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I. INTRODUCTION 

A discrete neural model has been investigated from a mathematical, computational 
and physiological point of view in Refs [1]— [4]. In Ref [5] this model has been 
extended to a two-dimensional continuous neural network. In Ref [7] we studied 
the activity propagation in a special two-dimensional continuous neural model. In 
the present work we deal with the spatial and temporal propagation of nervous 
activities in a one-dimensional neural network with a special structure. 

The neurons of the neural network considered in this paper are supposed to be 
distributed over the half-axis R = {x | x > 0} and are connected to each other in 
a specific way which will be explained below. 

Let u -= u(t9 x) be the normalized and smoothed rate of generation of nerve 
impulses of the neuron P = P(x)eR at time t as described in Ref [5]. By this 
normalization we have 0 ^ u ^ 1. Let the rate of influence, the rate of excitation 
or inhibition, of a cell Q == Q(x) e R on the activity of the cell P be denoted by 
K(P; Q) = K(x; i). We assume that K(P; Q) is a Volterra kernel such that 

K(x; 0 = j j ^ * 0.D Kx.o-cr-"0 \PQeR and ° = ^x-
l n otherwise 

where ii is a real constant and K0 is a given sufficiently smooth function defined on R 
with the property 

(1.2) K = ]\K0(S)\2dS<ao. 
o 

A neuron Q excites the neuron P if K(P; Q) > 0, inhibits P if K(P; Q) < 0, and it is 
not connected to P if K(P; Q) = 0. 
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Let a * a(x) be the rate of self-inhibition of the neuron P, and / = /(*\ *) be the 
external input at time t on P. We assume that 

(1.3) a0 = a(x) = aj Vx e J?, 

where a0 and ax are certain positive numbers with a0 > 1. Further, let A, c'ks and 
^ be real numbers such that 

(1.4) 0 < yt < y2 < ... < ym, 

and consider the function 

(1.5) J K O - K ? ^ " * ' f ° r ' > 0 ' 
[o, for t S 0. 

The function H(t) will be taken as the self-regulation (adaptation) function of the 
neural network. 

Let / = {/11 > 0} and D = IxR. Consider the space U of all functions 
u = u(t, x) defined on D which are absolutely JL-integrable in xeR for fixed t (0 ^ t < 
< oo), and absolutely continuous, in tel for fixed xeR, and are such that 
0 S u S 1 in />. Note that the function 

(1.6) S{g}(t,x) l 

l + exp{-g(í,x)} ' 

maps Lm(D) into itself; it is monotonically increasing with g and 0 < S{g} < 1 for 
any bounded element of Lco(D). 

It can be easily demonstrated as in Ref [5], with some minor modifications, that 
the nervous activities in the neural network under considerations are governed by 
the nonlinear integro-difFerential difference equation 

(u) ( 4 " + a ( x ) ) w ( r ' x ) = 

- S{f(t,x) + x\H(t - x)u(x,x)dx + II]K0(X - {)u(t - h, 0d{} 
0 0 

for (t, x) e D, subject to the initial condition 

(1.8) u(t, x) -a q>0(x) for t e /0 , x e R, 

where ^0(x) is the initial firing rate of the neuron P in the initial time-interval I0 = 
= {t | — h g t S 0}, and A is a small time-lag which occurs in the neural interactions. 
Here the initial firing rate is supposed to be independent of t for the sake of simplicity. 

For small A and fi Eq (1.7) can be approximated by the following linear inhomogene-
ous integro-difFerential difference equation: 
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(1-9) (jj- + ot(x)\u(i,x) = 

t X 

- /oO> *) + fx(t, x) X f H(t - T) M(T, x) dt + /* J K0(x - 0 u(t - A, {) d{, 
o o 

where 

(i.io) / o - - m /i=/0-fo2. 
By making a few natural modifications in the proof given in § II of Ref [5] we can 

demonstrate that Eq (1.7) has a unique solution u = u(t, x) in U which satisfies the 
initial condition (1.8). The same result is also valid for the initial value problem 
(1-8)-(1-9). 

