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ARCH. MATH. 4, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XIII: 181—186, 1977 

IDEALS OF WEAKLY ASSOCIATIVE LATTICES 
AND PSEUDO-ORDERED SETS 

IVAN CHAJDA, Přerov and JOSEF NIEDERLE, Brno 
(Received April 5, 1976) 

The concept of weakly associative lattice was introduced by E. Fried in [2] as 
a generalization of the lattice. Many of lattice-theoretical concepts can be transferred 
in the theory of weakly associative lattices as it is shown in [3], [4]. Also some of 
properties of ideals on partially ordered sets (introduced in [1], [7] and by another 
way in [6]) can be investigated for the so-called pseudo-ordered sets .In this contribu­
tion, there are studied ideals on weakly associative lattices and pseudo-ordered sets 
and their connections with congruence relations on WA-lattices. 

1. Preliminaries. Let A be a non-void set, 51 a reflexive and antisymmetric binary 
relation on A. The pair <A, „ > will be called & pseudo-ordered set, the relation 51 a 
pseudo-ordering (In [3], <A, 51 > is called & partial tournament). If there exist for each 
pair a, be A the l.u.b. of {a, b} in <A, fg> and the g.l.b. of {a, b} in <A[, ^ > , then 
<A, 51 > will be called a weakly associative lattice (WA-lattice). As it was shown in [2], 
we can introduce operations A and V on the WA-lattice <A, _i> by the prescription: 
a A b = g.l.b. of {a, b}, a V b = l.u.b. of {a, b}. Then the folloving identities are 
satisfied in the algebra <A, A, v>: 

(i) a A a = a (i') a V a = a 

(ii) a A b = b A a (iV) aV b = bV a 

(iii) ((a A c) V (b A c)) V c = c (iii') ((a V c) A (b V c)) A c = c 

(iv) (a V b) ha = a (iv') (a A 6) V a = a. 

In [2] it was proved that also if in the algebra <A, A, v> the preceding identities 
are satisfied, then there exists a pseudo-ordering ^ such that {A, ^ > is a WA-lattice 
and a A b = g.l.b. of {a, b}, a V b = l.u.b. of {a, b\. 

By a compatible relation on the WA-lattice (A, g>, is meant a binary relation R 
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compatible on the algebra <A, A, V>, i.e. if aRb, cRd, then (a A c) R(b A d) and 
(a V c) R(b V d). 

Further, we will write b < c instead of b S c, b ^ c. 

Definition 1. Let W be a WA-lattice, I a non-void subset of W. I will be called 
an ideal of W, if the following hold: 

(1) i,jel=>ivjel 

(2) iel,ae W-> a Mel. 

Thus, the concept of ideal can be transferred into the theory of WA-lattices. In the 
case of pseudo-ordered sets, the situation is similar. Let <A, <;> be a pseudo-ordered 
set and a, be A. Denote by U(a, b) the set of all upper bounds of {a, b) in <A, g >, 
by L(a, b) the set of all lower bounds of {a, b) in <A, ^ > . The psuedo-ordered set 
(A, S} will be called pu-directed(pl-directed) if for each a, b e A we have U(a b) ?- 0, 
(L(a,b) y- 0, respectively). If {A, g > is both pu-directed and pl-directed, then it 
will be called p-directed. The following definition is a generalization of the one in [6], 
introducing the concept of o-ideal for partially ordered sets. 

Definition 2. Let <A, ^ > be a pseudo-ordered set, I be a non-void subset of A. 
/ will be called a p-ideal of A, if 

(3) / e I, ae A, a ^ i=> ae I 

(4) i,jeI=>U(i,j)nI*0. 

Lemma 1. The condition (2) in Definition 1 can be replaced by (3). 

Proof. Suppose (2) be true. Let ie I, ae A, a ^ /. Then a = a A i e I. Conversely, 
let (3) hold, It ie I, ae A, then a M S /, thus a Me L 

d Lemma 2. Let W = <A, ^ > be a WA-lattice. The ideals of W are exactly the 
- ideals of W. 

Proof. Clearly a\?beU(a,b), thus, by Lemma 1, (1), (2)=>(1), (3)=>(3), (4). 
Conversely, if I is a p-ideal, then U(a, b) n I # 0, thus, by (3), ay be U(a, b) n I, 
i.e. aVbel. 

