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1. Notation. We denote by Ord the class of all ordinals. The natural order of
ordinals is denoted by <. If « € Ord then we put W(x) = {# €0rd; < a}. Further,
we put N = W(w,). If 4 is a set we denote by | 4 | the cardinal of A.

Let o/ be a category. Then we denote by &/ also the class of objects of & and,
for arbitrary P, Q € &, by [P, Q] the set of all morphisms from P into Q. The
sign =~ means an isomorphism of categories and < a full inclusion functor. If &
is a category such that for each P, Q € &, there holds | [P, O], | < 1, then & is
called a thin category or a quasi-ordered class. If &/ is a thin category such that, for
each P, Q € o/, there holds [P, O], # 9, [P, Q]., # ¥ implies P = Q, then & is
called an ordered class. If o/ is a thin category (an ordered class resp.), then for each
P, Qe s/ we put PnyQ (P <, Qresp.)if [P, O], # 9. An ordered class o is called
achainif P < ,Qor Q <, P for each P, Qe .

If o/ is a category, then a thin category & (b) such that the class of objects of =7 (b)

is equal to that of objects of & and Pry ) Qiff [P, O], # 0 foreachP,Q € o is
called a basic category for /. (Therefore, a basic category &/ (b) for & is a thin
category with the same objects and the same existence of morphisms.)

Let A be a quasi-ordered set (with the quasi-order n,). If a, b € A are arbitrary,
then we put ag,b iff an,b and bn,a. Then g, is an equivalence on A. Further, if
T, T’ € Ao, are arbitrary, we put Tn,,, T iff an,b for each ae T and each be T".
Then n,, is an order on 4/g,. (See, for example, [1], I, § 4.) We say that the order
Ty, IS defined by the quasi-order .

If A, B are ordered sets, then the cardinal power of 4 and B is denoted by A2.

The lexlcographzc sum ' o ; of a system {&g; G € ¥} of mutually disjoint thin
Ge¥

categories where % is an ordered class is the class &/ = |J &/ of objects where,
Ge¥%

for each G,, G, €%, Pe A, Q€ o,, there holds Pr,Q iff (1) G; <4 G, and (2)
G, = G, implies Py, Q. Further, if ¥ = {1,...,n} is a chain with the natural
order then we put Y' &g = A, @ ... ® ,. If {, B} is a non-indexed system

GeY )
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of two disjoint thin categories then we suppose {of/, #} to be a chain with
A <(y, 4 # and we can define o @ . (See [6].)

Let A be a set, f'a partial map from 4 into 4. Then the ordered pair 4 = (4, f)
is called a partial unary algebra. We put DA = A — dom f. If DA = 0 then A is
called a complete unary algebra. If 4 = (4, f), B = (B, g) are partial unary algebras
and F: 4 —» B a map (dom F = A), then F is called a homomorphism of A into B
if x € dom f implies Fx e dom g and Ffx = gFx.

Let 4 = (A4,f) be a partial unary algebra. We put f° = id,. Suppose that we
have defined a partial map f*~* from A into 4 for ne N — {0}. We denote by f™ the
following partial map from 4 into 4: if xedom f"~! and /" 'x e dom f, then we
put f"x = ff" 'x. A is called a connected partial unary algebra if, for each x, y € 4,
there are m, ne N such that x e dom f™, y e dom " and f™x = f"y. The category
of all connected partial unary algebras is denoted by %° and the category of all
connected complete unary algebras is denoted by ¥ where morphisms are homo-
morphisms.

2. Problems. Let M be an ordered set.

() (P. Goraltik, see [2], § 3, remark 2.) Find necessary and sufficient conditions
Jor the existence of # < ¥°° such that M = # (b).

(b) Find necessary and sufficient conditions for the existence of M < U° such that
M= H (D).

By our considerations, we can apply results of [7], [9], [10] and [11].

