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ON THE EXISTENCE AND BOUNDEDNESS
OF SOLUTIONS OF A NONLINEAR DELAY
DIFFERENTIAL SYSTEM

JAN FUTAK, Zilina
(Received May 5, 1976)

We consider a perturbated nonlinear delay differential system of the form

) y'(t) = A@) y(t) + f(t, p(0), y[A(D)]),
and an unperturbed system
(2 x'(t) = A(t) x(t).

Here x, y, f are elements of the n-dimensional Euclidean space R" and A(¢) is an
nxn matrix. Throughout the paper we assume that A(f)e C(J = [t, ), R"),
f(t,u,v)e C(D = JxR*x R", R"), and h(t)e C(J, R), h(t) < t. The symbol ||.||
denotes some convenient norm of a vector or matrix.

The fundamental initial problem is formulated as follows: Let E,, = [inf A(t), to],

teJ

for inf h(f) > —co and E,, = (— 0, t,] otherwise, and let ¢(t) be a vector-function
teJ

such that ¢(t)e C(E,,). It is to find a solution y(f) (vector-function) of (1) on the
interval J satisfying the following initial conditions:

3 y(to) = o(te),  y[h(®)] = o[h(®)],  h(t) < to.
Let X(¢) be a fundamental matrix of (2) such that
“) X)) =1,

where I denotes the identity matrix.

If ¢ denotes any constant vector, then the vector-function x(t) = X(t) c is a solution
of (2). ‘

Define a function « on E,, U J by

) = {u X1, e,

5
©) 11, teE,.
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It is evident that a is continuous on E, L J and a() > 0.

Put ¢ = ¢(ty).

In Theorem 1, using the methods of [1] and [4], we obtain a generalisation of the
result of [3].

Theorem 1. Let there exist a number A > 0 such that
©6) lo(W) | S 4 teE, and|c| <i.

Suppose that there exists a scalar function w(t,ry,r;) defined and continuous for
teJand 0 < r,,r, < o0 with the following properties
(i) (¢, ry,r,) is nonnegative and nondecreasing in ry, r, for every fixed t € J,
(i) | ftu,v) || = o@|ul,|v])on D,
(iii)
(M FIXTH 1ot (), Aa(n)dt < A~ | e,
to

where X ~(t) is the matrix inverse to X(t).
Then every solution y(t) of the initial problem (1), (3) satisfying condition

(3 ¥(to) = o(ty) = c,
exists on J and the following estimate

® [ y(®) — x(®) || £ Ao(®)
holds.

Proof. Let Y be the space of all continuous vector-functions y on E, U J. Let

ao

{L}- be a sequence of compact intervals such that |J I, = J, where I, = [t,, ;]
k=1

and for every k we have [, = [, ., < J.
Define in the space Y a system of seminorms

) () = sup [yl

teEeg v Ik

This system of seminorms defines a locally convex topology on Y.
Consider the subset

F={yeV, |yl £ At),teE, v/},

where a(t) is defined in (5). ‘
For y € F, define an operator T by

(Ty)(®) = @(t), te€E,,
(10) (Ty) (1) = x(1) + ‘I XO X7 £, ¥(s), y[h(s)D ds,  ted,

where x(t) is a solution of (2).
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It is evident that F is a convex closed set.
We show that TF c F.
If te E,, then
IT)@ | =le®) | ASA|T] = Ax(r)
by (6).
If te J, then

T @IS @8+ 1 X011 X760 S(s v0), y[h(s)]) || ds <
SUXOU el +1XOUJ 1 X G It |y I 1 yhs)] ) ds <

<a@[lel + ] I X710 | o{t, Ja(), a() dr] <
<a[lel +2—lel] = ).

Further we show that T is continuous on F. Let {y,}.-,, y, € F, be a sequence
converging uniformly to y € F on every compact subinterval /, = J. Let ¢ > 0 be
given. We show that for ¢ e I, we have (Ty,) (¢) 3 (Ty) (t). Denote 4 = max «(t)

te[to, 1]
Since f is continuous and y,(f) = y(t) on each compact interval J,, there exists a

constant N > 0 such that for » > N we have

(1 FXTI 01 v, valh@®]) = S8 y(0, Y[ROD | < -—~
Using (10) and (11), for e I, and n = N, we obtain

A(’k )

I(Ty) () =Ty @l =1 XO) | j FXTHS) 1SS, yals), yalh(9)]) —

) St —10) _ et —to) _
J(s, y(), y[h()]) 1 ds < ——— ,0) f ds =t = 1

For te E, , (Ty) (t) = ¢(t) is continuous.
We show that TF is a compact set. From (10) we obtain the following estimate

Ty OIS IX@0+ EX O] X7'() oofs, Aa(s), da(s)) ds +

+ Io(t, Aa(2), Aa(t)), 1€ J.