Definition 3. Let / be a p-ideal of the pseudo-ordered set {A, g >. I will be called a 
maximal p-ideal of (A, g> , if for each other p-ideal J such that I £ / , I # J ve 
have«/ -= A. 
I will be called a p-prime ideal, if 

(5) a, be A, 0 # L(a, b) s /imply aelor b el. 
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All above mentioned concepts can be dualized. 

Definition 4. Let {A, ^ > be a pseudo-ordered set, B £ A•. B is called a convex 
subset of <A, g >, if b, c e 5 , a e A, b S a S c imply a e B. 

2. Ideals of pseudo-ordered sets. 

Proposition 1. Every p-ideal I of a pseudo-ordered set <A, g > /s a convex pu-directed 
subset of A. If <A, ^ > is also pl-directed, then Iis p-directed. 

Proof. By (3), I is a convex subset of (A, g> . From (4) it follows that I is also 
pu-directed. Let <A, ^ > be pl-directed. Then for each pair a, be A we have L(a, b) # 
9- 0. If a, b e I, thenL(a, b) e J and so I is also pl-directed. Summary, I is p-directed. 

Proposition 2. Lel <A, g > be a pseudo-ordered set, {Iy, y e T} a chain of its 
p-ideals (i.e. for each y, 5 e F Iy c Jb or Id c= /y). Then I = (J Iy is a/so a p-ideal of 
<A,^>. y e r . 

Proof. Let a, be I, xe A. Then there exist yx, y2 e F such that ae Iyi, b e Iy2. 
Without loss of generality, suppose Iyi .= Iy2. Then a, be Iy2. Thus, by (4), U(a, b) n 
n 7y, =£ 0, hence U(a, b) n I ?- 0. If x g a, then x e Iy2 c I, thus I is a p-ideal 
o f < ^ > . 

Corollary. Fvery proper p-ideal of a pseudo-ordered set <A, fg> /s contained in 
some maximal p-ideal. 

Proposition 3. Let <A, :_ > be a pl-directed pseudo-ordered set, I be a p-prime ideal 
of (A, :_>. If F = A — I is non-void, then F is a dual p-prime ideal of (A, g > . 

Proof. Suppose F 7-= 0. 
(a) Let c, de F and L(c, d) n F = 0. Then L(e, d) c 7, however, A is pl-directed, 

thus L(c, d) # 0. As I is a p-prime ideal, we have either eel or de I, which is a 
contradiction. Thus L(c, d) n F ^ 0. 

(b) Let c e F, u = e and u £ F. Then u e I, I is a p-ideal, thus eel, also a contradic­
tion. Hence u e F. v 

(c) Let u, veF, U(u, v) s F and u e I, v e I. Then U(t/, v) n I ^ Q, because I 
is a p-prime ideal, which is a contradiction. Hence ueFor veF. In the summary, 
F is a dual p-prime ideal of <A, ^ >. 

For partially ordered sets it holds (cf. [6]): 
Every convex subset of a partially ordered set is the intersection of an o-ideal and 

a dual o-ideal. It can be easy shown that this result is not rue for the pseudo-ordered 
sets and p-ideals in the general case. 
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Example. Let P be a pseudo-ordered set with a diagram on Fig. 1. Put C = 
= {a, b, c, g,f}, then C is clearly a convex subset of P, however, / = P = D for each 
p-ideal / and each dual p-ideal D of P. Thus / n D = P & C for each /, D. 

3. Ideals of WA-lattices. By Lemma 2, all the results of the preceding Propositions 
remain valid also for ideals of WA-lattices. 

Proposition 4. Let W be a WA-lattice. The set f(W) of all ideals of W ordered by 
the set inclusion forms a conditionally meet-complete lattice. The operation meet in 
f( W) coincides with the set-theoretical intersection. 

Proof, (a) Clearly W is the greatest element of f(W). Let Iy ef(W) for y e F 
/ = 0 -V L e t l * 0- Clearly /fulfils (1), (2), thus / is an ideal of W. 

