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ARCH. MATH. 2, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XIII: 117—124, 1977 

POLARS ON CLOSURE SPACES 

BOHUMIL ŠMARDA, Brno 

(Received October 18, 1976) 

In this paper there is given a generalization of polar theory from lattice ordered 
groups (1-groups) on sets with closure systems. Basic properties of polars are 
generalized in § 1, while §2 contains a generalization of prime subgroups in an 
1-group and their property that a factorgroup belonging to a prime subgroup is 
fully ordered. Examples and special cases of a polarity being in connexion with [1], 
[-]- [3], [4], [5], [6] are given in § 3. 

Let us introduce the following notation for the whole paper: A closure space (S, Q) 
is a nonempty set S with a closure system Q, the closure of a set A g S in Q is A, 
a = {a}, for all a e S. If S is a partially ordered set, then a \\ b means that elements a, 
b G S are not comparable. We say that a set A g S is convex in S, when a, be A, 
seS, a_s = b implies s e A. 

§1 . D E F I N I T I O N S , NOTATIONS A N D B A S I C FACTS 

1.1. Definition. Let (S, Q) be a closure space, C g S. Then let us define a relation 
QC(Q) on S, called a C-polarity, in this way: For every elements a, be S there is 
aQc(Q) b, if a n h g C. 

Further, for each set A g S let us define sets p(A, C) = {s e S : SQC(Q) a, for 
each a e A}, pn+1(A, C) = p[pn(A, C), C], for each positive integer n. A set A g S 
with a property A = p2(A, C) is called a C-polar. 

Remarks. 1. A C-polarity is a symmetric and antireflexive relation (aQc(Q)a=> 
=> aQc(Q) s for each s e S). 

2. If S is an 1-group, Q is a system of all convex 1-subgroups in S, then p(A, {0}) = 
= A' is a usual polar of a set A in an 1-group S, introduced by F. §ik — see [5]. 
Other examples are in § 3. 

1.2. Proposition. For every A, C g S it holds: 
a ) p ( A , C ) n p 2 ( A , C ) = C , 
b) p(A, C) = p(A, C), 
c) p(A, S) = S,p(A, A) = S,p(S, A) = l,p(0, A) = S, 
d) A correspondence A -> p(A, C) forms a Galois connexion. 
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Proof, a) If xe C is an arbitrary element, then for each A ^ S and each as A 
it is % n a £ C, i.e., C £ p(A, C)np2(A, C). Conversely, for each x ep(A, C) n 
np2(A, C) we have xex ~ x nx ^ C and thus p(A, C) np2(A, C) £ C. 

The definition 1.1 implies b), c) and d). 

1.3. Corollary. For every I # #, A{ £ S(iel), C £ S it holds: 

P( U -*„ C) - nPiA i 9 c), pi n p \ A i 9 C), C] = p2[ U K 4 , C), C]. 
i s / ig/ iel iel 

1.4 Proposition. If A, B, C £ S, C, £ S, (/e 7 # #), then: 
a) £ £ C => p(A, B) £ p(A, C), 

» ) n M Q - M ' n C i ) . 
iel iel 

Proof, a) For each xep(A, B) and each ae A we have x n a S -5 S C 1-e., 
xep(A, C). 
b) f\p(A, Ci) a p(^, n C,)-see a) and 1.2, b). If x ef]p(A, Q , then x n a £ Cf, 

iel iel iel 

for each ae A and each /61 , i.e., x n a £ n C*> xeP(d, f) C(). 
iel iel 

1.5. Proposition. If A, C s S, then: 
a) p(A, C) = p(A, I n C ) = ^ u C, C), 
£) A s Co A s P(-4, C)op (A , C) = S. 

Proof. a)p04, Z n C) s P(A, C)-see 1.4, a),p(A u C, C) £ p(A, C)-see 1.2, d). 
If x ep(A, C), then x n a £ C n A for each a e 4̂ and x epC4, Z n C). Further, 
x n y s C, for each j e A( u C, i.e., x e p(A u C, C). 

b) A s C implies A s P04, C)-see 1.2, a). Now, if A s PC4, C), then a n s s C 
for each ae A,se S, i.e., S = p(A, C). Finally, p(A, C) = S implies aea = a" n a £ 
S C, for each a e A . 

