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ON THE EXISTENCE AND BOUNDEDNESS 
OF SOLUTIONS OF A NONLINEAR DELAY 

DIFFERENTIAL SYSTEM 

J AN FUTAK, 2ilina 

(Received May 5, 1976) 

We consider a perturbated nonlinear delay differential system of the form 

(D y'(0 = A(t) y(t) + f(t, y(t), j[h(0]), 

and an unperturbed system 

(2) x'(0 = ^ (0*(0 . 

Here x, y, / a r e elements of the ^-dimensional Euclidean space Rn and A(t) is an 
nxn matrix. Throughout the paper we assume that A(t)e C(J = [i*0, oo), Rn)* 
f(t, u, v)eC(D=^JxRnx Rn, Rn), and h(t) e C(J, R), h(t) £ t. The symbol | | . || 
denotes some convenient norm of a vector or matrix. 

The fundamental initial problem is formulated as follows: Let Et0 = [inf h(t), /o]» 
teJ 

for inf h(t) > — oo and Et0 = ( — oo, /0] otherwise, and let q>(t) be a vector-function 
teJ 

such that (p(t)e C(Et0). It is to find a solution y(t) (vector-function) of (1) on the 
interval / satisfying the following initial conditions: 

(3) y(t0) - <p(t0% y[h(0] - <p[Kt)l h(t) < t0. 

Let X(t) be a fundamental matrix of (2) such that 

(4) X(t0) = / , 

where / denotes the identity matrix. 
If c denotes any constant vector, then the vector-function x(t) -= X(t) c is a solution 

of (2). 
Define a function a on Et0 u / by 

(5) a(ř) = íll X(i 
III-" II, 

^(011, teJ, 
teE,0-
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It is evident that a is continuous on Eto u J and ct(t) > 0. 
Put c = <p(t0). 
In Theorem 1, using the methods of [1] and [4], we obtain a generalisation of the 

result of [3]. 

Theorem 1. Let there exist a number X > 0 such that 

(6) ||<K0II=A, teEt0, and.\\c\\<X. 

Suppose that there exists a scalar function co(t, rt,r2) defined and continuous for 
t e J and 0 <* rt, r2 < oo with the following properties 
(i) co(t, rt, r2) is nonnegative and nondecreasing in rt, r2 for every fixed t e J, 
(ii) \\f(t,u,v)\\ ^ co(M| u IMI v ||) on D, 
(iii) 

(7) J II X'\t) || co(t, X«(t), MO) dt < X - || c ||, 

wAere X""1^) /s the matrix inverse to X(t). 
Then every solution y(t) of the initial problem (I), (3) satisfying condition 

(8) y(t0) =<p(t0) = c, 

exists on J and the following estimate 

(9) lly(0-*(0ll ^M0 
holds. 

Proof. Let Y be the space of all continuous vector-functions y on EtQ u /. Let 
oo 

{4}k°--i be a sequence of compact intervals such that \J Ik = J, where Ik = [t0, tfe] 
* = i 

and for every k we have Ik cz 7fc+1 c / . 
Define in the space F a system of seminorms 

P*(y) = sup ||j<r)||. 
f 6 E t 0 \)lk 

This system of seminorms defines a locally convex topology on Y. 
Consider the subset 

F = {ye Y, || y || ^ Aa(t), *e2s,0 u /} <= 7, 

where a(t) is defined in (5). 
For yeF, define an operator T by 

(10) (2» (0 = x(t) + J X(t)X~l(s)f(s, y(s), yth(s)])ds, teJ, 
to 

where x(t) is a solution of (2). 
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It is evident that F is a convex closed set. 
We show that TF c F. 