(b) For Ix, 12 ef(W) clearly It n I2 ^ 0, because aeIx, beI2 imply a Abe 
eltnl2. By (a), Ix n I2 ef(W). 

(c) Let Iv, I2 ef(W). Evidently, We {lp ef(W); / , 3 / l f / , 3 h} thus, by (a), 
/ =. pj lp -̂  0 is an ideal of W. Clearly, / is the supremum od Ix, I2 in #(W). The 
proof is finished. 

Let W be a WA-lattice, aeW. Denote by /(a) the intersection of all ideals of W 
containing a. Proposition 4,1(a) is an ideal of W. 

Definition 5. The ideal 1(a) of W for a e W is called the principle ideal generated 
by a. 

Remark. For the case of lattices 1(a) = {x e W, x S a}- For the general case 
of WA-lattices it is not true. 

Lemma 3. Let Wbea WA-laxiice, c,deW,c<^d. Then 1(c) c /(d). 

Proof. By Lemma 1, c e 1(d). Hence we obtain the assertion. 

Remark. Contrary to lattices, for WA-lattices the inclusion in Lemma 3 cannot be 
replaced by the strict inclusion for the case of the strict inequality (see e.g. Example). 

Corollary. For every WA-lattice W the relationship a -*> 1(a) is an isotone mapping 
ofWintof(W). 

Lemma 4. Let W be a WA-laitice, I be an ideal of W and J and ideal of I, Then J 
is an ideal ofW. 

The proof is clear. 

Proposition 5. Let W be a WA-lattice, I be an ideal of W and aeW - I. Then 
there exists an ideal J such that I £ J,a$ J, which is maximal of this property. 
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Proof. L e t / \ denote the subset off(W) consisting of all ideals of W non-con­
taining the element a. Let {Iy, y eF} be a chain in ft. Then, by Proposition 2, \J Ir 

is again an ideal of W non-containing a, thus, by the Kuratowski-Zorn lemma, 
J\ contains a maximal element. 

4. Relation between ideals and congruences. 

Proposition 6. Let 0 be a congruence relation on the WA-lattice W. If O is the 
least element of W, then set Ie = {x e W, x0 O} is an ideal of W. 

Proof. Let a, be IQ, then a 0 O, b 0 O, thus, from the compatibility of 0 we 
have (a V b) 0 O, thus (a V b)e IQ. If xeW, then (a A x) 0 (O A x) = O, thus 
(a A x) e Ie. 

Proposition 7. Let Wx, W2 be WA-lattices and let W2 have the least element O. 
If <p is a homomorphism of W1 onto W2, then I={yeWx, cp(y) = O} forms an ideal 
ofWx. 
The proof is evident. These propositions can be also dualized for WA-lattices with 
the greatest element and for dual ideals. 

Proposition 8. Let I be an ideal of a WA-lattice W and Tj a binary relation on W 
defined by the rule: 

(*) a Tjb if and only if there exist ueW and i, je I such that a = UV i, b = uV j 
(i.e. a,beuVI). 

If TT is compatible on W, then it is a congruence relation on W. 

Proof. Evidently, Tj is reflexive and symmetric relation. It remains to prove the 
transitivity only. Let a, b, ce W, aTjb, bTjC. Then, by (*), there exist u, veW, 
i, j , k, le I such that a = u V /, b = uv j = v V k, c = v V /. As /, / e I, then 

(1°) iTjl. 

As ueuv I, aeuV I, we obtain uTta. Analogously, we can prove uTtb, vTjb, 
vTjC. From the compatibility of Tj it follows 

(2°) uTjb, bTjV =>(uAb) Tj(b A v). 

Further, b = uv j implies b ^ u, b = vV k implies b ^ v. Thus u A b = u, b A v ~ 
= v, and, by (2°), consequently 

(3°) uTjV. 

By the compatibility of Tj, (1°) and (3°) give 

a = (u v /) Tj(v v /) = c, 
hence Tj is transitive. 
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Remark. As a matter of interest, if W is a modular lattice, then also the converse 
statement of Proposition 8 is true, namely, for the case of modular lattices: 

(I) Tt is a compatible relation 
(II) TE is an equivalence relation 

are equivalent propositions. It can be proved by a rather tedious coputation by the 
using of Theorems from [5]. 
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