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ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XIV: 145—154, 1978 

CHARACTERIZATIONS OF CERTAIN MONOUNARY 
ALGEBRAS 

(Part II) 

JAN CHVALINA, Brno 

(Received December 2, 1977) 

This is a continuation of the paper [5] where definitions of used notions and 
other necessary details can be found. 

3. R E D U C E D M O N O U N A R Y c-ALGEBRAS 

We shall introduce first a certain modification of the construction described 
in [11] p. 228 (Def. 2.7) which we use for the definition of a reduced monounary 
c-algebra. 

Let (A,f) be a connected monounary algebra such that R(A,f) = 1, and (B, g) 
a connected monounary algebra with A n B = 0. Let c e B®. Then (A,f) © c (B, g) 
denotes a monounary algebra (C, h) defined in this way : C = B u (A — A™2) 
and for every x e C it holds 

h(x) = 
f(x) for x є A - (Aў> u Гl (A7% 
c for xєf-^Aў^-Aў*, 
g(x) for x є B. 

3.1. Definition: A connected monounary algebra (A,f) is said to be reduced 
if it has exactly one of the following forms: 

0 / 2 =/(--e. 0 4 '/) i s idempotent), 
(ii) Either A = A?* or A = A?1 u A°f, where (Afl, £f) is a chain of the 

type co* © co0 and A°f # 0. 
(iii) (A,f) = (At ,fx) ©c (Al2 Jz), whereft is a constant mapping and (A2 f S/2) 

is a chain of the type coQ with the first element c. 

The below stated first characterization of a reduced c-algebra (Theorem 3.6) 
is given by the use of the endomorphism semigroup. We shall prove three lemmas 
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first. We say that a transformation semigroup S(A) s T(A) acts transitively on the 
set A if for every pair of elements a, be A there exists fe S(A) such that/(a) = b. 
An ideal I of a semigroup S is said to be half-prime if rad / = /• F b r / e T(A) we 
put </>' = </> _ {idx} and 5(/) = </>. <Id C(f)}. Let S be a sybsemigroup 
of T(A). In accordance with [6] we denote it by S1 if S is a monoid (i.e. if it contains 
an identity), and in the opposite case S means S u {id^}. Thus </>' = </> = 
= </>. A principal ideal of S generated by fe S is denoted by Is(f), if it is danger 
of confusion. Evidently, for a principal ideal there holds Is(f) = Sx . / . Sl (see [6] 
p. 21). 

3.2. Lemma. Let (A,f) be a monounary c-algebra, A ^ Af2. Then A = Af1 iff 
the monoid C(f) acts transitively on the set A. 

Proof. Let A = Af\ a, be A. For every n e N0 it holds Sf(f
n(a)) = Sf(f

n(b)) = 
= oo x thus by Proposition 1.4 [5] there exists an endomorphism g of the algebra 
(A>f) such that g(a) = b, i.e. the monoid C(f) acts transitively on the set A. 

Assume the last condition is satisfied. Since for each endomorphism g of (A,f) 
and xeAf

2 there holds g(x) e Af
2, (Af* = 0), we have R(A,f) = 0. Further, 

by Lemma 2 . 8 [ 1 3 ] x e A , g e C(f) implies S/x) ^ Sf(g(x)), thus A£ = 0, hence 
Sf(x) = oox for each x e A, i.e. A = A^1. 

It is easy to see that Lemma 3.2 is contained in Theorem 1 [18], part (a), but 
the proof is based on some other considerations. 

3.3. Lemma. Let (A,f) be a c-algebra with R(A,f) g 1 and such that </>' is 
an ideal of C(f). Then x, ye A, S(x, y) = 0 is followed by f(x) = f(y). 

Proof. Suppose on the contrary, there exists a pair of elements x, ye A with 
5(x,y) = 0 and/(x) = /(y). If Af

l ¥= 0, then we denote by a such an element 
of Af

l that 5(a, x) = 0 and by b an element of the set {x,y} with f(a) =f(b). 
Since Sf(f

n(a)) = oOj J> Sf(f
n(b)) for each « e N 0 , by Proposition 1.4. [5], there 

exists an endomorphism g of the algebra (A,f) with the property g(b) = a. Then 
f-g(b) = /*(£) for any keN0, thus / . g$ </>', which contradicts the inclusion 
< / > \ C ( / ) £ < / > ' . 