If teEt0, then 
IIOyMOII = || (KO II ^ - 3 A || I || =Aa(0 

by (6). 
If t e / , then 

|| (7» (0 || g i| x(t) |i + || X(t) || j || X~l(s) i| || f(s, y(s\ y[h(s)2) || ds £ 

t 

g || X(.) || || c || + || X(t) || J || X - J(s) || a>(S, || >•(*) ||, II y[h{S)} ||) ds ^ 
to 

00 

^ a(r) [|| c || + J || X - '(0 || a>(t, MO, MO) df] § 

g a ( t ) [ l M | + A - ||c ||] =Aa(t). 

Further we show that T is continuous on F. Let {y„}^= {, yn e F, be a sequence 
converging uniformly to j e F on every compact subinterval Ifc c / . Let e > 0 be 
given. We show that for t e Ik we have (Tyn) (t) :J (Ty) (t). Denote A = max a(r) 

tepo.'fc] 

Since fis continuous and j'n(0--ty(0 o n e a c^ compact interval Ifc, there exists a 
constant N > 0 such that for n ^ N we have 

(ll) || K-^O II || f{u y„(0, y„[h(0]) - /(*, tfo, y[M0]) II < 
Ah-t0) 

Using (10) and (11), for t e Ik and n ^ N, we obtain 

|| (7>B) (0 - (Ty) (t) || <- || X(t) || J || X-\s) || i| /(s, yn(s), y„[>(s)]) -
to 

- ,<„ M,?v.m. as < ̂  / * < f ^ - g s «^# -.. 
For f eEt0, (Ty) (t) = q>(t) is continuous. 

We show that TF is a compact set. From (10) we obtain the following estimate 

|| {Ty)' (t) || :g || x'(t) || + || X'(t) || J X-'(s)co(s} Aa(s), M*))ds + 
-0 

+ Ico(t, Aa(t), Aa(0), teJ. 

From the last estimate there follows the uniform boundedness of (Ty)' (t) and (Ty) (t) 
for t e Ifc and also the equicontinuity (Ty) (t) on Et0 u Ifc. Therefore TF is a compact 
set. 

By Schauder-Tychonoff fixed point theorem, the operator T has a fixed point 
y e F and 

02) ( r y ) ( 0 - y ( 0 
holds. 
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Assertion (9) follows from (10) and (12). This completes the proof. 
From this point on we will assume that 

(13) lim h(t) =- co. 
f-*oo 

From (13) it follows that Eto = [inf h(t), to]. 
teJ 

In [6, p. 33] the author defined a function y*(/) by 

y*(t) = sup {z, t0 ^ z, h(z) <t,teJ) 

and proved that if lim h(t) = oo, then y*(t) is bounded on each finite subinterval 
f -*O0 

of/ . 
In the following lemma it is used the procedure of [3] and [7]. 

Lemma 1. Let a(t), g(t), F(t),p(t), q(t) e C([t0, b), [0, oo)) andr(t) e C(Et0, [0, oo)) 
Furthermore, let co(z) e C([0, oo), (0, co)) be a nondecreasing function. 

Denote 

(14) 0(z)-= j - j - d s , z 0 > 0 , z = 0 . 

Let z(t)e C([t0, b), [0, oo)) be such that 

(15) z(t) <? Q(t) + a(t) I F(s) {p(s) ca[z(s)] + q(s) o>(z[A(s)])} ds, 
to 

(16) z(t)^r(t), teEt0. 

Then it is 

(17) 2(0 £ Q- '{Sltf/fO] + -4(0 J F(s) [p(s) + q(s)-] ds} , 
'a 

y*('o) 
where Q~l /s Me inverse function to (14), /J(f) = G(0 + A(f) J F(t)^0)co(z[A(/)])d? 

r0 

and G(t) = max g(s), A(/) = max a(s), te[i*0,A). FAe inequality (17) remains 

valid for every t e [t0, 6)/or wA/cA tAe rigA/ Aawd s/de /s defined. 
Proof . We define the function Z(t) by 

max z(s), te[t0,b), 
Z(t) ' 

г т а х г[8), / 

•И/), 1еЕ,0. 

It is evident that Z(t) is a continuous, nonnegative function and, further, also non-
decreasing for t e [r 0 , b). 