In the present paper we study the initial value problem (1.8)—(1.9) in the case 
m — 1 and 

(1.11) JT0(*) « « - ' * , 

where /? is a positive number. Further, to simplify our writing we shall denote cxy 
by X and yx by 7, and assume tha t / = /(*), that is the external force/is stationary, 
with respect to time so that f0 and fx are independent of time t: f0 = /0(x), 

A «/i(*). 
Note that the neurons in the network always excite (inhibit) each other if i* > 0 

(/x < 0), by virtue of Eqs (1.1) and (1.11). The structure of the neural network with 
the above restrictions is surely not very realistic and oversimplified. Nevertheless 
it provides some insights on the nervous activities in the idealized conditions. 

II. ASSOCIATED PARTIAL DIFFERENTIAL 
DIFFERENCE EQUATION 

Consider the linearized neural network described by Eq (1.9) with / = f(x), 
/o =/o(*),/i =/i(*X H(t) = e~n and K0(x) = e~*\ Put 

v(t,x) = je-*x-Vu(t,Od/;, 
0 

a L 1 ) vj(t, x) - J e-**-{> <pj(0 d£ 0 = 0,1), 
o 

where <Po(x) is the given initial function in (1.8), and 

(II.2) <px(x) = fifx(x) v0(x) - a(x) <p0(x) [ » -7JM I • 
\ <" \teloJ 

Hence 

«t*i(*)(tvl--o-°) 
5u 

(П-3) »| t6/0 = f0(x), -^ 
tel0 
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and 
(H.4) t;L=o = 0. 

Further 

01.5) (~ + p\v(t,x) = u(t,x). 

Elimination of u(t, x) between Eqs (1.9) and (II. 5) yields the integrodifferential 
difference equation 

(11.6) (j- + a(x)\(JL + p\ v(ti x) _ fo(x) + ^ W v(t _ ht x) + 

+ #i(x) j <T y(<~r) f-A- + p\ v(z, x) dx, 

and the differentiation of the two sides of Eq (II.6) with respect to t yields 

(11.7) ( | L + «(,) -1 - - V l W ) ( A + /») * , x) = 

- tf.to * * ' - » ' * > - xrfM / e - * - > ( A + /?)Kt, x) dr. 

Now we eliminate the terms that contain integrals, obtaining the following linear 
inhomogeneous third order partial differential difference equation in y: 

d3v(t, x) , , d2v(t, x) , . d2v(t, x) 

, . dv(t, x) , . 3t>(r, x) , . , 
+ a3(x) ^ + a4(*) ^ + as(x) v(t, x) = 

= r/o(*) + y«AW t>(' - it, *) + MtiW g" ( f ~ h — , 

where 
(II.9) *,(*) = -ft a2(x) = a(x) + y, n3(x) = 0[a(x) + y], 

a4(x) = ycc(x) - Xf(x), a5(x) = j8[ya(x) - #i(x)]. 

The functions u and i; determine each other uniquely by virtue of Eqs (II. I) and 
(H.5), respectively. In the next section the solution v(t, x) of Eq (II.8) satisfying 
the conditions (II.3) and (II.4) will be constructed by the methods of integral equa­
tions. 

HI. ASSOCIATED INTEGRAL EQUATION 

To establish the integral equation which is satisfied by the function v(t, x), we 
integrate successively both sides of Eq (II.8) twice with respect to t between 0 and t, 
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once with respect to x between 0 and .v. Then, taking into account the conditions 
(II.3) and (II.4), and putting 

A(t,x) = -\a2(x) + ta4(x)~], 
(111.1) B(t,x) = -fl, 

C(t, x) = a'2(x) - a3(x) + t[a4(x) - a'5(x)], 
D(t, x) = (1 + yt)ft(x) 

and 

(111.2) g(t, x) = v0(x) + tv{(x) + 

+ I | y t2fo(S) + [/? + t{a^) - nf0(0)l v0(S) + [fi + a2(0] tvtf)] df, 

we obtain the following integro-difference equation 

(III .3) v(t, x) = g(t, x) + // J f D(t - x - h, £) v(x, 0 dx d£ + (Tv) (t, x), 
- f t o 

where 

(Tv) (t, x) = f A(t~ T, x) V(T, X) dx + J B(t, 0 v(t, £) d£ + f f C(t - T, Q <T, {) dT d£. 
o o o o 

