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1. Problem

Consider a second-order differential equation

@) Y =q@®)y

with a periodic coefficient g € C°(R), g(t + 1) = q(¢) for all te R = (—00, ®©).
According to Floquet Theory, (¢) admits independent solutions u and v that

satisfy
either

(1) u(t +n) =¢.u(t), w(t+mn)=1/g.v(t), o#0
or '

() u(t + ) =g.u@®) +v(t), ov(E+n)=¢.00t), =1

(Generally complex) numbers ¢ and 1/g are called characteristic (or Floquet’s)
multipliers of (g).

The purpose of this paper is to give a description of the structure of classes of
those oscillatory equations (g) that admit the same characteristic multipliers.

I1. Basic notions and relations

When differential equations (¢) have the same characteristic multjpliers, their
‘'solutions still may behave in a different way with respect to the number of their
zeros (on an interval). Following O. Boriivka [5] we say that (g) is of category
(1, k), k being a positive integer, if (¢) is both side oscillatory (i.e., both for t - —oco.
and for ¢t - +00), it has real characteristic multipliers, and it admits a solution y,
¥(ty) = 0, for which t, + = is the k-th zero on the right of ¢, . In the case of complex.
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<haracteristic multipliers eteni
of (¢) can be written as

o sin[P(t) + 2k + a) t + c,]
[P(t)+ 2k +al?

see [8]. Then (q) is of category (2, k).

We say that differential equations (g;) and (g,) are of the same behavxor if

1. they have the sam: characteristic multipliers, and

2. they are of the same category, and

3. if the relation (2) holds for a suitable pair of solutions of one equation, then
it holds also for a suitable pair of solutions of the second equation, wronskians
of the both pairs being of the same sign.

The condition 3. is in a close relation to the problem of ‘“the coexistence of
periodic solutions” (see e.g. [2], [7]), since, in particular, if all solutions of (¢,) are
periodic, then the same is true for (g,).

In accordance with [3], define a phase « : R — R of a pair r, s of independent
solutions of (¢) as a continuous function on R satisfying tan a(t) = r(t)/s(¢) on
R - {teR; s(t) = 0}. Then a € C>(R), «’(t) # 0 on R, and the general solution y
of (q) can be written in the form

—c sin («(t) + ¢,)
4) y(® 1 12(1) B

If (q) is both-side oscillatory, then and only then a(R) =

All bijections f: R — R, f(R) = R, fe C3(R), df(¢#)/dt # 0 on R, together with
the composition rule form the group ®. The set of all phases of the equation y” =
= —y on R is a subgroup € of G. If a is a phase of a both-side oscillatory (g),
then all phases of (¢) form the set x = {ea; ¢ € €} that is an element of the right
decomposition of ® with respect to €, G/,€. .

The elements of &/,E are in 1 — 1 correspondence with both-side oscillatoric

» a€ (0, 1), (and only then) the general solution y

@ =

,  P(t+mn)=P(t)e C’(R),

, ¢, and ¢, being constants.

equations (¢) on R, since fora € G, g,(¢): = — —;— (@ (0]’ (1)) + —:— (" (1)) (1))* —

a’2(t), the function « is a phase of the differential equation y” = ¢,(f) y on R.

The set H: = {fe€6®; f(t + n) = f(t) + n.signf’ for te R} is a subgroup
of ® and is called the group of elementary phases. For more details see [3].

In [4] O. Bortvka introduced a “block” of phases as an element of the least
.common covering of the right and left decompositions of ® with respect to €,
i.e. for a given a € ® a block is the set {¢,a¢,; ¢, € €, &, € €} = Ca€. There he
also proved that all the differential equations (q), whose phases are in the same
block, are of the same behavior.

A natural question arose then, which blocks correspond to differential equations
of a given behavior. The problem is solved in the theorem of the paper.
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I11. Preparatory lemmas

Let (¢) be a n-periodic both-side oscillatory differential equation and a be
.a phase of (g). Then due to Floquet Theory and [5]

sina(t +7) _ e sin a(t) e cos a(t)
lo'(t +m) I* la'(1) I* lo'(6) I*
cosoft + 1) _ . sin a(t) - cos a(t)
lo'(t + m)|* lo'() 1* la'() [+

or

(5) a(t + ) = ea(t) for all teR,
‘where

{6) &(x) = arctg fulgXt e \

Ccy 8 X + ¢y

:arctg denoting a suitable branch of the function such that ae C3(R) (that is possible,
since &(t) = a(x”*(¢) + n)). And also conversely: If xe ® and (5) is satisfied
for some ¢ € €, then (q) with the phase o is a both-side oscillatory differential
.equation with n-periodic coefficient; see [5].