Let yi** = 0. Denote by a, b elements of A with properties/(a) ^ f(b),f2(a) = 
= f2(b) and <5(a, b) = 0. It is evident that such a pair exists. By the definition of 
a degree (1.16. [11]) there exist elements x0, xx e (d]f with Sf(x() = i for i = 0, 1 
and /(JC0) = Xj. Since fk(x0) <ff

k(b) whenever k ^ 2, it holds S^fixo)) ^ 
g Sf(f

n(b)) for each n e N0. By Proposition 1.4 [5] there exists a mapping h e C(f 
with the property h(x0) = 6. Then / . h(x0) =f(b) ¥" fk(x0) for any k e N0 thus 
/ . A£ </>' which contradicts the supposition that </>' is an ideal of C(f) again. 
Consequently, 5(x, y) = 0 is followed by f(x) = f(y), q.e.d. 

Notice that the converse of the above assertion is not true. The implication 
converse to that stated above (in Lemma 3.3) is true only under some additional 
conditions, e.g. R(A,f) = 1 or Af1 = 0. 
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3.4. Lemma. Let (A,f) be a c-algebra with card A ^ 2 and R(A, f) g 1. The 
following conditions are equivalent: l°(A,f) is either an idempotent c-algebra or 
(A,f) = (Ax , / i ) ®c (A2 , / 2 ) , where (A1,fi) is an idempotent c-algebra and(A2, ^ / 2 ) 
is a chain of the type o)0. 2° </>' is a half prime ideal in C(f) andf2 ¥> fimplies 
card<f>' = K 0 . 

Proof. Assume condition 1° is satisfied. If geC(f) then for arbitrary aeA 
either g(a) = /"(<*) with a suitable « e N 0 or 8(a, b) == d(g(a), b) for each be A. 
Thus for every positive integer n we have/". g = g .fne <f>', hence </>'. C(f) = 
= C(f). </>' = </>', i.e. </>' is a proper ideal of the monoid C(f) and at the 
same time radC(/) </>' = {ge C(f) : gn e </>' for some integer n) = </>', i.e. </>' 
is a half-prime ideal of C(f). I f / is not idempotent then in our case/* = / * + 1 for 
each keN0 and we have card </>' = K0. Therefore condition 2° is satisfied. 

Suppose assertion 2° holds. Since </>' is an ideal of C(f) it holds by Lemma 3.3 
that x, ye A, 5(x,y) = 0 is followed by f(x) =/(y) . Admit that simultaneously 
Af1 # 0, Af

2 = 0. The constant mapping h of A onto the cyclic element of (A,f) 
belongs to C(f) and for every pair of positive integers n, m it holds gn .fm = 
= g$ </>'• This is a contradiction, thus either Ajl = 0 or A?2 = 0. Admit that 
Af

l = 0. Let a, be Af1 be a pair of elements with/(b) = a. Since Af
2 = 0, thus 

S^OOeOrd for each xe\b)f, by Proposition 1.4 [5] there exists geC(f) with 
g(a) = b. Then/. g£ </>', which is a contradiction. Hence Af

x = 0. Now, admit 
that there exists an element q e A°f with Sf(f(a)) ;> 2. With respect to Lemma 3.3 
and the assumption we have R(A,f) = 1 iff/2 = / . Hence/2 ^ / i s followed by 
Sf(x) e Ord for each x e A. Let b e A°f n (/(a)] / be an element with Sf(f(b)) = 1 
and/(b) = /(a). Such an element b exists with respect to the definition of a degree Sf 

and Sf(f(a)) = 2. Then Sf(f
n(b)) = Sf(f

n(a)) for every H G N0 and again by 
Proposition 1.4 [5] there exists h e C(f) with h(b) = a and h(x) e [x)y for each 
x # b. Then h £ </>' but for an integer k such that/*(b) =/(a) it holds A2 = / * 
thus h e radC(/) </>' which contradicts the assumption. Consequently the algebra 
(A,f) has one of the forms described in 1°. 

Remark. If (A,f) is a c-algebra such that x,yeA, d(x, y) = 0 is followed by 
/(*) = f(y) then the monogenuous semigroup </>' is a proper ideal of the semi­
group S(f). Indeed, </>' is a subsemigroup of S(f) and ge <Id C(/)>, keN 
implies fk.g~g.fk =/*. Then it holds </>'. <Id C(/)> = <Id C(/)> . </>' = 
= </>' and we have </>'. S(f) = </>' = S(f). </>'. 

