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The concept of weakly associative lattice was introduced by E. Fried in [2] as
a generalization of the lattice. Many of lattice-theoretical concepts can be transferred
in the theory of weakly associative lattices as it is shown in [3], [4]. Also some of
properties of ideals on partially ordered sets (introduced in [1], [7] and by another
way in [6]) can be investigated for the so-called pseudo-ordered sets .In this contribu-
tion, there are studied ideals on weakly associative lattices and pseudo-ordered sets
and their connections with congruence relations on WA-lattices.

relation on A. The pair {4, <) will be called a pseudo-ordered set, the relation < a
pseudo-ordering (In [3], <4, <) is called a partial tournament). If there exist for each
pair a, b € A the L.u.b. of {a, b} in {4, £) and the g.Lb. of {a, b} in (4, <), then
{4, <) will be called a weakly associative lattice (WA-lattice). As it was shown in [2],
we can introduce operations A and V.on the WA-lattice {4, <) by the prescription:
aAb =glb. of {a, b}, aVv b = Lub. of {a, b}. Then the folloving identities are

satisfied in the algebra {4, A, V):

1. Preliminaries. Let 4 be a non-void set, < a reflexive and antisymmetric binary

()ara=a (iYava=a

(i) anb=bAa (iiYavb=>bva _

(iii) (@Ac)V(bACVe=c (i) ((@avaaAdve)Aac=c
@iv) @avbra=a @(iv') (@aAb)Va = a.

In [2] it was proved that also if in the algebra {4, A, V) the preceding identities
are satisfied, then there exists a pseudo-ordering < such that {4, <) is a WA-lattice
and a A b = glb. of {a, b}, a Vv b = Lu.b. of {a, b}.

By a compatible relation on the WA-lattice {4, <), is meant a binary relation R
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compatible on the algebra (A4, A, V), i.e. if aRb, cRd, then (a A ¢) R(b A d) and
(@avc)RMbVA).
Further, we will write b < c instead of b < ¢, b # c.

Definition 1. Let W be a WA-lattice, 7 a non-void subset of W. I will be called
an ideal of W, if the following hold:

€)) ihjel=ivjel
) iel,aeW=aAicel

Thus, the concept of ideal can be transferred into the theory of WA-lattices. In the
case of pseudo-ordered sets, the situation is similar. Let (4, <) be a pseudo-ordered
set and a, b € A. Denote by U(a, b) the set of all upper bounds of {a, b} in {4, =),
by L(a, b) the set of all lower bounds of {a, b} in {4, <>. The psuedo-ordered set
A, £ will be called pu-directed (pl-directed) if for each a, b € 4 we have U(a b) # 0,
(L(a, b) # 0, respectively). If {4, <) is both pu-directed and pl-directed, then it
will be called p-directed. The following definition is a generalization of the one in [6],
introducing the concept of o-ideal for partially ordered sets.

Definition 2. Let (4, <) be a pseudo-ordered set, 7 be a non-void subset of A.
I will be called a p-ideal of A, if
3) , iel,aeA, a<i=acl

@) i,jel= U, j)n I # 0.

Lemma 1. The condition (2) in Definition 1 can be replaced by (3).

Proof. Suppose (2) be true. Letie I,ac A, a £ i. Thena = a A i € I. Conversely,
let (3) hold, Ifie I, ae A,thena Ai < i,thusaAi€l

d Lemma 2. Let W = <A, £) be a WA-lattice. The ideals of W are exactly the
- ideals of W.

Proof. Clearly a v b € U(a, b), thus, by Lemma 1, (1), (2)= (1), (3) = (3), (4).
Conversely, if 7is a p-ideal, then U(a, b) n I # 9, thus, by (3),avbe U(a,b) n I,
ie.avbel

Definition 3. Let / be a p-ideal of the pseudo-ordered set (A4, < ). I will be called a
maximal p-ideal of <A, =), if for each other p-ideal J such that 7= J, I # J ve
have J = A.

I will be called a p-prime ideal, if

o) a,be A, 0 # L(a,b) < IimplyacTorbel.
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All above mentioned concepts can be dualized.

Definition 4. Let {4, <) be a pseudo-ordered set, B = A . B is called a convex
subset of (A, £)>,ifb,ceB,ac A, b < ax cimplyacB.

2. Ideals of pseudo-ordered sets.

Proposition 1. Every p-ideal I of a pseudo-ordered set (A, <) is a convex pu-directed
subset of A. If CA, £ is also pl-directed, then I is p-directed.

Proof. By (3), I is a convex subset of {4, £>. From (4) it follows that I is also
pu-directed. Let (A4, <) be pl-directed. Then for each pair a, b € 4 we have L(a, b) #
# 0. 1f a, b € I, then L(a, b) = Iand so Iis also pl-directed. Summary, [ is p-directed.

Proposition 2. Let (A, <) be a pseudo-ordered set, {I,, yeI'} a chain of its
p-ideals (i.e. for each y, 6eI' I, < I or I(s €1). Then I = U 1, is also a p-ideal of
4, . ver

Proof. Let a, be I, x € A. Then there exist y,, y, €I' such that ael,, bel,.
Without loss of generality, suppose 7,, < I,,. Then a, b€ I,,. Thus, by (4), U(a, b) n
NI, #9, hence Ua,b)nl# 0. If x < a, then er c I thus Iis a p -ideal

Y2 —
of {4, =).

Corollary. Every proper p-ideal of a pseudo-ordered set {A, £) is contained in
some maximal p-ideal.

Proposition 3. Let (A, <) be a pl-directed pseudo-ordered set, I be a p-prime ideal
of (A, £>. If F = A — I is non-void, then F is a d..al p-prime ideal of <A, £).

Proof. Suppose F # 0.

