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POLARS ON CLOSURE SPACES

BOHUMIL SMARDA, Brno
(Received October 18, 1976)

In this paper there is given a generalization of polar theory from lattice ordered
groups (l-groups) on sets with closure systems. Basic properties of polars are
generalized in § 1, while § 2 contains a generalization of prime subgroups in an
1-group and their property that a factorgroup belonging to a prime subgroup is
fully ordered. Examples and special cases of a polarity being in connexion with [1],
[2), (3], [4], [5], [6] are given in § 3.

Let us introduce the following notation for the whole paper: A closure space (S, Q)
is a nonempty set S with a closure system Q, the closure of a set 4 < Sin Q is 4,
a = {a},forallae S. If S is a partially ordered set, then a || b means that elements a,
b e S are not comparable. We say that a set A = S is convex in S, when a, be A,
seS,a=s=bimplies s€ A.

§1. DEFINITIONS, NOTATIONS AND BASIC FACTS

1.1. Definition. Let (S, Q) be a closure space, C = S. Then let us define a relation
0.(Q) on S, called a C-polarity, in this way: For every elements a, b€ S there is
ag ()b, ifanp c C.

Further, for each set 4 £ S let us define sets p(4, C) = {se S :s50,(Q) a, for
each ae A}, p"*'(4, C) = p[p"(4, C), C], for each positive integer n. A set A £ S
with a property A = p*(4, C) is called a C-polar.

Remarks. 1. A C-polarity is a symmetric and antireflexive relation (ag(Q) a =
= ap(Q) s for each s € S).

© 2.If Sis an l-group, Q is a system of all convex l-subgroups in S, then p(4, {0}) =

= A’ is a usual polar of a set 4 in an l-group S, introduced by F. Sik—see [5].

Other examples are in § 3.

1.2. Proposition. For every 4, C < S it holds:
a) p(4, C) 0 p*(4,C) = C,
b) p(4, C) = p(4, C),
C) P(A, S) =S, p(A’ A) = S’p(S’ A) = 19 p(¢a A) =S,
d A correspondence 4 — p(4, C) forms a Galois connexion.
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Proof. a) If x e C is an arbitrary element, then for each 4 < S and each ae 4
itisxnagC, ie., C g p(4, C)n p*(4, C). Conversely, for each x € p(4, C) n
N p*(4, C) we have xeX = ¥ n X < C and thus p(4, C) n p*(4,C) c C.

The definition 1.1 implies b), ¢) and d).

1.3. Corollary. For every I + &, 4, < S(iel), C £ S it holds:
p(H 4, C) =ln, p(4;, ©), p[‘f) p*(4;,C), C] = pz[iUl p(4], ©), C].
€ € € €

1.4. Proposition. If 4, B, C < S, C, c S, (iel *+ &), then:
a) Bg C=p(4, B) ¢ p(4, C),
b) plp(A, C) = p(4,N C).

iel
Proof. a) For each x e p(4, B) and each ae 4 we have xnagc Bgc C, ie,
x e p(4, C).
b) Np4, C) =2 p(4, N C;)—see a) and 1.2, b). If xe N p(4, C), thenx nagc C,,
iel iel

iel
for each ae 4 and each iel, ie, xnac N C;, xep(4, N C).
iel iel

1.5. Proposition. If 4, C < S, then:

a) p(4, C) = p(4, An C) =p(4v C, (),
D) Ac C«Agpld, C)spld,C)=S.

Proof.a)p(4, An C)  p(4, C)—see 1.4,a), p(4 U C, C) < p(4, C)—see 1.2, d).
If xep(A,C), then xna < Cn A for each ae 4 and x € p(4, A n C). Further,
xnyg C, foreach ye 4 u C,ie., xep(d v C, C).

b) A = Cimplies 4 < p(A4, C)—see 1.2, a). Now, if 4 < p(4, C), then @ n
foreachae 4,s€ S,i.e., S = p(4, C). Finally, p(4, C) = Simpliesaea = a
c C, for each a € A.

