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ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XII: 213—224, 1976 

AUTONOMOUS AUTOMATA AND CLOSURES 
WITH THE SAME ENDOMORPHISM MONOIDS 

JAN CHVALINA, Brno 
(Received May 3, 1976) 

There is given a characterization of autonomous automata with algebraic closures 
on set of their states such that endomorphism monoids of automata coincide with 
endomorphism monoids of corresponding closure spaces. This problem is also 
studied for algebraic preclosures and the question of the unicity is treated, too. 

1. INTRODUCTION 

The paper [9] is concerned with linear realizations of autonomous automata without 
output function, i.e. there is studied an existence of monomorphisms from autonomous 
automata into such ones, where sets of states are vector spaces over finite fields and 
nextstate functions are endomorphisms of these spaces. This paper deals with 
a certain modification of the mentioned problem, namely when the next-state function 
is an endomorphism of algebraic closure space or algebraic pre-closure space and 
moreover when endomorphism monoids of the considered structures coincide. This 
is a problem of a realization in the categorical sense (cf. [5]). Algebraic pre-closure 
spaces can be considered as a special type of non-deterministic autonomous auto­
mata. From results of this paper it follows that the structure of deterministic 
autonomous automata can be described (with respect to the preservation of endo­
morphism monoids) by algebraic pre-closure operations and not by closure opera­
tions, in general. Autonomous automata endomorphism monoids of which coincide 
with those of closure spaces are of a special type. 

2. BASIC D E F I N I T I O N S AND NOTATIONS 

By an autonomous automaton, we mean an ordered pair (A9f)9 where A is a non-
void finite set (set of states) and / is a mapping of the set A into itself (next-state 
function); cf. [9]. 
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2.1. Let (Ax,f), (A2,f2) be autonomous automata. A mapping g: At ~* A2 is 
said to be a homomorphism of the automaton (At,f) into the automaton (A2,f2) -f 
for each aeA± there holds gf(a) =f2g(a). The set of all homomorphisms of (At ,f) 
into (A2,f2) is denoted by U((At ,f), (A2,f2)). A homomorphism of an autonomous 
automata (A,f) into itself is called an endomorphism and the monoid of all endo-
morphisms (with respect to the composition of mappings) is denoted by E(A,f). 
A construction of the set H((A1,f1),(A2,f2)), especially E(A,f) is a special case 
of the construction of all homomorphisms of a unary algebra into another one given 
in papers [7] and [8]. From there (and also from [6]) we take some notions necessary 
for our purpose. An autonomous automaton (A, f) is said to be connected if to every 
pair of states a, be A there exists a pair m, n of non-negative integers such that 
fn(a) = fm(b). A maximal (with respect to the set inclusion) connected subautomaton 
of an automaton (A,f) is called a component of (A,f). Components of (A,f) will 
be denoted by (At,f). A set of states {a e At :f\a) = a for some natural k) is called 
a cycle of (At,f) and is denoted by Z(A„f). The cardinal number | Z(At,f) | is 
called the rang of the component (At,f) and it is denoted by R(At,f). (The cardinal 
number of a set X is denoted by | X |). Clearly, an automaton is connected iff it has 
exactly one component. By def. 7 in [8], we say that a connected automaton (A2,f2) 
is admissible to a connected automaton (At,f) if R(A2,f2) divides R(A1,f). 