1.6. Proposition. If A, B s S, then: 
a) A = n{p(S\ ^ , C): C 3 ^} = p(S\ A, A), 
b)p(A,B)np(S\A,B)= B. 

Proof, a) If xe n{p(S\ A, C): C 2 A}\A, then x n s £ C for each s £ A and 
each C 2 A and x € x = x n x s C , » 1-e-> * e n{C: C 2 A] = J*, a contradiction. 
The second inclusion is clear with regard to 1.2, a). The rest of a) follows from 1.2, d). 
b) If xep(A, B) np(S\ A, B), then either xe A and xex — x nx ^ Bor xe S\A 
and again x e x = xnx£ B. The second inclusion follows from 1.2, a). 

1.7. Proposition. If A, C £ S, B e Q, B n A £ C, then £ £ p(A, C). 
Proof. If B e Q, B n A £ C, then a n S s I n H s C for each ae A, be B, i.e., 

J? s PC4> C). 
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§2. P R I M E C-SETS 

2.1. Definition. Let (S, Q) be a closure system, P e Q, C g S. A set P is called 
a prime C-set, if p(s, C) g P, for each s G S \ P. A pnme co-set, where co = 
— n {(?•(? e Q}9 is called a prime set. 

Remark. For each prime C-set P we have C g P. 

2.2. Proposition. If P e Q, then following assertions are equivalent: 

(I) P is a prime P-set, 
(II) P = A n B => P = A Or P = B, for each A, BeQ, 
(III) P 2 A n B => P 2 A or P g B, for each A, BeQ, 
(IV) p(A, P) = P or p(A, P) = S, for each A g S. 

Proof. (I) => (II): If P = A n B, P # A, then a G A \ P exists and P g p(A, P) g 
g p({a}, P) g P. From this B 3 p(A, P) = P = AnBgB, i.e., £ = P. 
(II) => (III): If P 3 A n B, P nO« g A, then flGv4\? exists and P = p({a},P) n 
n p2({a}, P), q e p2({a}, P) 7- P. Hence B g p(A, P) g p({a}, P) = P. 
(III) => (IV): If P # p(A, P), then P = p(A, P) n p2(A, P) implies p2(A, P) g P, i.e., 
p2(A, P) = P and it means that p(A, P) = S. 

(IV) => (I): If s e S\P, then p(s, P) = S impliesP = p(S, P) n p2(S, P) = p2(S, P) 
and s e P, a contradiction. Thus p(s? P) = P. 

2.3. Proposition. If P is a prime C-set in a set (S, Q), then p(C, P) = S and 
p2(P, C) = S or P is a maximal C-polar. 

Proof. p(C, P) = S-see 1.5, b) and Remark before 2.2. If P # p2(P, C), then 
x ep\P, C)\Pexists and from thisp(P, C) g p({x}, C) g P, i.e.,p(P, C) = p(P, C)n 
np2(P , C) = C and p2(P, C) = S. If P is a C-polar andp2(A , C) 3 P such that an 
element sep2(A, C)\P exists, then p(A, C) g p({s}, C) g P g p2(A, C) and C = 
= p(A, C) n p2(A, C) = p(A, C), i.e., p2(A, C) = S. 

2.4. Definition. Let P, Q G O, P g Q. Then we say that Q has a property P(Q) 
(notation: QeP(Q)) if it holds: 

If A n B = Q, for A, B G Q, then A', Br e Q exist such that A' n £ ' = P and A g 

g A' u Q, B g iTuHg. 

Remark. A prime Q-set is clearly a prime C-set, for each C g Q, C e O. 