§s
na

C
c

1.6. Proposition. If 4, B < S, then:
@) A= n{p(S\ 4,C): T2 A} = p(S\ 4, 4),
b) p(4, B)  p(S\ 4, B) = B.

Proof. @) If xe n{p(S\ 4, C): C 2 A}\ 4, then x n § < C for each s ¢ 4 and
each C2 4 and xex =xnx g C, ie, xen{C: C2 4} = 4, a contradiction.
The second inclusion is clear with regard to 1.2, a). The rest of a) follows from 1.2, d).
b)If xe p(A, B) n p(S\ A4, B), then either xe Aand xex =xnXx < Borxe S\ 4
and again xe X = ¥ N X < B. The second inclusion follows from 1.2, a).

1.7. Proposition. If 4, C < S, Be Q, Bn A £ C, then B ¢ p(4, C).
Proof. If BeQ,BNn A< C,thenanbgc AnBgc Cforeachae A,be B,i.e.,

B < p(4, C).
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§2. PRIME C-SETS

2.1. Definition. Let (S, Q) be a closure system, PeQ, C < S. A set P is called
a prime C-set, if p(s, C) < P, for each se S\ P. A prime w-set, where w =
= n{Q: Qe Q}, is called a prime set.

Remark. For each prime C-set P we have C £ P.

2.2. Proposition. If P € Q, then following assertions are equivalent:
(I) Pis a prime P-set,
(I). P=ANnB=P=AorP =B, foreach 4, Be Q,
(IlH) P2 AnB=P2 Aor P < B, foreach 4, Be Q,
(IV) p(4,P) = P or p(4,P) = S, for each 4 < S.

Proof.(I) = (II): If P = A n B, P # A,thenae A\ Pexistsand P < p(4, P) <
c p({a}, P) € P. From this B2 p(4,P)=P=AnBg B,ie., B=P.
(I = (): If P2 AN B, P non < A, then ae A\ P exists and P = p({a}, P) n
n p*({a}, P), q € p*({a}, P) # P. Hence B < p(A, P) < p({a}, P) = P.
(III) = (IV): If P # p(A, P), then P = p(A, P) n p*(A, P) implies p>(4, P) < P, i.e.,
p*(A4, P) = P and it means that p(4, P) = S.
(IV) = (I): If se S\ P, then p(s, P) = S implies P = p(S, P) n p*(S, P) = p*(S, P)
and s € P, a contradiction. Thus p(s, P) = P.

2.3. Proposition. If P is a prime C-set in a set (S, ), then p(C, P) = S and
p*(P, C) = S or P is a maximal C-polar.

Proof. p(C, P) = S—see 1.5, b) and Remark before 2.2. If P # p?(P, C), then
x € pA(P, C)\ P exists and from this p(P, C) < p({x}, C) € P,i.e., p(P, C) = p(P, C)n
N pX(P, C) = C and p*(P, C) = S. If P is a C-polar and p?(4, C) 2 P such that an
element s € p>(4, C)\ P exists, then p(4, C) < p({s}, C) £ P < p*(4, C) and C =
= p(4, C) n p*(4, C) = p(4, C),i.e., p*(4,C) = S.

2.4. Definition. Let P, Qe Q, P = Q. Then we say that Q has a property P(Q)
(notation: Q e P(Q)) if it holds:
If4AnB=Q,for A, Be Q,then A, B'e Q exist suchthat ' " B’ = Pand 4 ¢

cAuvQ, Bg Bug.

Remark. A prime Q-set is clearly a prime C-set, for each C £ Q, Ce Q.