The constant 2 x 2 matrix C formed by c¢;; (i,j = 1, 2) from (6) is unimodular.
Tt is evident for the special pair y; and y, of independent solutions of (g) determined
by the conditions y,(0) = 0, y;(0) = I, y,(0) = 1, y;(0) = 0, where

det C = det (iig; i:g;) = wronskian of (y;,y,) = 1.

And for other pairs of independent solutions, the corresponding matrix C is
similar to C.
In such a situation it holds

Lemma 1. If (q) is of category (1, k), then for each phase a of (q) there exists
Xo € R such that

W) e(xo) = xo + km . signa’
where ¢ is determined by (5).

"Proof. Let #, be a zero of a solution y of (¢) and ¢, + = be the k-th zero of y
on the right of 5. Then due to (4)

a(to + ) — a(to) ! = kn,
or
a(ty + m) = a(ty) + kn . signo'.

151



From (5) we get ex(to) = a(ty) + kn.signa’, and x,: = a(f,) completes the
proof. B

Lemma 2. If the relation (5) is satisfied for some phase a € ® of (q) and some
e€ @€, and if (7) holds for an x, € R, then (q) is n-periodic both-side oscillatory
equation of category (1, k).

Proof. It is sufficient to show that (q) is of category (1, k). For #y: = a™(x,)
we have

a(to + 1) = ea(ty) = e(xo) = Xxo + kn .sign a' = a(ty) + kmsigna'.
Hence the solution _
sin [a(t) — a(t
FOLLICORLC)
la'()]
of (¢g) vanishes both at ¢, and at ¢, + =n, , + 7 being the k-th zero of the y on the

right of t,, since | a(to + n) — a(ty) | = kn. Such a solution y with the property
cannot be of the form (3), hence (q) has real characteristic multipliers. B

Lemma 3. If (q) is of category (2, k), then there exists a phase o of (9) satisfying (5)-
Jore: x x + (2k + a) n, ae (0, 1). And conversely, if (5) holds for e(x) = x +
+ (2k + a) n and a phase o of (q), then (q) is of category (2, k).

Proof. (=). Due to the definition of category (2, k), the form (3) of the general
solution of (¢q) shows that P(¢t) + (2k + @)t + ¢, =: «a is a phase of (g). The:
phase a satisfies

®) a(t + n) = a(t) + 2k + a) n,

and hence (5) gives e(x) = x 4+ (2k + a) n for yxeR.

(<=). If (8) holds, then (see [1, p. 67] or [6, p. 163]) the general form for a solu--
tion a is a(t) = 2k + a) ¢t + Q(¢), O(t + n)’= Q(t) for &t e R. Such an o being
a phase of (q) implies the category (2, k) for (g), compare (3). i

‘We shall need also

Lemma 4. Let C, and C, be real unimodular similar 2 x 2 matrices.
A. If their Jordan canonical form is

(8 Q(_)l) =:J, o#£0, red,

then there exist real and regular P and Q such that
PC, =C,P and QC, =C,0,
det P and det Q being of the opposite signs.
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B. If the Jordan canonical form of C, and C, is

£1 1) _ .
(oil)"‘J'

then the sign of the determinants of the real regular matrices P such that
PC, = C,P

is uniquely determined by C, and C,. Moreover, in this case B, C, is also simi-
lar to C; ' and for Q, for which

oC, = C;'Q,
the sign of det Q is opposite to sign det P.
Proof. A. There exist real regular matrices K and L such that
| KC,K™' = LC,L™! = J.