Let o0,, 00, €0rd and let us suppose that « < a; < o0, for each o« €0rd. Let
A = (A,f) € %°. Then we define the sets ZA = {x € 4; there is ne N — {0} such
that f"x = x}, KA = {xe A — ZA; there is a sequence (x;);.y such that x; e dom f
for each ie N — {0}, x, = x and fx,,, = x; for each ne N} and 4° = {xe 4;
S x =8}; if a € 0rd — {0} is arbitrary and if the sets 4* have been defined for all
A€ W(x) then we put 4° ={xed — | 4* f"'x<= U 4%}. Further, we put

A€W (@) A€W (a)
RA =|ZA|, 94 = min {1 € Ord; 4* = 0} and if we put A™* = K4, 4A®* = ZA,
then we define the map SA4 : 4 - Ord U {00, 00,} by the condition SAx = 1 for
each xe 4% Ae W(34) U {00, 0,}.

(@) Let A€ U°. Then the following assertions hold.

(a) | DA | £ 1; we denote by dA the only point with the property {dA} = DA.

(b) If RA =0, KA = 0 then DA # 9 iff 34 is isolated.

() If RA =0, KA =0, DA # 0 then SAdA = 34 — 1.

(See [7], 2.1, 2.26 (c) and [9] 1.12)

(ii) If « € Ord is isolated then there is A € U° such that RA = 0, KA = 9 and 34 =
= a. (See [11], 4.8.)

If («,),en is a sequence of ordinals then we write (a,) instead of (¥wnen- We say
that a sequence of ordinals (a,) is an end of a sequence of ordinals (B,) if there is
m € N such that a, = B+, for each ne N.
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3. Definition. Let o € Ord be limit and cofinal with w, and let <, be the order
on the cardinal power W(x)". We put Op(x) = {(z) e W@®"; lima, = a}. We
neN

define an order < on 0y(x) such that, for each (a,), (8,) € Oy(x), we put («,) <, (B,)
iff (a,) is an end of (8,).

4. Definition. We put 0' = {a € Ord — {0}; « isolated}, ' = {« € Ord; a limit and
cofinal with w,}. Let d, d¢Ord and we suppose that « < d < d for each « € Ord.
Let 4" be an arbitrary set disjoint with Ord U {d, d} and equivalent with
N- {0} and ": N— {0} —» A" a bijection. Let O(«) = {a} for each a € 0" and let
0(x) for each a € 0' be the ordered set with the order < 0@ Which is defined by
the quasi-order <, 0 =<, (the composition) on Oy(x) (see 1). We define the orde-
red class ’

(@) 0 =0'v 0" {d, d} suchthat, foreach a, f€ 0, 2 <, Biff (1) < B and (2)
ae @ L {d} implies fe O' L {d},

(b) A" such that, for each m’, n’ € # wherem,ne N — {0}, m’ <, n' iff n| m,*)

(©) €=(Y'0@) ® . (Clearly, € is an ordered class.)

aeld

Further, we define the subcategory ¢* = {J O(x) v {d} U A of G.

aeO?

(ili) Let A = (A, f) € U° be such that RA = 0, KA = 0 and 34 € 0'. Then there is
u e 0(84) such that (SAf"x) € u for each x € A. (See [10], 2.16(b).)

5. Definition. (a) We define the object function y: #° — € in this way: if 4 =
= (A,f)e @, we put

RA if RA # 0.
d if RA =0, KA + 0, DA = 9,
1A =1d if RA =0, KA + 8, DA # 0,
94 if RA =0, KA =9, 94 € 0",

pe0BA)if RA =0, KA =0, 34 €0, xe A, (SAf"x) € .
(b) If a € € is arbitrary then we put a — #° = {4 e U°; x4 = a}.
Let o be a category. Then it is called a category with non-empty homs if, for
each P, Q € o, there holds [P, Q] # 0. The following assertion holds for basic

categories of subcategories of #°.
@v) 2°(b) = Y.} [a — %°(b)] and v*(b) = Y.![a — U°(b)], where a — U°(D) is
ac¥ ace*

a category with non-empty homs for each a€ €. (See [10], 2.24 and 2.25.)