From the last estimate there follows the uniform boundedness of (T y)'_(t) and (Ty) (1)
for t € I, and also the equicontinuity (Ty) (¢) on E,, U I,. Therefore TF is a compact
set.

By Schauder — Tychonoff fixed point theorem, the operator T has a fixed point
ye Fand
(12) (Ty) (1) = y(t)
holds.
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Assertion (9) follows from (10) and (12). This completes the proof.
From this point on we will assume that

(13) lim h(f) = o

t— o

From (13) it follows that E,, = [inf A(t), ,].
teJ
In [6, p. 33] the author defined a function y*(z) by '

y*(t) =sup{z,ty S z,h(z) < t,teJ}

and proved that if lim A() = oo, then y*(¢) is bounded on each finite subinterval
t— o

of J. :
In the following lemma it is used the procedure of [3] and [7].

Lemma 1. Let a(t), g(t), F(t), p(t), (t) € C([to, b), [0, ©0)) and r(t) € C(E,,, [0, 0))
Furthermore, let w(z) € C([0, ©), (0, ©)) be a nondecreasing function.
Denote

(14) Q(z)=i—(;](§)—ds, zo >0, z20.

Let z(1) € C([to, b), [0, ©)) be such that

15) z(1) = g(0) + a(t)f F(s) {p(s) w[2(s)] + q(s) ([ A(s)])} ds,
(16) z(t) r(t), tekE,.

Then it is

a7 2() £ @ HQLHD] + A(1) | F(s) [p(s) + q(s)] ds},

where Q! is the inverse function to (14), H(t) = G(t) + A(t) .}'o}’(t)q(t)w(‘[h(t)]) de

and G(t) = max g(s), A(t) = max a(s), te([to,b). The mequaltty (17) remains
toSsSt toSsSt

valid for every t € [t,, b) for which the right hand side is defined.
Proof. We define the function Z(t) by
max z(s), telty,bh),

Z(@t) = {to§S§t
r(t), teE,

to *

It is evident that Z(r) is a continuous, nonnegative function and, further, also non-
decreasing for ¢ € [1,, b).
Since the function w(z) is monotone, from (15) we get

2(t) £ G(t) + A(t);f F(s) {p(s) o(Z(s)) + q(s) o(Z[h(s)])} ds, te[ty, b).
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Let fe[ty,t] be a number in which the function z(f) reaches its greatest value on
[0, 1] Then

(18)  Z(t) = z(f) £ G(f) + A(t')_[' F(s) {p(s) @[Z(s)] + q(s) o(Z[h(s)])} ds <

< G(F) + A@D) | F(s) {p(s) w[Z(9)] + q(s) o(Z[h(9)])} ds = def U(1),

or simply

Z(t) £ U@), ,b),
19 (1) £ U@1) 1e(ty,b)

Z(t) = r(t), teE,.

From (18) with regard to assumption of Lemma 1 it is evident that U(¢) is non-
negative and nondecreasing on [f,, b), and U(t,) = G(f).
Differentiating the function U(t) we get

U'(t) = A7) F(t) {p(t) o[ Z(1)] + q(t) o(Z[h()])} 2 0, te[to, D),

from which, with respect to the function w and to (19), we have

(20) U'(1) £ A(f) F() {p(t) o[ UMD)] + q(t) o(Z[A(®)])} s
where

(1) o(Z[h(1)]) = o(r[h@)])  for h(t) < t,,
and

(22) o(Z[h@)]) = o[U)] fort = t,.

Integrating the inequality (20) from ¢, to ¢ and using (21), (22), we get

y*(to) t

U S GO + A0 ] FO o(TOD) 8t + AD ] FO {9 + 409} o[U(o)] ds =
@) — H() + A(f):f FGs) {p(s) + a(s)} o[U(5)] ds.
Applying Bihari’s lemma to (23) v:e get the inequality
24 UG) < @ H{QIH®] + 'A(f):{ F(5) [p(s) + 4(9)] ds}
Since (19) holds and G(1) Z G(7), A1) 2 A(P), 1 [to, b), from (24) we get
20 < QL] + A j F(5) [p(s) + a(9)] ds} .

With respect to z(t) < Z(¢), (17) holds. The proof is complete.
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Remark 1. Putting ¢(¢) -= 0 in Lemma 1, we get the assertion of Lemma 2 in [3].
The just proved Lemma 1 has the following corollaries.