-10

For E: =( 01

) we have E = E7! and EJ = JE. Hence also

EKC,K™*E~! = LC,L™! = J.
For P: = L™ 'K and Q: = L™ 'EK we get
PCl = CzP and QC]_ = CzQ

with signdet (P. Q) = signdetE = —1.
B. Let KC,K™! = LC,L™! = J*. Suppose PC, = C,P and PC, = C,P,
sign det (PP) = —1. Then

LPC,P7'L"' = j* and LPCP'L™' =J*  or
(LPK™') JKP™'L™'Y) = J* and  (LPK™') J¥(KP~'L™!) = J*.

Hence there exists a real regular 2 x 2 matrix D (equal to LPK~! or LPK™!) with
det D < 0, such that
DJ* = J*D.

‘That implies D = (g i), yeR, deR. Since det D = y> > 0, we get a con-

tradiction. To finish the proof of the lemma, denote again E := (_(l) (1))

and use the relation EJ*.= J*~!E, to derive

EKCJ(“E‘1 =J*! = LC; L™
Hence
(L7'K) Cy = Co(L7'K)
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and
(L~'EK) C, = C; (L™ 'EK),
or
PC, =C,P and QC, = C;'Q,signdet (P.Q) = —1,

for P:=L"'Kand Q :=L"'EK. n

IV. Main result

Theorem. Let (q,) be a both-side oscillatory differential equation on R with
a n-periodic coefficient q,, and o, denote one of its phases.
Differential equation (q,) is of the same behavior as (q,) if and only if a (then every)
phase o, of (q,) satisfies
o, = goh
for some e€ € and he $.

Note. Hence there is a 1 — 1 correspondence between the decomposition of all
n-periodic both-side oscillatory differential equations (g) into classes of equations
of the same behavior and the least common covering of the right decomposition
of ® with respect to €, 6/,€ and the left decomposition of & with respect to $,
6./9.

Proof of theorem. (=). In accordance with the notations introduced in the
beginning of the Section III, let C; and C, stand for 2 x 2 matrices formed from
constants (c;;) of relation (6) considering with respect to (at this moment) arbitrary
phases o, and a, of (g,) and (g¢,), respectively. Then the property 1. of the definition
of behavior (Sect. I) implies the same- characteristic values of C; and C,, the
property 3. gives the same elementary divisors of the both matrices. Hence C,
and C, are similar and there exists a real regular 2 x 2 matrix C, such that

) C,C;3 = C3(,.

Denote by e, a function from € that satisfies (6) with constants taken as elements:
of C;. Evidently sign a3 = sign det C5. The relation (9) gives

£,83(t) + mn = &;8,(¢), m -— an integer,
or

(10) - Tm€183 = €383,

where 7,, denotes the translation t,(t) =t + mn.
If (q,) is of category (1, k) and the case A in Lemma 4 holds for C; and C,,
then C; in (9) can be chosen such that sign det C; = sign (a . a3). We have

%7y = &0 and.  a,7; = &,q,, or from (10),
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(e302) Ty = £3820; = 1,8, (£30,).

The function &3, is also a phase of (¢2), since ¢; € € (see Sect. II). According to-
Lemma 1 there exists x, € R such that

e1(x0) = Xo + knsigna,
or
Tme1(X0) = Xo + knsignay + mn = x, + kn sign (e;0,) + man.

Since (g,) is also of category (1, k), Lemma 2 implies m = 0 for the relation (10).

Let (¢,) and (g,) be of category (I, k) and let the case Bfrom Lemma 4 hold for
C, and C,. Due to 3. (see also (2)), we may choose phases a; and «, corresponding
to the special pairs (u,, v;) and (u,, v;) of solutions of (g,) and (g,), resp., i.e.

T = &0y and AT, = &85, ay .oy > 0,
. . +1 1
where both «; and «, satisfy (6) with C = J* = 0 +1/) Hence ¢, = 1,¢,.