(a) Let ¢, de Fand L(c,d) n F = 0. Then L(c, d) = I, however, A is pl-directed,
thus L(c, d) # 0. As I is a p-prime ideal, we have either ce I or d e I, which is a
contradiction. Thus L(c, d) n F # 0.

(b) Letce F,u = candu ¢ F. Thenu € I, I is a p-ideal, thus ¢ € I, also a contradic-
tion. Hence u € F.

(c) Let u, ve F, U,v) = F and uel, vel Then U(u,v) n1I+# O, because I
is a p-prime ideal, which is a contradiction. Hence u € F or v € F. In the summary,
F is a dual p-prime ideal of (4, <. '

For partially ordered sets it holds (cf. [6]):

Every convex subset of a partially ordered set is the intersection of an o-ideal and
a dual o-ideal. It can be easy shown that this result is not rue for the pseudo-ordered
sets and p-ideals in the general case.
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Example. Let P be a pseudo-ordered set with a diagram on Fig. 1. Put C =
= {a, b, ¢, g, f}, then C is clearly a convex subset of P, however, / = P = D for each
p-ideal 7 and each dual p-ideal D of P. Thus I n D = P # C for each I, D.

3. Ideals of WA-lattices. By Lemma 2, all the results of the preceding Propositions
remain valid also for ideals of WA-lattices.

Propesition 4. Let W be a WA-lattice. The set F(W) of all ideals of W ordered by
“the set inclusion forms a conditionally meet-complete lattice. The operation meet in
F (W) coincides with the set-theoretical intersection.

Proof. (a) Clearly W is the greatest element of #(W). Let I,€ #(W) for ye I’
I =1, Let I# . Clearly [ fulfils (1), (2), thus 7 is an ideal of W.

vel

(b) For I,, I,e g(W) clearly I, n I, # ), because acl,;, bel, imply aAnbe
el,nl,. By @), I, n I, € #(W).
(o) Let I,, I, € #(W). Evidently, We {Ie #(W); I; 2 I, I; 2 I,} thus, by (a),
I =1, # 0 is an ideal of W. Clearly, I is the supremum od /,, I, in #(W). The
proof is finished.

Let W be a WA-lattice, a € W. Denote by I(a) the intersection of all ideals of W
containing a. Proposition 4, I(a) is an ideal of W.

Definition 5. The ideal I(a) of W for ae W is called the principle ideal generated
by a.

Remark. For the case of lattices I(a) = {x € W, x < a}. For the general case
of WA-lattices it is not true.

Lemma 3. Let W be a WA-laiiice, c,de W, ¢ < d. Then I(c) < I(d).

Proof. By Lemma 1, ¢ € I(d). Hence we obtain the assertion.

Remark. Contrary to lattices, for WA-lattices the inclusion in Lemma 3 cannot be
replaced by the strict inclusion for the case of the strict inequality (see e.g. Example).

Corollary. For every WA-lattice W the relationship a — I(a) is an isotone mapping
of Winto #(W).

Lemma 4. Let W be a WA-laitice, I be an ideal of W and J and ideal of I, Then J
is an ideal of W.

The proof is clear.

- Proposition. 5. Let W be a WA-lattice, I be an ideal of W and ac W — I. Then
there exists an ideal J such that I < J, a ¢ J, which is maximal of this property.
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Proof. Let #, denote the subset of #(W) consisting of all ideals of W non-con-
taining the element a. Let {/,, yeI'} be a chain in #,. Then, by Proposition 2, |J 1,

yel
is again an ideal of W non-containing a, thus, by the Kuratowski-Zorn lemma,

#, contains a maximal element.

4. Relation between ideals and congruences.

Proposition 6. Let © be a congruence relation on the WA-lattice W. If O is the
least element of W, then set I = {x € W, xO O} is an ideal of W.

Proof. Let a, be Iy, then a ©® O, b @ O, thus, from the compatibility of @ we
have (avb)© O, thus (aVvb)ely. If xe W, then (aA x) O (O A x) =0, thus
(anx)ely.

Proposition 7. Let Wy, W, be WA-lattices and let W, have the least element O.
If ¢ is a homomorphism of W, onto W,, then I = {y € Wy, ¢(y) = O} forms an ideal
of Wy.

The proof is evident. These propositions can be also dualized for WA-lattices with
the greatest element and for dual ideals.

Proposition 8. Let I be an ideal of a WA-lattice W and Ty a binary relation on W
defined by the rule:

(*) a T,b if and only if there exist ue W and i,jel such thata =uVvVi,b =uvVvj
(.e.a,beuvli).

If Ty is compatible on W, then it is a congruence relation on W.

Proof. Evidently, T; is reflexive and symmetric relation. It remains to prove the
transitivity only. Let a, b, ce W, aT;b, bT,c. Then, by (*), there exist u, ve W,
i,j,k,lelsuchthata =uVvi,b=uvj=vVk,c=vVI Asi, l€el, then

(1°) iT,l.

As ueuVv I, acuV I, we obtain uT;a. Analogously, we can prove uT;b, vT;b,
vT,c. From the compatibility of 7; it follows

2 uTb, bTv = (u A b) Ty(b A ).

Further, b = u v jimplies b < u,b = vV k impliesb < v. ThusuAb =u,bAv =
=, and, by (2°), consequently

(39 ' uTp.
By the compatibility of T}, (1°) and (3°) give

. a=wvi)T(vvl) =c,
hence T; is transitive.
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Remark. As a matter of interest, if W is a modular lattice, then also the converse
statement of Proposition 8 is true, namely, for the case of modular lattices:

(D) T, is a compatible relation
(I) T, is an equivalence relation

are equivalent propositions. It can be proved by a rather tedious coputation by the
using of Theorems from [5].
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