Since the function co(z) is monotone, from (15) we get 

z(í) g G(0 + .4(0 J Ғ(s) {p(s) w(Z(s)) + <?(*) ЦZ[!t(s)])} ds , t є [ř 0 , ů). 
»o 
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Let ie [t0> t] be a number in which the function z(t) reaches its greatest value on 
[t0, r ] . Then 

(18) Z(t) = z(t) .g G(t) + A(t)j F(s) {p(s) co[Z(s)] + q(s) co(Z[h(s)])} ds £ 
*o 

g C(f) + A(r) J F(s) {p(s) co[Z(s)] + q(s) co(Z[/i(s)])} ds = def U(t), 
to 

or simply 

Z(0-S U(t), le[t0,b), 
( } Z ( 0 ^ r ( t ) , t6F f 0 . 

From (18) with regard to assumption of Lemma 1 it is evident that U(t) is non-
negative and nondecreasing on [l0, b), and U(l0) = G(0-

Differentiating the function U(t) we get 

U'(0 = A(t) F(t) {p(t) co[Z(t)] + q(t) c»(Z[h(0])} ^ 0 , t e [10 , b), 

from which, with respect to the function co and to (19), we have 

(20) U'(0 S A(i) F(t) {p{t) co[U(t)] + q(t) co(Z[h(t)])} , 

where 

(21) co(Z[h(t)]) = co(r[h(t)]) for h(0 < t09 

and 

(22) co(Z[h(t)]) = co[U(0] for t ^ t0. 

Integrating the inequality (20) from l0 to t and using (21), (22), we get 

y*(to) t 

U(0 = G(i) + A(i) J F(t) W(r[h(.)])d< + A(i) | F(s) {p(s) + q(s)} cotU(s)} ds = 
to t0 

( 2 3 ) = H(i) + A(t) ) F(s) {p(s) + q(s)} eo[U(s)] ds. 
to 

Applying Bihari's lemma to (23) we get the inequality 

(24) 1/(0 g O"1{O[H(0] + A(i) ] F(s) [p(s) + q(s)] ds} . 
*0 

Since (19) holds and G(t) ^ G(0, A(t) S A(t), te[t09 b), from (24) we get 

Z(0 g O " 1 {O[H(0] + A(t) ] F(s) [p(s) + q(s)] ds} . 
to 

With respect to z(t) g Z(t), (17) holds. The proof is complete. 
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Remark 1. Putting q(0 = 0 in Lemma 1, we get the assertion of Lemma 2 in [3]. 
The just proved Lemma 1 has the following corollaries. 

Corollary 1. Assume that the hypotheses of Lemma 1 are satisfied. Furthermore, 
suppose that co(z) -s z. Then from the inequality 

t 

z(t) £ g(t) + a(t) I F(s) {p(s) z(s) + q(s) zh(s)]} ds , t e [t0, b), 
to 

z(t)^r(t)9 teEt0, 
it follows 

t 

z(t) ^ H(t) exp {A(t) J F(s) [p(s) + q(s)] ds}, t e [»0, b), 
to 

y*(t0) 

where H(t) = G(t) + A(t) j F(t) q(t) z[A(0] d t . 
to 

Corollary 2. Assume that the hypotheses of Lemma 1 are satisfied and let g(t) ~ 
~- Cx = 0, a(t) ™ C2 g; 0, where C,, C2 are arbitrary constants. Then from the 
inequality 

t 

z(t) g Ct + C2 | F(s) {p(s) co[z(s)] + q(s) w(z[/r(s)])} ds, t e [r0, />), 
ro 

z(0 = Kl), teEt0, 

it follows 

z(0 ^ - ' { Q ( H ) + C2 } E(s) [p(s) + c7(s)] ds} , 
ro 

y*(tQ) 

where H = Ct + C2 j F(0 q(t) oj[r(0] d t , 
ro 

Corollary 3. Let the assumptions of Corollary 2 hold and let co(z) ~ z. Then from 
the inequality 