2.5. Proposition.. Let P, Q e O, P g Q. Then Q is a prime Q-set if and only if 
Q G P(Q) and Q is a prime P-set. 

Proof. =>: If Q = A n 1?, then A = Q or 5 = Q-see 2.2. Let us suppose that 

A = Q. Then A' n j j ' = P, for A' = P, £ ' = B and A'u Q = QuP = Q = .A, 

B' u Q = 5 u Q = B. <=: If s G 5 \ Q, then Q = p({s}, Q) n p2({s}, Q) implies the 
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existence of sets A', B'eQ such that A' n B' = P, p({s}, 0 g A' u Q, p2({s}, Q) g 
g WZTQ. If A' g Q, then p({s}, Q) g Q. If A' non g Q, then a e A'\ Q exists 
and thus p({a], P) g Q, B' g p(A', P) g p({a}, P) g Q, because Q is a prime P-set. 
Finally, sep2({s}, 0 g B' u Q = Q, a contradiction. Finally, Q is a prime Q-set. 

2.6. Theorem. If (5, Q) is a closure space, then for each P e Q the following asser­
tions are equivalent: 

(I) The set inclusion is a fully relation on QP = {Xe Q: X ^. P} and for each 
Q e QP and each s e S\ Q it is p(s, Q) e Q. 

(II) Each Q e QP is a prime Q-set. 
(III) A set Ce Q, C g P exists such that P is a prime C-set and QP g C(Q). 

Proof. (I) => (II): If s e S \ Q, s $p(s, 0> then p(s, 0 e QP, s u Q e QP and thus 
p(s, 0 g s u Q, what is a contradiction. 
(II) => (I): If A, Be QP, A # A n B, then aeA \ A n B exists and B g p({a}, B g B, 
p({a}, A) .3 p(A, A) = S (see 1.2, c)). Further, B = p({a}, B) np({a}, A) = p({a}, 
A n B) g A n B, from A n BeQP and 1.4, b). It implies B g A. 
(II) <=> (III) immediately from 2.5. 

2.7. Proposition. If (G, i^) is an 1-group with a lattice order ^ and if Q is a system 
of all convex 1-subgroups in G, then it holds: 

!. (G, 2S) is a fully ordered set if and only if a system Q is fully ordered by set 
inclusion. 

2. If P is a prime set in G, then each Q e QP is a prime Q-set. 
3. QP g C(Q), for each prime C-set P, CeO. 
Proof. 1. =>: If A, B e Q, A \\ B, then aeA\B,beB\A exist such that a ^ 0, 

6 ^ 0. If a *• 6(ft _t a), then £ e A, (a e J5), a contradiction. 
<=: If a, b e G,a || ft, then c A d = 0, for c = a — (a A b), d = ft — (a A ft), c, 

deG\ {0}. It means thatp2({c}, {0}) * {0} * p2({d}, {0}),p2({c}, {0}),p2({d}, {0}) e 
e 0, p2({c}, {0}) np2({d}, {0}) = {0}, a contradiction. 

2. If P is a prime set in G, then a right decomposition G/P is a fully ordered set-
Then for every A, Be QP, A \\ B there exist elements ae A\B, be B\A, a ^ 0 , 
b g 0. The right classes a + P, b + P are comparable. If a + P ^ b + P, then 
a + P g A, 6 e A, a contradiction. From this QP is fully ordered by set inclusion. 
The rest follows from Theorem 2.6. 

3. P is a prime convex 1-subgroup in G(s e S\P =>p({s}, {0}) = p({s}, co) g 
g p({s}, C) g P) and the right decomposition G/P is a fully ordered set. Then for 
every A, Be QP, A \\ B there exist elements ae A\B, be B\A, a = 0, 6 ^ 0 . 
Right classes a + P, b + P are comparable. If a + P ^ ft + P(a + P <; 6 + P), 
then a + P g A(£ + P g #) and b e A(a e B), a contradiction. Finally, QP is fully 
ordered by set inclusion. 
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Now, for each Q e QP, Q = A n B, A, B e QP implies Q = A (or Q = B). If we 

choose A1 = C,B' = B (A' = A, B' = C), then Af n B' = C and Aug = 0 = A, 

W\7Q = B (A 'TTQ = A, B' v Q = Q = B) and thus Q e C(Q). 

§3. E X A M P L E S 

I. R. D. Byrd in [1] defines a C-polarity on an 1-group (G, = ) with a closure 
system Q of all convex 1-subgroups in G for each C g G in the following way: 

a/ib o\ a\ A \ b\e C, for a, be G (where \ a \ = a v —a). 

