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1. Let {$k(x)} be an orthonormal system in [a, ti]. The expression 

00 

a(x) = X **#*(*). 
fc = 0 

where {ak} is an arbitrary sequence of real numbers, is called an orthogonal series. 
If for some/(x) we have/(x) <Pk(x)eL[a, b], k = 0, 1, 2, . . . and 

b 

0* = J /(*) #*(*) d * , fc = 0,1, 2, ..., 
a 

then a(x) is called orthogonal expansion of f(x) in the system {<Pk(x)} and the num­
bers ak, k = 0, 1, 2, . . . are called coefficients of the expansion off(x) in {<Pk(x)}. 

The Riesz—Fischer theorem asserts that if the coefficients of a(x) satisfy the condi­
tion 

(1.1) I a f c
2 < o o , 

*=o 

then a(x) is the orthogonal expansion of some function/(JC) eL2[a, ti]. 
Recently Fomin [1] observed that for .(1.1) to hold, it is necessary and sufficient 

that there exists an increasing sequence of positive numbers {vk}, vk -» oo, such 
that 

< 00 . 
fc=-0 \ v k vk+l / a m = 0 

This led him to formulate an analogue of Riesz—Fischer theorem for U\a, ti],p k 1. 
He proved the following theorem with the assumption that f(x) e Lp[a, ti] =>/(x) x 
x <Pk(x) eL\a, ti], k = 0, 1, 2, . . . 



Theorem A. Let {vk} be an increasing sequence of positive numbers tending to 
infinity with k. If 

< 00 , (1.3) f (~ - - - - ) I I i wMx) |pdx 
fc-0 V f̂c vk+\ J a m = 0 

p >̂ 1 then the series o(x) is the orthogonal expansion of some function/(x) e Lp[a, b]. 
The main object of this note is to obtain a generalization of Theorem A. 
2. Let F(u) be a non-negative function defined for u = 0. We say that a function 

f(x) defined in [a, b] belongs to class LF[a, b] if F(|/(x)|) is integrable over [a, b]. 
We assume that f(x) e LF[a, b] =>/(*) &k(x) e L[a, b], k = 0, 1, 2, . . . 

Theorem. Let {vk} be an increasing sequence of positive numbers such that vk-+ oo 
as k -* oo. If F(u) is convex and non-decreasing function, but not constant, such that 

< 00 , (2.1) J ( 1 - - - - ) J F(\ l amvm<Pm(x) |) dx 
fc = 0 \ v k vk+l / a m = 0 

then o(x) is the orthogonal expansion of some function f(x) e LF[a, b]. 

Proof. The hypothesis (2.1) shows that 

(2.2) I ( -i- - - L - E(| X amvm<Pm(x) |) < oo 
fc = 0 V^fc vk+l / m = 0 

almost everywhere. Consider the function 

(2.3) g(x) = v0 £ ( 1 - —-—) | £ amvm<^m(x) |. 
fc = 0 V^fc "fc + 1 / m = 0 

We shall show that g(x)eL[a, b]. Using Jensen's inequality for convex function 
we have 

so that 

ғ{д(x)) < i>0f (v ~ т M ^ I І ^vMx) |) 
k = 0 \vk vk+l / m = 0 

î F(g(x)) áx < v0 f f 1 - - i - _ ) J Ғ(| £ amvmФm(x) |) dx 
Ű fc = 0 ү^fc yfc + l / a m « 0 

< 00. 

Thus g(x) 6 LF[#, 6] and hence because of [2], g(x) e L[a, b]. From this it follows, 
that the series in (2.3) converges almost everywhere and therefore, the series 

(2-4) f (^---^Aia^Mx) 
fc»0 V^Jt "ft+1 /m=-0 

converges almost every-where to a function/(x) which belongs to LF[a, b]. 
Let S„(x) denote the /i-th partial sum of (2.4), then 
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v ť l 1 ^ ' 
f(x) = lim 5„(.v) = lim Z ( f - — = — ) I amfm<*>m(-*) 

n->oo n-*oo * = 0 \^Jk ^ + l / m = 0 

1 ". 
= lim — — X (vn+1 " vm) am(Pm(x). 

w-»co l / i + 1 w = 0 

Now I Sn(x) <Pk(x) | S Cg(x) | <£fc(x) J, k = 0, 1 , . . . , where C is a positive ccostant. 
By the hypothesis g(x) #fc(x) e L[a, b] and so 

b 4 b n 

J f(x) <Pk(x) dx = lim — — J <Pk(x) £ (vn +1 - vj aw^m(x) dx 
a n-*az Vn +1 a m-0 

= lim(1;,.+! - ^ v ^ 1 ! ^ = a;<> fc = 0 , 1 , 2 , . . . 
n-+ oo 

Thus cr(x) is the orthogonal expansion off(x) eLF\a, b]. 
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