(IH.4) 

Note that the double integral on the right-hand side of Eq (III.3) involve only the 
values of the function v(T, £) for ~h f^x -£ t — h. Put 

(111.5) /„ = {t | (n - 1) h = t = «h}, * = 0, 1, 2,... 

and 

(111.6) ww(t, x) = v(t, x) for t 6 /„. 

Then we have 

(111.7) wn(t, x) = gn(t, x) + (Twn) (t, x) for t e In, 

where 
n - 2 fcft x 

(111.8) g„(t,*)=g(t, *) + /<£ 1 jD( t -T - l . ^ )w t (T ,OdTd^ + 
fc=l(*-l)ft 0 

t-h x 

+ /x f ^(t-x-KOw^^Odxdl 
(n-2)h 0 

Thus, if the functions w0(t, x), wt(t, x),..., wrt(t, x) are known, the function gn(tt x) 
is completely determined on Dn = I„x D, and Eq (III.8) is a pure integral equation. 

Although the operator T involves different simple and double integral operators, 
Eq (III.7) can be solved uniquely and the solution wn(t) is smooth on Dn sinc^ the 
functions A, B, C, D and g are sufficiently smooth by virtue of the hypotheses of §1. 
We omit the details here. 
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Integral equations involving different simple and double integral operators first 
investigated by M. Picone in his great work on partial differential equations (cf. 
Ref [6]). We recently dealt with such equations in several occasions (cf. Ref [7] - [9]). 

Before closing this section we note that w0(t9 x) = v0(x) by virtue of Eq (II.3), and 

(m.8) gi(t, x) = g(t9 x) + ft + -J- A } v0(O d«, (r, x)eDi. 

Hence wt(t9 x) is well determined on Dt. Using w0 and wx we can construct w2 

on D2, and so on. This stepwise continuation of the solution in the forward direction 
of time is well known in the theory of differential difference equations (cf. [10] — [11]). 

IV. A SPECIAL CASE 

In this section we shall briefly investigate the specil case a(x, y) = a, f(t, x) s / 
and h = 0 where a and / are constants, a > 1. In this case / 0 , fx and a^s (k == 
=-1, 2, 3, 4, 5) are also constant, and Eq (II.8) is a pure partial differential equation 
of the form 

,*xr ix d*v . d2v . d2v - dv f dv . . 
aWA) W^ + b l ^ + bl^x- + b3nr + Ki* + bsV = yfo 

subjected to the conditions (II.3) and (II.4), where 

(IV.2) bt=ftt * 2 = a + y, b3=fi(* + y)~itfl9 

b4 = ay - Xfl9 b5 =^(ay - kfx - uft). 

Although v(t9 x) can be constructed by the integral equation method described in 
§ III, we shall try to construct it analytically by means of Laplace transformation. 
For this purpose, put 

00 

(IV.3) V = V(t; s) = | e'sxv(t, x) dx 
o 

and 

(IV.4) XK(S) = J e-~iKx) dx (k = 0,1). 
0 

Then multiplying both sides of Eqs (IV. 1), (II.3) and (II.4) by e~sx and integrating 
with respect to x over the interval (0, oo), we find the ordinary differential equation 

(TV.5) (5 + b1)^- + (b2s + b3)^- + (fc4s + bs) V = ^ -
dt & s 

subjected to the initial conditions 

dV 
(IV.6) V 
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The associated characteristic equation is 
(IV.7) (s + bt) r

2 + (b2s + *3) r + (bAs + b5) = 0, 
and its roots are 

- Í.\ -(b2s + b3) + jA(s) 
r i-2( s ) 2(7TbO 

(IV.8) 

where 

(TV.9) _l(s) = (b\ - 4b4) s
2 + 2(b2b3 - 2b.b4 - b5) s + (bf - 4b.b5). 