3.5. Lemma. Let (A,f) be a c-algebra with Af1 =0,ge C(f). For every element 
xeAitholdsd(x,g(x))SO. 

Proof If R(A f) > 0 t h e n xeAf2 implies g(x)eA?2 by Lemma 2.8 [13]. 
Then <5(x *frfl - 0 for every xeAJ2. If we admit that there exists an element 

147 



for the integer n =deg(a) there holds g(fn(a))$AJ2 while fn(a) e A?\ Thus 
8(x,g(x)) ^ 0 for each xe A in this case. Let R(A,f) — 0. Admit there exists 
a e A with S(a, g(a)) > 0. If g(a) <fa then for some n there holds fn(g(a)) = a and 
by Lemma 1.19 (a) [11], Sf(a) = Sf(g(a)) 4- n > Sf(g(a)) but with respect to 
Lemma 2.8 [13] it is Sf(a) S $f(g(a)), which is a contradiction. If g(a) \\f a then 
we denote by n0, m0 the least integers having the property fno(a) =fmo(g(a)) and 
we put b =fno(a). Clearly, n0 < m0. Then we haveg(b) = g(fno(a)) =fn°(g(a)) <f 

<ffno(g(a)) = b and we get a contradiction in the same way as above. Hence 
x e A, g e C(f) is followed by S(x, g(x)) S 0. 

3.6. Lemma. Let (A,/) be a c-algebra with R(A,f) = 1. Then A = A?1 u A?, 
where (-4/1, .= /) w a chain and A°f ^ 0 iff </>' is an infinite proper ideal of S(f), 
the monoid <Id C(/)> is non-trivial and to each g e </>' there exists h e C(f) with 
g.heldC(f). 

Proof. Let A = Ap u Af, (Ap, <*f) be a chain and A? # 0. Every element 
a e ^ 1 is a fixed point of each geC(f), thus <Id C(/)> s C(f) and further 
<Id C(/)> . </>' = </>'. <Id C(/)> = </>' consequently </>'. S(f) = </>' = 
= S(f) . </>'. Since A°f # 0, there exists g e <Id C(/)> which is different from \dA. 
(E.g. g(x) = x for x 6 A]?1, g(x) = j e Af1 for xe Af and for j such that <5(x, j>) = 
= 0). Let g e < / > ' be arbitrary, neN such that g =fn. Consider an arbitrary 
element a e A and put at = a if a e Af

l and if a $ Ajl then denote by ax an element 
of Af

l satisfying the condition <5(a, at) = 0 . Further, denote by b an element of 
Af

l with fn(b) = at. Since Sf(f
k(b)) = o^ for each k e N0, by Proposition 1.4 [5] 

that there exists an endomorphism h of (A, / ) with h(a) = b. Then g(h(a)) = g(&) = 
= fn(a) = #!• With respect to the construction obtained in Definition 9 [13], for 
each xe A there holds S(x, g . h(x)) = 0. Since g .he C(f) and g(h(x)) e Af

l we 
have g.held C(f). 

Now, we shall prove the converse implication. Suppose first R(A,f) = 1, 
AT = (z/}- Admit Af1 # 0. Then/, h e Id C(f) iff h is a constant transformation 
with the value zf, thus h ^ fn for each « e N 0 which contradicts the condition 
</>' • S(f) = </>'. </> . <Id C(/)> s </>'. Thus A;1 = 0. Suppose the set 
{n e N: n = deg (x), x e Af} is unbounded. Then by Lemma 3.5 we have f. he 
e Id C(f) iffh(x) = zf for each x e A, a contradiction again. Assume on the contrary 
there exists ae Af with the property deg (x) ^ deg (a) for every x e AQ

f. Putting 
n = deg (a) we get/n + k = / w for each k e N0, hence the semigroup </>' is finite. 
This contradicts the supposition, hence R(A,f) = 0. Admit AJl = 0 . Then clearly 
for each g e Id C(f) and every xe A there holds <5(x, g(x)) = 0. Thus according to 
Lemma 3.5 we get/ , h $ Id C(f) for every h e C(f), hence 4̂J1 ^ 0. Assume there 
exists an element a € A such that for a suitable be Af1 with <5(a, 6) = 0 the equality 
fk(a) =fk(b) implies k J> 2. Denote by g an endomorphism of (A,f) satisfying 
the condition g(a) = b. Since </>'. S(f) £ </>' there exists a positive integer n 
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with the property f.g(a) = fn(a). But f. g(a) =f(b) # /*(a ) for each keN0. 
This contradiction shows that (Af\ <^f) is a chain of the type co0 © c00 and A =-
= Af1 u Af. Since Id C(f) is non-trivial, the set A°f is non-empty. 