Corollary 1. Assume that the hypotheses of Lemma 1 are satisfied. Furthermore,
suppose that w(z) = z. Then from the inequality

z(f) £ g(1) + a(t) § F(s) {p(s) z(s) + q(s) zh(s)]} ds , te[to, b),
Z(l) = r(t), tGE,o,
it follows
z(1) £ H(t)exp {A(1) | F(s) [p(s) + q(s)]ds},  te[to. b),
’ 7*(to) °
where H(t) = G(t) + A(t) | F(1) q(t) z[h(1)] dt.

to

Corollary 2. Assume that the hypotheses of Lemma 1 are satisfied and let g(z) =
=C; 20, a(t) =C, 20, where C,, C, are arbitrary constants. Then from the
inequality

(1) £ Cy + C, | F(s) {p(s) w[z(5)] + q(s) o(z[h(s)])} ds, te(tq, b),

z(t) = r(r), teE,,
it follows
(1) £ Q7Y QH) + C, | ) [p(s) + 4(5)] ds} ,
*(t0)
where H = C, + Czy | F()q(r) w[r(n)]de.

To

Corollary 3. Let the assumptions of Corollary 2 hold and let w(z) == z. Then from
the inequality

t

2() £ Cy + C, | F(s) {p(s) 2(s) + q(s) z[A(s)]} ds,  te[to, b),

z(t) =r(¢t), tekE,,
it follows

2() £ Hexp {C; | F(s) [p(s) + q(s)] ds},

7*(to)

where H = Cy + C, [ F(1)q(r) r(r)dt.

Remark 2. If we put F(t) = 1 in Corollary 3, we get the assertion of Lemma 2

in [5].
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Lemma 2. Let [to, T) be the maximal interval of a solution y(t) of the initial pro-
blem (1) (3), and let the function y(t) be bounded on [to, T). Suppose that ¢(t) is
bounded on E,,. Then T = 0.

The proof is similar to that of Lemma 1 in [2].

Theorem 2. Let
(‘) ‘l’l(t)’ 'I’Z(t) € C[J’ [0’ w)]v
(ii) w(z) € C[[0, ), (0, )] be a nondecreasing such that

a0 ds -
I o =%

to

(i) |, u,0) || = ¥ @) o] u ) + ¥2() o] v ), for (1, u, v) € D.

Then every solution y(t) of the initial problem (1), (3) with y(t,) = x(t,) has the following
properties: it exists on J and satisfies the inequality

(25) Iy 1 £ @THQ[H®] + A1) j I X7 s) Il [¥ra(s) + ¥a(s)] ds},

where Q, Q™' has the same meaning as in Lemma 1,

y*(to)

H(t) = G(t) + A@) | | X71(@) || 2(r) o(p[A(1)]) d1t,

to

G(t) = max || x(s) ||, A(z) = max a(s),

to<s<t to<s=st
and o(t) is defined in (5).
Proof. Using the variation of constants formula, we can represent any solution
(1) of the initial problem (1), (3) by the integral equation

(26) | y(0) = x(t) + X(®) [ X7(s) f(s, y(s), y[I(s)]) ds ,

where X(1) is a fundamental matrix and x(¢) is a solution of (2).
Denote
G() = max | x(s)| and A(t) = max a(s),

to<s=<t toSs<t

where a(s) is defined in (5).
With respect to the assumptions of the theorem, from (26) we get

@7) ,
Iy il = G+ A@ [ 1 X7 (9 I {19 o(ll y($) 1) + Yo (s) o(ll y[A()] )} ds, ted,
and °
Iyl =le®l, ek,
Let [0, T) be the interval of existence of a solution y(t) of (1), (3). Applying.
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Lemma 1 to the inequality (27), for ¢ € [#o, T), we obtain the inequality (25). Further-
more, if T < oo, then from (27) there follows the boundedness of y(¢) on [1,, T).
Lemma 2 implies that the solution y(t) of the initial problem (1), (3) exists for each
t € J and (25) holds. This completes the proof.

From Theorem 2 and Corollary 1 we obtain.

Corollary 4. Suppose that
() Y1), ya(t) e C(J, [0, 0)),
@) || S, u,0) || S ¥ @) || u|| + 20 || v ||, for (¢, u, v) € D.

Then every bounded solution y(¢) of the initial problem (1), (3) exists on J and
satisfies the following inequality

Iy II < H(t) exp {A(1) j IX 7 Y (s) + Ya(9)] ds}

¥*(to)

where H(1) = G(t) + A(t) | | X~ YO | .0 || (1) || dt, and G(1), A(r) has the mean-
ing as in Theorem 2. ’

Remark 3. Assertions similar to Corollary 4 can be obtained from Theorem 2 by
using Corollaries 2 and 3.
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