Hence, if _I(J) ^ 0 we have r.(x) ^ r2(s) and 

y/o (IV.10) 

where 

(IV.ll) 

V(t; s) = 
s(b4s + b5) 

+ C1(s)er,(l)' + C2(s)eГl(,)' 

r M >*2(s)Xo(s)-Xi(s) yfpr2(s)  
l W r^-r^) s(bAs + b5)(r2(s) - rt(s)) ' 

I r w = * l ( s ) - rt(s) Xo(s) y/ori(i)  
[ í W r2(í)-r.(s) + s(b4s + h5)(r_(_) - -,.(_)) ' 

Accordingly, we have 

i c + ioo 
(IV.12) i<t,x) = | - - ( 1 - «-•-) + -si- f (C.(s) e r , ( 5 )' + C2(s) er j (s )'} e"dx, 

&5 Z7tt c _ j o o 

where 0 = b5/b4 and c is a suitably chosen positive number. 

Further, if A(s) = 0, then r^s) = r2(s) = b* + *\ = r(s) and 2(s + b:) 

(TV. 13) 

where 

(IV.14) 

/o „-<>)' F ( í ; S ) = rfl, . 4 . /, 1 + - C l ( S > ' + C 2 ( S ) - e" 
s(oAs + b5) 

r <v. - v řĉ  , í 6 ! , h-bJh"] v r . y/o(b2s +• t>3) 
C_(.) - *<-) + [ " f + 2(5 + 6.) J X o ( 5 ) " 2s(s+b.)(b,S + b5) 
C 2(S) = Xo(s) - Уfo 

s(b^s + b5) 

Accordingly, we find 

(IV.15) 

where 

Y(x) = „ l(x) + -?f v0(x) + -_________L j . - - t c - o ^ o d£ _ 

p(f,x) = ţ-(í - e~ x) + {Y(x) t + Z(x)] R(t,x) 

(ГV.lб) ___-[_____ 4- b 3 ~ bíb2 -bix • ^3^4 ~ 62^5 g - g - l 
2 |_b.b5

 + btfibi -b5)
e + b5(b5 - btb<) • J 

У/o \Z(x) = v0(x)-f.(l-e-*x) 
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and 

< i v . l w , , ) . .-«•>•{. + £[.-» J^g-J^w*. - OA,.*)]} 
where /i(z) is the Bessel function of the first kind of order 1. 

Finally we note that A(s) = 0 if and only if 

(TV. 18) b\ - 4Z>4 = 0, b2b3 - 2b,bA -b5=0, b\- 4btb5 = 0. 

The first and second equations in (IV. 18) yield respectively the relationships 

nv 19) x - - ( a "y)1 u - A" + y)2 

(IV.19) X- —^—. P- 4 a / i 

and the third equation yields the relationships 

(IV.20) y = a [ - 2 + V ^ l I ] , a > -^~ 
since y > 0. Note that 0 <fx ^ —. Hence if the structural parameters a, fi, y,fi9 A 
and /i satisfy the conditions (IV.19) and (IV.20), then the activities in the neural 
model described by Eqs (II. 5) and (IV. 1) show oscillations according to the formulas 
(II.5)and(IV.15)-(IV.17). 

Further, since 0 ;g u(t, x) <£ 1 always in D, the functions v0(x) and vx(x) are 
bounded on R. We can easily verify that 

(IV.21) 
lim v(t, x) = lim — ; = 0 for fixed x e R, 

r-+ + oo *-> + » # t 

lim v(l, x) = lim - ^ - ^ - = 0 for fixed t e I, 
dt x-+ + oo x-* + oo 

whenever the conditions (IVA9)—(IV.20) are satisfied. Hence, under these condi­
tions, we have the limits 

(ГV.22) 
lim u(t, x) = 0 for fixed x e R, 

t-* + co 

lim u(t, x) = 0 for fixed t e I 
X-+ + 00 

by virtue of Eq (II.5). The physiological significance of these limits are obvious. 
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