2.5. Proposition.. Let P, Q€ Q, P < Q. Then Q is a prime Q-set if and only if
Qe P(Q) and Q is a prime P-set.

Proof. =:If Q = A n B, then 4 = Q or B = Q—see 2.2. Let us suppose that
A=Q. Then /"B =P, for /' =P, B =Band /A uQ=QuUP=0=AI,
BUQ=BuUQ =28 <«:IfseS\ Q, then Q = p({s}, Q) N p*({s}, Q) implies the
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existence of sets 4, B'e€ Qsuch that A’ n B' = P, p({s}, Q) € A’ v Q P’({s}, Q) ¢
S B UQ. If A < Q, then p({s}, Q) £ Q. If A'non £ Q, then ae 4’\ Q exists
and thus p({a}, P) € O, B’ < p(4’, P) < p({a}, P) = Q, because Q is a prime P-set.
Finally, s € p*({s}, Q) € B’ U Q = Q, a contradiction. Finally, Q is a prime Q-set.

2.6. Theorem. If (S, Q) is a closure space, then for each P € Q the following asser-
tions are equivalent:

(I) The set inclusion is a fully relation on Qp = {XeQ: X 2 P} and for each
Qe Qpand each se S\ Q it is p(s, Q) € Q.

(II) Each Q € Qp is a prime Q-set.

(IIT) A set Ce Q, C < P exists such that P is a prime C-set and Qp = C(Q).

Proof. () = (II): If se S\ Q, 5 ¢ p(s, Q), then p(s, Q) € Qp, s U Q € Qp and thus
p(s, @) € s U Q, what is a contradiction.
(I =>1):1f 4, BeQp, A # An B, thenae A\ A n Bexists and B < p({a}, B< B,
p({a}, A) 2 p(4, 4) = S (see 1.2, c)). Further, B = p({a}, B) n p({a}, A) = p({a},
AN B)g An B, from A N Be Qp and 1.4, b). It implies B < A.
(II) « (III) immediately from 2.5.

2.7. Proposition. If (G, =) is an l-group with a lattice order = and if Q is a system
of all'‘convex I-subgroups in G, then it holds:

1. (G, =) is a fully ordered set if and only if a system Q is fully ordered by set
inclusion.

2. If P is a prime set in G, then each Q € Qp is a prime Q-set.

3. Qp = C(RQ), for each prime C-set P, C € Q.

Proof. 1.=>:If 4, Be Q, A|| B, then ae A\ B, b e B\ A exist such that a = 0,
b=0.If a = b(b 2 a), then b e A4, (a € B), a contradiction.

«<:Ifa, beG,al||b, then c Ad=0, for c=a - (aAb), d=b—(arb), c,
d e G\ {0}. It means that p*({c}, {0}) # {0} # p*({d}, {O}), P*({c}, {O}), P*({d}, {0} €
e @, p*({c}, {0} n p*({d}, {0}) = {0}, a contradiction.

2. If P is a prime set in G, then a right decomposition G/P is a fully ordered set.
Then for every A, Be Qp, A || B there exist elements ae A\ B, be B\ 4, ¢ = 0,
b = 0. The right classes a + P, b + P are comparable. If a + P = b + P, then
a+ P g A, be A, a contradiction. From this Qp is fully ordered by set inclusion.
The rest follows from Theorem 2.6\.

3. P is a prime convex l-subgroup in G(se S\ P = p({s}, {0}) = p({s}, w) <
< p({s}, C) g P) and the right decomposition G/P is a fully ordered set. Then for
every A, Be Qp, A|| B there exist elements ac A\ B, be B\4, a=0, b 2 0.
Right classes a + P, b + P are comparable. If a+ P2>2b+ Pl@a+ P <b + P),
then a + P £ A(b + P = B) and b € A(a € B), a contradiction. Finally, 2 is fully
ordered by set inclusion.
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Now, for each Q€ Qp, Q = AN B, A, Be Qp iniplies Q = A (or Q = B). If we
choose 4’ = C,B'= B(A' = A,B' = C),thend'n B =CandA' v Q =Q = 4,
BUuQ=B(4dUuQ=4, B UQ =0 = B)and thus Q € C(Q).