3.7. Theorem. Let (A,f) be a monounary c-algebra having at least two elements and 
such that R(A, / ) = I. Put S(f) = </> . <Id C(/)>. The algebra (A, f) is reduced iff 
exactly one of the following conditions is satisfied: 

1 ° The monoid C(f) acts transitively on the set A. 
2° </>' is an infinite proper ideal of S(f) and either it is a half prime ideal of 

C(f), where f2^f implies card (f/ = K0, or the monoid <Id C(/)> is 
non-trivial and to each g e </>' there exists h e C(f) with g . held C(f). 

P r o o f follows from Lemmas 3.2, 3.4 and 3.6. 
Notice that if (A, / ) is a reduced c-algebra with Af / 0, i.e. the so called ordinal 

part is non-void, then the semigroup </>' is a principal ideal generated b y / i n the 
monoid S(f). Indeed, by Lemma 3.6 and the above remark we have 
</>' . <Id C(/)> = <Id C(/)> . </>' = </>'. Then IS(f)(f) = Sl(f) . / • W ) = 
= S(f)./. S(f) = </> . <Id C(/)> . / . </> . <Id C(f)> = </> . <Id C(/)> . </>' x 
x<IdC( / )> = < / > . < / / = < / > ' . 

The following theorem contains a characterization of a reduced c-algebra 
expressed in terms of groupoid using the binary operation Vf. 

3.8. Theorem. Let (A,f) be a monounary c-algebra such that R(A,f) S 1» 
card A = 2. The algebra (A,f) is reduced iff exactly one of the following conditions 
is satisfied: 

1° (A, Vf) is an ideal-simple groupoid without idempotents. 
2° (A, Vf) is a commutative groupoid containing the least proper ideal I such that 

(A\I, Vj) is a BD-groupoid and if I = 1(a), ae A then A = Iu ^Ja and 
Id (A, Vf) # 0 is followed by Id (A, Vf) = L 

Proof. Let (A,f) be a reduced c-algebra, card A = 2. Suppose first that (A,f) 
has the form (i) from Def. 3A, Af

2 = {zf}. Since x Vfzf =f(x) = zf = zf Vfx 
for every element x e A, the singleton {zf} is the least proper ideal of the groupoid 
(A, Vf) and the factor-groupoid (A/{zf}, Vf) is isomorphic to (A, Vf). Putting 
/ = {zf}, we get by Lemma 1.3. [5] that (A//, V7) is a BD-groupoid. Since xe 
e A — / implies x Vfx = f(x) = zf it holds A = y/zf = / vj sjzf. The commutat-
ivity of the operation Vf is evident in this case. Thus (A, Vf) satisfies the condition 2°. 

Suppose that the algebra (A,f) satisfies condition (ii) from Definition 3.1. If 
A = Af1 then for every element xeA it holds x Vfx = / ( x ) = x. Admit that 
(A, Vf) contains a proper ideal L For arbitrary ae A — / there exists be A, b # a 
with / ( i ) = a. Since xe I implies f(x) = x Vfx e I, i.e. / is a subalgebra of (A,f), 
and since (A,f) is connected, there exists k e N0 with/*(6) e L From the definition 
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of an ideal it follows a = f(b) = b Vff
k(b) e I, which is a contradiction. Thus the 

groupoid (A, Vf) is ideal-simple. 
Assume A = Af

l u A°f, where (Af\ Sf) is a chain (of the type cot © <*>o) a°d 
A°f # 0. Since a e A, be A, S(a, b) = 0 is followed by the alternative f(a) = f(b) 
or a = b, the groupoid (A, Vf) is commutative. For each element x e A there is 
f(x) e Af

l thus a Vfx e Af1 for every pair of elements a e Af \ x e A hence Af1 is 
an ideal of (A, Vf). Admit that there exists an ideal / of (A, Vf) with / $ Af1. Let 
ae Af1 — /. If it were fn(a) $ I for each « e N then there would exist a natural 
number k and an element bke I such thatf*(£*) = a. Let k be the least integer with 
this property. Then bh e I, f(bh) $ I and thus bk Vfa $ I, which is a contradiction. 