3.1. Lemma. If a,b,ceG, a = 0, b 2> 0, c = 0, C e .0, a Abe C, then [a A 
A(b + c)] - ( f l A c ) e C and (ma A /*b) - (a A b) e C, for every positive integer 
m, n. 

Proof, a AC ^ a A (b + c) = a A (b + c) A (a + c) = a A [(b A a) + c] <£ 
^ [(b A a) + a] A l(b A a) + c~\ = (b A a) + (a A c) implies 0 <; a A (b + c) -
— (a A c) ^ b A a = a A b. The rest follows from convexity of G. 

3.2. Proposition. If (G, = ) is an 1-group and Q is a closure system of all convex 
1-subgroups in G, C g G, then C-polarity ft is C-polarity tOc(.Q). 

Proof. If aQc(Q) b, a, be G, then a n 5 g C and | a | A | 6 | e a n 5 g C, i.e., 

If a/ta and xea n 5, then positive integers m, n exist such that | x \ g « | a |, 
| x | = m | 6 | , i.e., | j c | ^ « | a | A m | 6 | . Lemma 3.1 implies n \ a \ A m | b \ e 
e(\a\ A\b\) + € = C and xeC from convexity C, i.e., a n 5 g C, aQc(Q) b. 

II. Let L be a lattice and 7 be an ideal in a lattice L (x, y e I, zeL, z < x => 
=> x v >> e 7, z e I). Then a set Q of all ideals of a lattice L is a closure system and we 
define a relation yc, for each Ce Q, in the following way: 

yycy o x A y e C, for x, yeL. 

3.3. Proposition. If L is a lattice with a closure system fl of all ideals in L, then yc 

is a C-polarity QC(Q), for each C € Q. 

Proof. <= : *gc(.Q) y ^ x n y g; C=>jtAj>exnj;g C=> xycy. 
=>: If m ex n y = {/ e L : / g JC} n {/e L : I ^ j } = {/€ L : / _ x A y], then 

m ^ x A y. If A7cj, then x A y e C and m e C, x n y g C, i.e., xgc(!2) y. 

III. Let M be a partially ordered set, ff = {me M :m <> n, for each « e N}, 
N g M, Q = {N : N g M}. Then O is a closure system in M and we define a relation 
lic, for each C E O, in the following way: 

xficy o{zeM, z^x, z^yoze C}, for x,yeM. 
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3.4. Proposition. A relation nc is a C-polarity pc(Q), for each CeQ. 
Proof. <=: If z <* x, z «£ y, then zex ny and if xac(Q)y, then z e l n 7 g C 

and x/*cy. 
=»: If .x/*c>>, z e x n J, then z <, x, z <^ y and thus zeC , i.e., x nye C, XQC(Q)y. 
IV. A. W. Glass defines in [2] C-polars on an interpolation partially ordered 

group G(s, t,u,veG, s,t £ u, v => x e G exists such that s, t S x ^ u, v) with 
a closure system Q generated by the set C(G) of all dc-subgroups (directed convex 
subgroups) in G. 

A notation pG(A, C) will be used for C-polars of Glass. If C(G) is the set of all 
dc-subgroups in G and C(G) = Q, then G is called a strong interpolation group (see 
[2])-

3.5. Proposition. If G is a strong interpolation group (interpolation group) with 
a closure system Q, then p(A, C) = pG(A, C) = pG«A}, C (pG«A), C) g p(A, C)), 
where <A> is the smallest dc-subgroup in G containing A. 

Proof. If kepG({A), C), then Ink g k g <k> and because pG«Al>, C) is 
a dc-subgroup in G (see [2], after 3.2), there is k n A g pG«-4>, C). Further, [2], 
Remark before L.9 and L.8,(i) impliesk n A g A g <A> g pl«A), C)and£ n I g 
£ PG«A>> C) n Po«A), C) = C = C - see L.9, (i). Finally, k ep(A, C) and 
pG«A>, C) g p(A, C). 