§3. EXAMPLES

I. R. D. Byrd in [1] defines a C-polarity on an 1-group (G, Z) with a closure
system Q of all convex 1-subgroups in G for each C g G in the following way:

apb<>|a|A|b|eC, for a,be G (where |a| = av —a).

3.1.Lemma. If a,b,ceG, a=20,b20,c=0, CeQ, anbeC, then [a A
AL+ )] —(@Ac)eC and (ma A nb) — (a Ab)e C, for every positive integer
m, n.

Proof. arncs an(b+c)=anb+c)r@+c)=anr[bra)+c] =
S[bra) +a]Al(bra)+c]=(bAra)+ (anc) implies 0=ZaA(b+c)—
—(@Ac)ZLb A a=aAb. The rest follows from convexity of G.

3.2. Proposition. If (G, =) is an 1-group and Q is a closure system of all convex
1-subgroups in G, C < G, then C-polarity § is C-polarity ¢.(€2).

Proof. If ag(Q)b, a,beG, then anbg C and |a|A|bleanbg C, ie.,
apb.

If apb and x e a n b, then positive integers m, n exist such that | x| S n|a],
|x]<m|b], ie, |x|SnlalAm|b|. Lemma 3.1 implies n|ajAm|b|e
e(lajA|b]) + C = C and xe C from convexity C, i.e., an b g C, ag(Q) b.

II. Let L be a lattice and 7 be an ideal in a lattice L (x,yel, zeL, z £ x=
= xv yel, zel). Then a set Q of all ideals of a lattice L is a closure system and we
define a relation y, for each C e Q, in the following way:

Wy xAyeC, for x,yelL.

3.3. Proposition. If L is a lattice with a closure system Q of all ideals in L, then 7,
is a C-polarity ¢.(£2), for each Ce Q.

Proof. < :x0(Q)y=>3*njc C=>xAryexnyc C=xy.

=: If mexny={leL:l<x}n{leL:l/<y}={eL:l<xAy}, then
mgxAy Ifxy.y,then xAyeCandmeC,xny < C,ie., xo(2) y.

IIl. Let M be a partially ordered set, N = {me M :m < n, for each ne N},
Ng M, Q= {N:Nc M} Then Qis a closure system in M and we define a relation
U, for each C € Q, in the following way:

xpy<{zeM,z<x,z<y=>zeC}, forx,yeM.
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3.4. Proposition. A relation y. is a C-polarity u.(Q), for each Ce Q.

Proof. <: If z< x,z< y,thenzexny and if x6,(2)y, then zexnjyc C
and xp.y.

=:If xp.y,zexny, thenz < x,z < yand thusze C, ie,, X nje C, xo(Q) y.

IV. A. W. Glass defines in [2] C-polars on an interpolation partially ordered
group G(s, t,u,ve@G, s,t Su, v=x€eG exists such that s, < x £ u,v) with
a closure system £ generated by the set C(G) of all dc-subgroups (directed convex
subgroups) in G.

A notation pg(4, C) will be used for C-polars of Glass. If C(G) is the set of all
dc-subgroups in G and C(G) = Q, then G is called a strong interpolation group (see

2D

3.5. Proposition. If G is a strong interpolation group (interpolation group) with
a closure system Q, then p(4, C) = pg(A4, C) = ps({A4), C (ps({4), C) < p(4, C)),
where {4 is the smallest dc-subgroup in G containing 4.

Proof. If kepg({4), C), then A nk =k c (k) and because ps({A4), C) is
a dc-subgroup in G (see [2], after 3.2), there is k 1 4 < ps({4), C). Further, [2],
Remark before L.9 and L.8, (i) impliesk n 4 £ 4 < (A4) < pi({4), C)andk n A<
S pe({4), C) N pi({A4),C) = C = C—see L.9, (i). Finally, kep(4, C) and
P4, C) € p(4, C).