Assume there is an integer m0 _• 1 with fmo(a) e I. Let be A, f(b) = a. Then 
bVff

mo(a) =f(b) = a $ I, which is a contradiction again. Therefore Af1 is the 
least ideal of the groupoid (A, Vf). Clearly, Af1 contains more than only one gener­
ator. Denote by (AjAf1, V) the corresponding factorgroupoid of the groupoid 
(A, Vf). Then for a suitable idempotent c-algebra (B, g) we have (AIAf\V) = 
£ (B, Vg) thus (A/A J1, V) is a BD-groupoid by Lemma 1.3 [5]. 

Suppose that (A,f) satisfies condition (iii) in Definition 3.1. Without loss of 
generality we can suppose that Ax ^ 0. It is easy to see that A2 is a principle ideal 
of (A, Vf) generated by the element c. Since A2 - {c} is not an ideal of (A, Vf) (if 
ae A — A2, be A2 then a Vfb = f(a) = c) and A2 — X, where X c. A2,c$X, 
is not any carrier set of a subgroupoid we have that A2 is the least ideal of (A, Vf). 
Further (A/A2,V)=* (Al,Vfi), where (Al9f1) is a c-algebra from (iii) def. 3.1, 
thus by Lemma 1.3 [5] (A/A2,V) is a BD-groupoid. Let be A - A2 = A°f. 
Then & Vfb =f(b) = c, i.e. A = / u ^/c where / = A2 = /(c) — the principal 
ideal generated by the element c. Therefore the condition 2° is satisfied again. If 
Id (A, Vf) # 0 then Id (A, Vr) = {zf}, where zf is the only cyclic element of the 
c-algebra (A,f). Since (A,f) is reduced, it holds f2 = f hence / = {zf}. 

Now suppose that (A,f) is a c-algebra such that R(A,f) S 1- card A = 2 and 
(A, Vf) is an ideal-simple groupoid without idempotents (i.e. 1° holds). Then 
clearly R(A,f) = 0. Admit A°f = 0. Let a e A?. Put B = A - {a}. If x e A, y e B 
are arbitrary elements then x Vfy e B, y Vfx e B for f(A) £ 5, thus B is a proper 
ideal of (A, Vf) which contradicts the assumption. Hence A = Af\ 

Suppose the groupoid (A, Vf) satisfies condition 2° where / is a principal ideal 
generated by a e A. If R(A,f) = 1 then denoting by zf the cyclic element of (A,f) 
and with respect to the minimality of /, we get / = {zf} and for each x e A it 
holds f(x) = zf Vfx = zf, thusf2 = f Hence condition (i) from Definition 3.1 is 
satisfied. 

Let R(A,f) = 0. Then Id (A, Vf) = 0. 
Suppose Af * = 0 . From the commutativity of the groupoid (A, Vf) it follows 

that for each xeA the setf_1(x) - Af contains at most one element. Indeed, 
x* y ef~ (a) — Af, x # y implies the existence of a pair of different elements xt e 
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ef \x), yler1(y) such that xA Vfyt = f(yt) = y ± x = f(xx) - yt Vfxt. 
Then for each element x e A by the definition of Sf it holds -S/x) < coQ, thus with 
respect to the connectedness of (A,f) there is aeA with 0 &f~x(a) s 4 / . 
Consider the set / = {fk(a): k = 0, 1, 2, . . .} . Since f(x) e / for every x e ̂ , / is an 
ideal of the groupoid (A, Vf). It can be easily shown, similarly as in the first part 
of this proof, that / is the least ideal of (A, Vf) and the factor-groupoid (A/1, Vx) 
is a BD-groupoid. The ideal / is a principal ideal generated by the element a, thus 
for each x e A with x ^ fn(a), neN0 from A = / u <Ja it follows/(x) = x V/X = a. 
Therefore the algebra (A,f) is of the form (iii) from Definition 3.1. 

Let A & Af
 l 7-= 0. Admit / = 1(a), where a e A. If b e A is an element with the 

property <5(a, b) > 0 then for each JC e / it holds <5(x, &) > 0 because 1(a) = 
= {/*(a): k = 0, 1, 2, . . .} , thus x Vr6 = f(b) ± f\a) for each n e N0 , i.e. x V7& £ /, 
which is a contradiction. Consequently the ideal / is not principal. Admit there 
exists an element x e Af with/(x) £ Af

 l. Then there exists yeAf1 with d(x, y) = 0, 
f(x) T* /O) consequently x Vfy = /(v) # f(x) = ,y V/X, which contradicts the 
commutativity. Hence f(Af) c Af

l. It follows also from the commutativity of 
the operation Vf that if x, y e Af \ S(x, y) = 0, then x = y. Thus A ~ Af* u Af9 

where (-4/1, g / ) is a chain, i.e. the algebra (A,f) is reduced. The proof is complete. 
We shall formulate another characterization (similar to Theorem 2.5 [5]) of 

a reduced c-algebra using notion of a weak radical in a groupoid (defined in 
§ - [5]). The following theorem is a certain modification of the preceding one. 

