIONS WITH LIMITED SUMMANDS 

Definition. Let k,n,seN be arbitrary. Let us denote by Ps(n, k) the number of 
all partitions of the integer n into k summands not exceeding the integer s. 

Further we put 

(8) fi/n.kJ-EPM 
*=i 

(9) pjji) = QJLn, ri). 
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Finally for arbitrary k e N, n, s e N0 we define 

\l for n = 0, Ш, k) = j * ( 1 0 ) (2A..,.v- l0 f o r n + 0 > s = 0. 

Remark. Thus the integer Ps(w, fc) gives the number of solutions of the equation 

n = xx + x2 + ... + xk 

such that 

s ^ x! ^ x2 ^ ... ^ xk ^ 1, xt, x2, ..., xkeN, 

the integer Qs(n, fc) gives the number of solutions of this equation such that 

s ^ xx ^ x2 = • • • ^ xk ^ 0, xt, x2, ..., xk e N0. 

It is evident that there holds 

Theorem 1. Let fc, n, s e N be arbitrary. Then 

(И) Ps(n,k) 

0 foГ 5 < — , 
k 

[P(n, fc) for s > n — fc, 

(12) Q5(n, fc) = Q(«, fc) for s^n. 

Theorem 2. Ler fc, n, seN be arbitrary. Then it holds 

(13) Qs(n,k) = Qk(n,s). 

Proof: Let A be the set of all the partitions of the integer n into at 
most fc summands not exceeding s, B be the set of all partitions of the integer n 
into at most s summands not exceeding the integer fc. Let us define the mapping 
/ : A -> B as follows: For xe A, f(x) is the partition conjugated to the partition x. 
Then evidently/is a bijection A onto B, thus the sets A, B have the same number 
of elements. 

From Theorem 2 there follows a well known theorem (see e.g. [2], p. 268): 

Theorem 3. The number of partitions of the integer k + n into k summands is equal 
to the number of partitions of the integer n into at most k summands and to the number 
of all the partitions of the integer n into summands not exceeding the integer k. 

Proof: It is necessary to prove that 

P(n + k,k) = Q(n,k) = pk(n). 



The first equality has been mentioned in (5) yet, the second follows from (9), (12) 
and (13): 

Pk(n) = Qk(n, n) » Qn(n, k) =- Q(n, k). 

The calculation of the values Ps(nf k) enables the following reccurent formula. 

Theorem 4, Let k, n, s e N be arbitrary. Then 

04) P s + 1(n,fc)-=£P s(n-fc,0, 
1=1 

when 

n\\ u r i\ J1 for n^k, 
(15) IJx(»»fc) = { 0 / o r n + fc> 

Proof: The equality (15) is evident. Thus let us prove the formula (14) which can 
be written in the form 

(16) Ps+i(n,k) = Qs(n-k,k). 

Let A be the set of all partitions of the integer n — k into at most k summands 
not exceeding the number s, let B be the set of all partitions of the integer n into 
k summands not exceeding the number s + 1. Let us define the mapping / : A -> B 
as follows: Let x e A be the following partition 

*i = «2 ^ — SS &p> P ^ *. 

Then/(x) e J is the partition 

*i = b2 = ... = 6k 

defined as follows 

for i = 1, . . . ,p, 

Ч° , + 1 
for i = p -F 1,..., fe. 

Tl en evidently/is a bijection of .4 onto 2? so that (16) and consequently also (14) 
are valid. 

From the equations (10) and (14) there follows immediately 

Corollary, For arbitrary keN and arbitrary n,seN0 it holds 

(17) Qs(n9k)^Ps^(n + k,k). 

The following relation is more suitable for practical calculation than the 
formula (14). 



Theorem 5. Let k, n, s e N be arbitrary. Then it holds 

(18) P,+,(/., k) = P,+ 1(n-\,k-\) + P,(n - k, k). 

Proof: By (14) it holds 

P,+i(n, fc) = E -V» - k, i) = £ P,(n - k, i) + Ps(n - k, k). 
.=-1 fs-1 

P: ,(и, k) 

R 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 1 2 1 1 0 0 0 0 0 0 0 0 0 

3 0 0 1 1 2 2 2 1 1 0 0 0 0 0 0 

4 0 0 0 1 1 2 2 3 2 2 1 1 0 0 0 

5 0 0 0 0 1 1 2 2 3 3 3 2 2 1 1 

6 0 0 0 0 0 1 1 2 2 3 3 4 3 3 2 

7 0 0 0 0 0 0 1 1 2 2 3 3 4 4 4 

8 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 

9 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 

10 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 

Pз(n) 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 

P* (»,*) 
n 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 0 0 0 0 0 0 0 Q 0 0 0 

2 0 1 1 2 2 2 1 1 0 0 0 0 0 0 0 

3 0 0 1 1 2 3 3 3 3 2 1 1 0 0 0 

4 0 0 0 1 1 2 3 4 4 5 4 4 3 2 i 
5 0 0 0 0 1 1 2 3 4 5 6 6 6 6 5 
6 0 0 0 0 0 1 1 2 3 4 5 7 7 8 8 