z(t) = C! + C2 J F(s) {p(s) z(s) + g(s) z[/t(s)]} ds , t G [t0 , b), 
r0 

z ( t ) ^ r ( t ) , leKf0, 
it follows 

z(0 S H exp {C2 J F(s) [p(s) + q(s)] ds}, 
ro 

y*(ro) 

where H = Ci + C2 J F(0 <?(0 r(0 dt. 
r0 

Remark 2. If we put F(0 = 1 in Corollary 3, we get the assertion of Lemma 2 
in [5]. 
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Lemma 2. Let [f0, T) be the maximal interval of a solution y(0 of the initial pro­
blem (1) (3), and let the function y(t) be bounded on [f0, T). Suppose that q>(t) is 
bounded on EtQ. Then T = oo. 

The proof is similar to that of Lemma 1 in [2]. 

Theorem 2. Let 
(i) ^ (0 ,WOeC[/ , [0 ,x) ] , 
(ii) o)(z) e C[[0, oo), (0, oo)] be a nondecreasing such that 

°°c ds 

;0w=o°' 
(iii) \\f(t, u, v) || rg tfr,(0 a>(|| II ||) + i/,2(t) co(|| » ||), for (/, «, t») e /J. 

Then epery solution y(t) of the initial problem (1), (3) nvVh j>(«o) = -*(to) !*«•? the following 
properties: it exists on J and satisfies the inequality 

(25) i| y(l) W^Q-1 {O[H(0] + A(1) \\\X~\s) || |> . (s) + ^(s)] ds}, 
to 

where O, O"1 has lhe same meaning as in Lemma I, 

y*(*o) 

H(t) = G(l) + A(t) J || X-J(l) i| ̂ ( 0 ^(y[^(0]) d/, 
fo 

G(t) = max || x(s) ||, A(0 = max a(s), 
to^s^t to^s^t 

and a(t) is defined in (5). 
Proof. Using the variation of constants formula, we can represent any solution 

y(t) of the initial problem (1), (3) by the integral equation 

(26) y(t) = x(t) + X(t) J X - \s) f(s, y(s), y[h(s)]) ds, 
to 

where X(0 is a fundamental matrix and x(t) is a solution of (2). 
Denote 

G(t) = max i| x(s) || and A(t) = max a(s), 
to^s^t to^s^t 

where a(s) is defined in (5). 
With respect to the assumptions of the theorem, from (26) we get 

(27) 
|| y(t) i| S G(t) + A(t) J i| X-\s) || {>,(-) o)(|| y(s) ||) + tfr2(s)«j{|| >>[h(s)] II)} ds , teJ, 

to 

and 
11X011 = ll<P(0ll, teEt0. 

Let [f0, F) be the interval of existence of a solution y(t) of (1), (3). Applying 
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Lemma 1 to the inequality (27), for t e [l0, T), we obtain the inequality (25). Further­
more, if T < oo, then from (27) there follows the boundedness of y(t) on [/0, T). 
Lemma 2 implies that the solution y(t) of the initial problem (1), (3) exists for each 
t e J and (25) holds. This completes the proof. 

From Theorem 2 and Corollary 1 we obtain. 

Corollary 4. Suppose that 
(0 ^i(0^2(0eC(/ ,[0,oo)) , 
(ii) ||/(f, u, v) || £ MO || u || + MO || v ||, for (t, u, v) G D. 

Then every bounded solution y(t) of the initiaV problem (1), (3) exists on J and 
satisfies the following inequality 

|| y(t) || S H(t) exp {A(t) } II X ~ \s) || [<h(s) + M*)l ds} , 
' 0 

y*(t0) 

where H(0 = G(0 + A(t) j || X~l(t) II MO II <K0 II dt> and G(0, v4(t)has the mean-
to 

ing as in Theorem 2. 

Remark 3. Assertions similar to Corollary 4 can be obtained from Theorem 2 by 
using Corollaries 2 and 3. 
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