In case that G is a strong interpolation group and k epG(A, C), then k n A g 
g <k> g pG(A, C), because pG(A, C) is a dc-subgroup in G. Further, k n A g 
g p%(A, C), see [2], L.8, (ii) and thus k n A g pG(A, C)npl(A, C) = C. Finally, 
pG(A, C) g p(A, C). 

For the converse, if k ep(A, C), then k n A S C n A = Cn<A>. Further, [2], 
L.7, (iv) implies pG«A>, C) = pG«A), Cn <A» and [2], L.9, (ii) and Remark 
before implies <A> npG«A>, C) = <A> npG«A>, Cn <A» = Cn <A>. Hence 
and from [2], L.9, (iv) we have k e <k> g pG«A), C n <A» = pG«A), C), i.e., 
p(A, C) g pG«A}, C) g pG(A, C) g p(A, C) - see [2], L.5, (ii). 

V. J. Rachflnek in [3] defines on a po-group G a polarity 8 :x,yeG, xSy <-> 
oa,beG exist, such that a^Q, bl>0, ae\x\, be\y\, aAb = Q, where | x \ = 
= {geG : g = x, g = — x} for each x e G. 

Po-group G is called 2-isolated, when: 

a e G, a _ —a => a = 0. 

3.6. Proposition. Let G be a 2-isolated po-group, Q be the smallest closure system 
containing a set C(G) of all dc-subgroups in G and 

(I) I x I # #, for each x € G, 
(D) xv -x exists for each -*: e G. 

Then a polarity 5 is g{o>(.Q)-
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Proof. If xSy, then a,beG exist such that a, b = 0, a e | x |, b e \ y |, a v b = 0. 
[3], Prop. 2.5 implies that g* = {x e G y *<%} is a dc-subgroup in G, for each geG. 
Hence g*5 = g5 and therefore j e / , j e | g ^ = x ^ E J c g / - see [3]. Defini­
tion mentioned after 2.3. Finally, x n y g xd n x*a = {0} (see [3], Th. 2.6). It 
means that xgm(Q) y. 

If XQ{0}(&) y, then x n j> = {0} and x = n {Q G C(G): x e Q}. Further, if x e Q9 

Q e C(G), then ^-xe Q and de Q exists such that d ^ x, - x . Hence d 2z xv —x ^ 
= x, —x, i.e., x = —xeQ and x v — xex . Similarly yv —yey and from this 
x v - x = 0, j v -j> = 0, xv -xe\ x\, yv -ye\y\, (xv -x) A(yv -y)e 
ex n y = {0}, i.e., x(5>>. 

3.7. Proposition. Let (G, = ) be a 2-isolated po-group, Q be the smallest closure 
system containing the set C(G) of all dc-subgroups in G. Then the following assertions 
are equivalent: 

(I) (I G |, = ) is fully ordered, where | G | = {| g \ : g e G}, 
(H) (C(G), g ) is fully ordered, 

(HI) (G+, = ) is fully ordered, where G+ = {ge G : g = 0}. 
Moreover, in case that (G, = ) is directed, then (C(G), e ) is fully ordered if and 

only if (G, g) is fully ordered. 

Remark. If G is directed interpolation group, then Q is not fully ordered (see [2], 
Remark before Th. 23). 

Proof. (I) => (II): If A, Be C(G), A || B, then elements aeA\B, beB\A exist 
and | x | || | a \ for each x e B \ A. Namely, if | x \ 2 \ a\, then x e A, see [3], Lemma 
after 1.1, a contradiction. For | x \ g | a \ we have a e B, similarly and again a con­
tradiction. 

(II) => (III): If a,beG+ exist such that a||b, then | a | non a | b \ and 
| b | non g | A| . Suppose <|a|> ^ <| b|>. Then for eachxe | b | s <|6|> s <|a|> 
there exist elements gte\ a\, i — 1, 2, . . . ,« such that for p = gx + g2 + ••• + £» 
there is | x | 2 | p |. But p = gf = a, for i = 1, 2, ..., n and thus p e \ a |, which is in 
a contradiction with [3], Lemma mentioned after 1.1. 

(III) =-> (I): a <; b if and only if | a | 2 | b |, for every a,beG+. The rest is evident 
from the fact that G = G+ — G+ for a directed po-group. 
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