In case that G is a strong interpolation group and k € pe(4, C), then kn 4 <
c (k) € pg(4, C), because ps(4, C) is a dc-subgroup in G. Further, kn 4 <
< p&(4, C), see [2], L.8, (ii) and thus £ N 4 < pg(4, C) N p&(4, C) = C. Finally,
pc(4, C) < p(4, C).

For the converse, if k € p(4, C), thenk " 4 < Cn A = C n {(A4). Further, [2],
L.7, (iv) implies pg({4), C) = pg({4), C N {4)) and [2], L.9, (ii) and Remark
before implies {4} N pg({4), C) = {A) N pe({4), C N {A)) = Cn {4). Hence
and from [2], L.9, (iv) we have ke (k) < pa({4), C n {A)) = pg({4), C), i.e.,
P, C) € po(<4), C) € pe(4, C) € p(d, C) — see [2], L5, (i).

V. J. Rachiinek in [3] defines on a po-group G a polarity é : x, ye G, xdy <>
<« a,be Gexist,suchthata > 0,b > 0,ae|x|,be|y|,andb =0, where | x| =
={geG:g = x,g= —x} for each xeG.

Po-group G is called 2-isolated, when:

aeG, az —a=az=20.

3.6. Proposition. Let G be a 2-isolated po-group, 2 be the smallest closure system
containing a set C(G) of all dc-subgroups in G and

@ | x| # d, for each xe G,

() x v —x exists for each x e G.
Then a polarity  is 0)(€).
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Proof. If xéy, then a, b € G exist such that g, b 2 0,ae| x|, be|y|,avb = 0.
[3], Prop. 2.5 implies that g = {x e G, xdg} is a dc-subgroup in G, for each g € G.
Hence g° = g° and therefore yex®, yey < x* = x°, xex < x* — see [3]. Defini-
tion mentioned after 2.3. Finally, ¥ ny < x* n x* = {0} (see [3], Th.2.6). It
means that xg0,(Q) y.

If x0(0y(Q) y, then X Ny = {0} and ¥ = n{Q € C(G) : x € Q}. Further, if xe 0,
Qe C(G), then ~x € Q and d € Q exists such thatd = x, —x. Henced =2 xv —x =
> x, —X, i€, x- —xeQ and x v —xeX. Similarly yv —y €y and from this
xv—-x20, yv—-y=0, xv—xe|x|, yv—-yely], (xv—-x) A(yv —y)E€
ex ny = {0}, ie., x0y.

3.7. Proposition. Let (G, =) be a 2-isolated po-group, Q2 be the smallest closure
system containing the set C(G) of all dc-subgroups in G. Then the following assertions
are equivalent:

@ (I G|, <) is fully ordered, where |G| = {|g| : g€ G},
an (C(G), <) is fully ordered,

m) (G*, =) is fully ordered, where G* = {ge G : g = 0}.

Moreover, in case that (G, =) is directed, then (C(G), <) is fully ordered if and
only if (G, =) is fully ordered.

Remark. If G is directed interpolation group, then Q is not fully ordered (see [2],
Remark before Th. 23).

Proof. (I) = (II): If A, Be C(G), A || B, then elements ae A\ B, b€ B\ A exist
and | x| || | a| for each x € B\ A. Namely, if | x| 2 | |, then x € 4, see [3], Lemma
after 1.1, a contradiction. For | x| = | a| we have a € B, similarly and again a con-
tradiction.

(1) = (II): If a,beG* exist such that a|| b, then |a| non=|b| and
|b]| non 2 | al.Suppose {|a|) 2 {(|b|). Thenforeachxe|b| = (|b]> = |al|)
there exist elements g;elal, i=1,2,...,nsuch that for p=g, + g, + ... + &,
thereis | x| 2 |p|.Butp = g, 2 a,fori = 1,2,...,n and thus p € | a |, which is in
a contradiction with [3], Lemma mentioned after 1.1. '

(II) = (I):a < bifand onlyif |a| 2 | b |, for every a, b € G*. The rest is evident
from the fact that G = G* — G™ for a directed po-group.
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