According to Lemma 1, g,(x,) = x, + kn sign oy for an x, € R. Thus
£2(X0) = T (xo) = Xo + kmsignaj + mn = xo + knsignay + mn

with Lemma 2 gives m = 0, or ¢, = ¢,. For the case the relation (10) is satisfied
for ¢; = id with m = 0.
For (q,) to be of category (2, k), let &; denote the phase of (g,) that according
to Lemma 3 leads to ¢;: x+ x + (2k + a) n. Then
1, e1(x) =x+ 2k +a+ m)m,
or
g3, (1 + 1) = e30,(t) + 2k + a + m) n.
Since (q,) is of category (2, k), Lemma 3 gives m = 0.
Summarizing our considerations, we get m = 0 for the relation (10) in all
possible cases. Thus
€183 = €383,
(af Yeqoq) o teza, = ap ‘es(e02),
T07 lejo, = ay ejanty,
or
ay ez, €9
and a, = ea,h for suitable e(=¢3')e € and he $.
In the cases when «; was not an arbitrary phase of (q,), but a special one the
last relation remains true, because each phase of (g;) is of the form ea,, ¢ € €,
and hence again et € €. In other words: Once a phase a, of (g,) is of the form

ex;h(e € €, h € ), then every phase of (¢2) is of this form, since all phases of (¢,)
form the set Cu,.
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(«). Let (q,) be a both-side oscillatory n-pericdic differential equation, «, its
phase, &, determined by (5), C, being 2 x 2 matrix of constants c;; from (6). More-
over, let ¢ €, he 9, a, := ex,h, and «, be a phase of (g,). Then a,(R) =R
and (g,) is both-side oscillatory. Since

_—
ayTy = 8d ATy = ey Tygnp - h = e61 ayh =

= e W e Loy h = (egi®¥ e 1), = £50,,

and

e~ 1(=g,) € €,

g, is m-periodic. If we write ee58"%¢~1 in the form (6), the corresponding 2 x 2
constant matrix C, is similar to C$®"¥, Matrices C; and Cy! are similar, since
due to (1) and (2), the product of the characteristic values of C; is-1. Hence (gq,)
and (q,) have the same characteristic multipliers (= 1.), and the elementary
divisors of C, and C, are the same. For the condition 3. to be satisfied it is sufficient
to show that if the differential equation (¢;) admits a pair (¥,, v,) of solutions
satisfying (2), then (g,) also has a pair (#,, v,) satisfying the same relation,
wronskians of (,,v,) and (u,, v,) being of the same sign. Let «; be a phase
of (q,) corresponding to (¥, v,). Then

(11) dl‘tl = E*“l’

where &¢* € € satisfies (6) with C = J*. Each phase of (q,) is of the form ea,#,
g€ €, he $H. The relation (2) holds for (4, v,) if and only if the phase a, of the
pair (u,, v,) satisfies a,7, = g*a,. Hence such e € € and h e § should exist that

e hty = e*eosh

or
12) o, T = g*eq .
From (11) we get o, 758" = g*8¥y  Hence (12) gives
(13) : ge* B gl — g%,

With respect to the second part of Lemma 4, for sign A’ = 1 also signg’ = 1,
since (13) is then satisfied fore = id,id" = 1; and for sign A" = —1, we getsigne’ =
= —1 (e.g.for ¢ in (6) with C = (—(1) (1)
and for o, = ex,h we have sign a; = sign o}, i.e., the sign of wronskian of (u,, v3)
is the same as for (u,, v;). Hence the condition 3. is satisfied for both (¢,) and (¢2).

If (q,)is of category (1, k), then &;(x,) = x, + kn sign «; (see Lemma 1), and

)) . However in both cases sign (¢' . #') = 1

we have
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£3(e(x0)) = 861" (x,) = e(xo + kn sign a . sign A’) =
= &(xo) + knsign (ay . H .¢")
= &(xo) + kmnsign aj.

According to Lemma 2, (g,) is of category (1, k).
_If(@q) is of category (2, k), let «, denote its phase that satisfies (8). Evidently
a07 ! =:5€e . Then

(14) ee oy (t + 1) = eagh(t + 1) = a h(t + ) =
= o, (h(t) + msign k') =
= 2, (h(t)) + Qk + a)msign b’ =
=ge lay(t) + (2k + a) n.sign k',
Since
¢, =signh’ .ze 1€ €,  &,a, is a phase of (g,)-

From (14) we have
£20,(t + 1) = €2,(t) + (2k + a) m,

that due to Lemma 3 shows that (g,) is of category (2, k).
Hence both in real and complex cases (¢,) and (g,) are of the same category,
i.e. also the condition 2. is satisfied. B
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