7 0 0 0 0 0 0 1 1 2 3 4 5 7 8 9 

8 0 0 0 0 0 0 0 1 1 2 3 4 5 7 8 

9 0 0 0 0 0 0 0 0 1 1 2 3 4 5 7 

10 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 

PM 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 



rю(и> V 

n 
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

2 0 1 1 2 2 3 3 4 4 5 5 5 4 4 3 

3 0 0 1 1 2 3 4 5 7 8 10 12 13 14 15 

4 0 0 0 1 1 2 3 5 6 9 11 15 18 22 25 

5 0 0 0 0 1 1 2 3 5 7 10 13 18 23 29 

6 0 0 0 0 0 1 1 2 3 5 7 11 14 20 26 

7 0 0 0 0 0 0 1 1 2 3 5 7 11 15 21 

8 0 0 0 0 0 0 0 1 1 2 3 5 7 11 15 

9 0 0 0 0 0 0 0 0 1 1 2 3 5 7 11 

10 0 0 0 0 0 0 0 0 0 1 1 2 3 5 7 

Pю(n) 1 2 3 5 7 11 15 22 30 42 55 75 97 128 164 

* - l 

But £Ps(/i - k, i) = Ps+1(>* - 1, k - 1) again by (14). 

Now without any difficulties we can fill in tables of the values P$(n, k). If s e N 
is an arbitrary fixed integer, then the integer Ps(i,j) is in the doint of intersection of 
i-th column and j-th row of the table Ps(n, k). 

Let us give an example of tables P3(n, k), P4(n9 k) and Pi0(n, k). 
It is evident that in any table Ps(n, k) there is only finitely many non-zero integers 

in every row and in every column. It holds 

Theorem 6. Let seN be arbitrary. Then in i-th column of the table Ps(n, k) there is 

/ — — I + 1 of non-zero values and in i-th row of this table i(s — 1) + 1 of non-zero 

values. (At the same time for real x the symbol \x\ is the greatest integer smaller or 
equal to x.) 

Proof: I. Let n, s e N be arbitrary fixed numbers. It is evident that Ps(n9 k) # 0 

for I — \i k £ n9 i.e. for n — I — | + 1 values of the argument k. £]-*-*•*«-.-£)• 
II. Let k,seN be arbitrary fixed numbers. Evidently Ps(n9 k) # 0 for n = 

= k9 k + 1,..., k . s9 i.e. for ks - (k - 1) = k(s - 1) 4- 1 values of the argument n. 

From here there follows 

Corollary. Let kfseNbe arbitrary. Then Ps(n9 k) # 0 iff n = k + i9 i =- 0, 1, ..., 
. . , * (*- ! ) . 



Since in every table Ps(n, k) there exist in every row and in every column only 
finitely many non-zero values thus sums of all values of arbitrary column and 
arbitrary row i.e. 

tPs(n,k) and £ Pa(n, fc) 
* = 1 n-=l 

are finite. The sum of the column, however, is by definition the number ps(n) and by 
Theorem 3 ps(n) = P(n -f s, s), i.e. it holds 

09) tPs(n,k) = Ps(n) = P(n + s, 5). 
*=-i 

In § 2 we shall calculate the sum of all values of one row and we shall also show 
that the sequence of non zero values in an arbitrary row is "symmetric" (it is the 
same if we read it from the front or from behind). 

§2. PARTITIONS AND CARDINAL POWERS 
OF FINITE CHAINS 

By a poset is meant a set with reflexive antisymmetric transitive relation called an 
ordering and usually denoted by symbol g. 

If A is a poset, 1(A) denotes its length and h(x) is the height of an element x e A . A 
denotes the poset dually ordered to A, i.e. x ^ y in A iff y ^ x in A. If posets A, B 
are isomorphic, we write A s B. 

Finally a cardinal number of a set A is denoted by symbol card A. Definitions of 
all here nondefined notions see e.g. in [3]. 

Definition. Let G, H be posets. The cardinal power GH is the poset of all isotone 
mappings of the set H into the set G with relation < defined as follows: 

For / , g e GH there holds / ^ g if and only if f(x) g g(x) in G for every xeH. 

Definition. Let neN0 be arbitrary. The poset { 0 < 1 < 2 < . . . < « - I } i s 
d enoted by symbol n. 

It evidently holds 

Theorem 1. Let G, H be finite chains, card G = n, card H = fc. 77ie/i it is 

GH s nk. 

Further it is evident (see e.g. [3], Theorem 2, p. 57) that there holds 

Theorem 2. Let G, # *e /wsefs. TAe/i GH s (jK. 

Corollary. Let G, i / be finite chains. Then we have GH s GH. 

Proof: The assertion follows from Theorem 2 and from the evident fact that for 
every finite chain A there holds A £ A. 