6. Lemma. (a) a — %° # 9 for each ac ¥.

(b) YU° = €, v = 6*.

Proof of (a). The assertion is evident for each a€ {d, d} U . If a € 0, then the
assertion follows from 5 and (ii).

*) njm means that n is a divisor of m.
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Therefore, let a = p e 0(x) where o« € @'. Then p is a set of increasing sequences

of ordinals (a,) with lim &, = a by 3 and 4. Let (%,) € u be arbitrary. Then, for each
neN

ne N, there is A, = (4,,f,) € %° such that R4, =0, KA, =0and 34, =a, + 1
by (ii). We can suppose that 4, are mutually disjoint. Then DA, # #and SA,dA4, =
= a, for each n € N by (i). We define B = (B, g) € %° such that B = |J 4, and, for

neN
each x € B,

v = f,x if xe A, — dA, where ne N,
8% = \dA, ., if x = dd, where ne N.

Now, since g~ 'dd, = fo 'dA, we have SBdA, = SAydA, = ;.

Letne N — {0} be arbitrary. Then g~ 'dA4, = {dA,_,} u f, 'dA,,i.e. SBg~'dA, =
= SBdA,_, v SBf,'dA, = {a,_,} U SA,f, 'dA, and since «,_, < %, we have
SBdA, = SA, dA, = «,.

Therefore, for each n € N, there holds SBg"d4, = SBdA, = «,. Hence (SBg"dA,) €
€ pe 0(x) and since RB = 0, KB = 0 and 9B € 0' we have yB = u by 5. From this
follows Be a — %°.

(b) follows directly from (a) and (iv).

7. Lemma. Let # < U°(b) be arbitrary. Then the following assertions are equivalent:
(A) M is an ordered class.

(B) x| A is injective.

(C) x| M is an isomorphisms of the quasi-ordered classes M and y M.

Proof. (A) implies (B). Indeed, if we had y4 = yB for some 4, Be #, A # B
then we should have 4, Be y4 — %°(b) and thus, 4 <yc4) B, B Sqcp) 4 by (iv),
which is a contradiction.

(B) implies (C). Indeed, if A, Be .# are arbitrary then 4 Zgcp) Biff x4 <, xB
by (iv) which implies that y | #: # — x# is an isomorphism.

(C) implies (A). Since y.# < € is an ordered class hence # < %°(b) is an ordered
class.

8. Lemma. (a) Let 9 < ¥ be arbitrary. Then there is # < U [a — %°(b)] such

aed
that # =~ 9.
(b) Let €' = € be arbitrary and let M be an ordered class. Then there is M <
c U [a — %°(b)] such that M =~ M if and only if there is @ < €' such that M = 9.

ae¢’
Proof of (a). a — %€ (b) is non-empty for each a € Z by 6. We take 4,e a — %°(b)
arbitrary and put # = {A4,; ae 2}. Then A = |J [a — %#°(b)] and since x| A
ae?

is injective there holds # =~ y# = 2 by 7.
Proof of (b). If M =~ # for some 4 = | [a — %°(b)] then x| .# is an iso-

ae¥é’

morphism by 7 and we have M =~ # =~ y.# < %'. Let, on the other hand, M >~ 2
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for some 2 < €'. Then, by (a), there is # = | [a — %°(B)] = U [e — %°(b)]

aeP aes’
such that # ~ 2 and we have M = .#.
The following assertions expressing a representation of ordered classes by classes
of connected partial and complete unary algebras give an answer to the problems 2.

Theorem. Let M be an ordered class. Then there exists M < ¥ °(b) (M = U°(b)
resp.) such that M = .# if and only if M can be embedded into the ordered class €*
(€ resp.). .

These assertions follow directly from 8(b).
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