3.9. Theorem. Let (At,/) be a monounary algebra minimal c-algebras of that are 
singletons and card A ^ 2. Then (A,f) is a reduced c-algebra iff the grupoid (A, Vf) 
is either left ideal-simple without idempotents or it contains a proper minimal ideal I 
such that 

a) radw/ = At, 
b) each element of I which is not the only generator of I possesses the unique square 

root in (I, Vf), 
c) if I is a principal ideal generated by ae A then x e /, x # a is followed by <Jx c / 

in (A, Vf). 

Proof. Suppose (A,f) is a monounary algebra such that the groupoid (A, Vf) is 
left ideal-simple and does not contain idempotents. Since for every two components 
(Ai,fi), (A2,f2) of a monounary algebra (A,f) and for a e Al9 b e A2 there holds 
a v / * = /(*)*• b V/a = f(a) (by the assumption R(At,fi) <; 1, i = 1,2), the algebra 
(A,f) is connected. Hence condition 1° in Theorem 3.8 is satisfied. Suppose that 
(A, V/) contains a minimal proper left ideal /with radw/ = A and / is not principal. 
Since each component of (A,f) is a left ideal of (A, Vx) and the set [#"] is contained 
in the component containing a for each «eN,we get again that (A9f) is connected. 
It holds/(a) = a Vf[an~1'] e [a"] for every integer n ^ 2. Then [a*] c / for some 
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n ^ 2 is followed byf(a) e /, consequently A — / = A°f with respect to the minimal­
ity of the ideal /. Since each x e I has the property card (y/x n /) = 1, by Theorem 
2.5 [5] (/,f/) is a nested subalgebra of (Al,f); it is a two-way infinite chain. Then 
A = Af u y*/1, where Af* = /, thus (A,f) is a reduced c-algebra. If moreover 
/ = 1(a) then evidently (/,f/) is a one-way infinite chain and A — / = y/a. Then 
(A,f) is of the form (iii) from Def. 3.1 thus (A,f) is reduced, too. From / ^ 
# Id (A, Vf) 7-= 0 it follows R(A,f) = 1 and for the cyclic element zf of (A,f) it 
holds card yjzf = 2, which is a contradiction. Condition 2° from Theorem 3.8 is 
satisfied, therefore (A,f) is a reduced c-algebra. 

Now suppose that (A,f) is a reduced c-algebra. If A = Af ! then the groupoid 
(A, Vy) is ideal-simple by Theorem 3.8 and since x, y e A, x ^ fy implies x Vfy = 
= y Vyx we get easily that (A, Vy) is left ideal-simple. Further Id (A, Vf) = 0. 
Assume A ^ Af^1* Then condition 2° from Theorem 3.8 is satisfied. Let / be a 
proper ideal considered in 2° Theorem 3.8. Suppose / is not principal and a e 
e A — /. Since x e /, x ^ fy is followed by y e /, there exists b e I such that a < fb. 
Then <5(a, b) < 0, a 1 fa = f(a) = a Vfb e I and [a*] c / for each integer n ^ 2. 
Then a e radw/, i.e. radw/ = A. Let a e I. Since (A, Vf) is commutative, we have 
that x,ye A, S(x, y) = 0 implies f(x) = f(y). From the minimality of / it follows 
that (/, fi) is a nested c-algebra (it is a two-way infinite chain). According to 
Theorem 2.5 [5] with respect to the fact that Id (A, V,) # 0 implies / = Id (A, Vr), 
we get that each element of / possesses the unique square root in (/, Vr). Let / = 
= 1(a), ae A. Similarly as above we get that radw I — A and x e I implies card 
(y/x n /) = 1. Moreover, from the equality A = / u y/a it follows that xe I9 

x ^ a implies y/x cz /, q.e.d. 
The author is indebted to Dr. Oldfich Kopecek, CSc, for his valuable remarks 

to the present paper. 
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