Definition. Let k9neN be arbitrary. The poset jtf(n9k) is defined as follows: 
The elements of the poset jrf(n9 k) are all k tuples (al9 al9..., ak) such that aten 
for / a 1, 2, ...9k and it holds ^ ^ a2 ^ ... 2£ 0*. The ordering ^ on J/(H, *fc) is 
defined in the following way: 

(at,..., ak) £ (bi9..., 6*) in jtf(n9 k) iff af <; b% in n for every i = 1, 2,. . . , k. 

Theorem 3. Let k9ne Nbe arbitrary. Then it holds 

nk g <%?(n9 k). 

Proof: Let us define a mapping F: nk «-• J/(/I, &) as follows: For /e nk we put 
fff) = (/(£ ~~ !)>/(& — 2), ...,/(0)). Then Pis evidently an isomorphism of posetsnk 

and sf(n, k). 

Remark. In what follows we shall identify posets nk and $f(n9 k) and we shall not 
differentiate the element/e nk from k tuple (/(k — 1), ...9f(Q))ejtf(n9 k). 

Example. On Fig. 1 we have the Hasse diagram of the cardinal power 43. The 
element (al9 a29 a3) is briefly written in the form axa2az. 

222. 



If k9 n e N are arbitrary, then (0,0, ...,0) is evidently the least element and 
(n — 1, it — 1,...,« — 1) the greatest element of the cardinal power nk and evidently 
one and only one element (1,0,..., 0) is of the height 1. 

Evidently it holds in general 

Theorem 4.Let k9neNbe arbitrary, letf*=(alt..., a*)en\ Then 

(20) *CO"Z«i-

Theorem 5. Lei" k,neN be arbitrary. Then it holds 

(21) /(!.*) = &(n - 1), 

(22) c a r d n * ^ " ^ - 1 ) . 

Proof: I. The length of the power nk is evidently equal to the height of the 
greatest element (n — 1,..., n — 1). The relation (21) now follows from (20). 

II. It holds card nk = card s/(n> k). But card •$/(«, k) is equal to the number of all 
combinations of fc-th class with repetition formed of n elements which is, as well-

known, equal to the combination number ("+Г> 
Definition. Let A be a poset, let / e N0 be arbitrary. The set 

Ht(A) = {x;xeA9h(x)~i} 

is called the i-th layer of the poset A. 

Theorem 6. Let k9neN be arbitrary. Then for every i € N0 it holds 

(23) caidJSr l(i i l)-ft l .1a*). 
k 

Proof: L e t / e n k , / = (al9 ...9ak) be arbitrary. By (20) we have h(f) =* ]Ta, so 

that all elements (at,..., a*) e nk such that 

ax + ... + ak « /, w — 1 ^ #! £ % ^ ... i£ tf* 2S 0 

have the height i € No • % the remark ahead of Theorem 1, § 1, the number of these 
elements is equal to the integer C-i( i , k). 

Corollary. For arbitrary k9neN9ie N0 it holds 

(24) card Hin*) « Pn(k + i*, k). 

Proof: The assertion follows from the relations (17) and (23). 



By (24) the sequence of non zero values in k-th row of the table Ps(n, k) gives the 
number of elements in layers of the cardinal power sk. 

Example. From Fig. 1 it is evident that the number of elements in layers of the 
cardinal power 43 is succesively 

1,1,2,3,3,3,3,2,1,1 

which are only and only lion zero values in the 3 rd row of the table P4(n, k) given 
in§l . 

Now we shall prove that non-zero values in every row of the arbitrary table Ps(n, k) 
form a symmetric sequence. Let us realize at the same time that by Corollary of 
Theorem 6, § 1, it holds Ps(n, k) * 0 iff n = k + i, i -= 0, 1, ..., k(s - 1). 

Theorem 7. Let k,seNbe arbitrary. Then for every i e NQ, i <£ k(s — 1) it holds 

(25) Ps(k + /, k) = Ps(ks - /, k). 

Proof: By (24) we have Ps(k + i, k) = card#f(s
k). However by corollary of 

Theorem 2 it holds sk £ s^ so that 

card Ht($
k) = card #fc{s_-1)._l(s

k). 

By (24), however, we have 

card Hkis„ iy f(s
k) » Ps(fc + fcs - fc - /, fc) = Ps(ks - i, k). 

This proves the equality (25). 

Corollary. Let k,seN be arbitrary. Then for every ne N0, n S ks holds 

(26) QJ(n,k) = QJLsk-n9k). 

Proof: By (17) and (25) it holds 

Qs(n, k) = Ps+1(n + fc, fc) = Ps+t(ks + k-n,k)=* Qs(sk - n, k). 

Theorem 8. The sum of all values in k-th row of the table Ps(n, k) is equal to 
(s + fc - 1\ 

(27) &P*"-t)-(' + k~1)-

00 i l ( f - l ) 

Proof: By Theorem 6, § 1, we have £P f(«, k) =- £ Ps(k + /, k). But by (24), 
„-=i *«o 

(21) and (22) it holds 

£ Ps(fc + i, fc) - £ cardies") = card U Hf(s
k) - cardsk - I 5 + * . 

i = 0 i - 0 1 = 0 \ K / 
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