Notions of theory of closure spaces are taken from papers [1], [2] and [3]. Let S 
be a set. A mapping C : exp S -> exp S is said to be a pre-closure operation (or 
briefly a pre-closure) on the set S if X c C(X) and X c Y c S implies C(X) e C(Y) 
for each X, Y<= S. If, moreover, CC(X) = C2(X) c C(X) for each Xc= s, then C is 
called a closure operation (a closure). An ordered pair (S, C) is called a pre-closure 
space (a closure space) if C is a pre-closure (a closure) on S. A pre-closure C is 
called algebraic and the corresponding space as well if C(X) = u{C(Y) : Ye X, 
| Y | < ^o}- A homomorphism of a pre-closure space (Sx, CO into another one 
(̂ 2? C2) is a mapping g : St -> 52 such that ^(C^X)) = C2(g(X)) for every set 
Xl= Si. (See [2]). The set of all closure homomorphisms from (Sl9 Cx) into (S2, C2) 
is denoted by H((Sj, Ct), (S2, C2)) and the endomorphism monoid of the space (S, 
C) by E(5, C). It is to be noted that additive pre-closure spaces with C(4>) = cj), (i.e. 
from the topological point of view) are studied in detail in [4]. We put [a)f = 
= {fn(a):n = 0, 1, 2, ...} for aeA. By [9] we say that an automaton 042,f2) 
realizes (Alt f) if there exists a monomorphism g: 04i,fi) -* (A2, f2). The class 
of all autonomous automata is detoned by 21. 
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3. CYCLIC AUTOMATA 

3.1. Definition. An autonomous automaton (A, f) is called a periodic automaton 
if fk is the identity map of A for a positive integer k. The smallest positive integer k, 
for which/* is the identity map, is called the period n(f) of (A,f). A connected periodic 
automaton will be called a cyclic automaton. 

Remark 1. It is to be noted that in [9] periodic automata in our sense are called 
permutations. There are as autonomous automata considered mappings (of finite sets) 
only. Evidently, every periodic automaton (A,f) can be written in the form ]T (At,/), 

where (At,f) are cyclic automata (components of (A,f)) and n(f) is l.c.m. of | A. | = 
= R(At,f), 1 = i = n, cf. [9]. In what follows (A,f) = £ (At,f) means that 

(At,f), 1 = i = n are exactly all components of the autonomous automaton (A,f). 

3.2. Proposition. Let (A,f) be a cyclic autonomous automaton of the rang r = 3. 
Then there exist at least 2r — 4 different algebraic preclosures Ck on A such that 
E(A,f) = E(A, Ck), k = 1, 2, . . . , 2r - 4. 

Proof. Let (A,/) be a cycle with r = | A | :> 3. For k = 1,2, . . . ,r - 2, aeA, 

we put C,(0) = Cm = 0, Q(a) = {/(a) : i = 0, 1,..., k), Ck(a) = (J/" ' W u {a} 

and Ck(X) = U Q(a), Ĉ (X) = U Q(a) for X c A, X # <£. Evidently, «^ = 
fl6X aeX 

= {C : k = 1,..., r — 2} u {Ĉ  : k = 1,..., r — 2} is a system of different algebraic 
pre-closures on A such that | dA \ = 2r — 4. Let k be an integer, 1 g k ^ 2r — 4, 
g e E(A,f), aeA. There is E(A,/) = {/*: n = 0, 1,..., r - 1} and with respect to 
f»g =g/»wehaveg(Cfc(a)) = Ck(g(a)), g(Ck(a)) = Ck(g(a)),\\ms g(Ck(X)) = Cfc(g(X)), 
g(C^X)) = Ck(g(X)) for each X<= A. Hence E(A,f) c E(A, C) for every pre-closure 
Ce CT̂ . Let 1 ̂  k ^ r - 2, geE(A , Ck), aeA. Suppose first that k = 1. Then 
{g(a), gf(a)} = gCt(a) = Ct(g(a)) = {g(a),fg(a)}. Since g(a) * fg(a), there is 
g(tf) # gf(a) and we have #/(«) = fg(a). Now, let 2 g k «g r - 2. Assume that g/(a) = 
—flg(a)> where 2 = / = k. Since g is a pre-closure endomorphism there exists an 
integer pe {2, 3 , . . . , k} with g/p(a) =f-lg(a). There holds/p(a) e Cfc(/(a)), i.e. 
£/*(a)eCfc(£/(a)), however gf*(a) =fl-1g(a)$CJl(f

lg(a)) = Ck(g/(a)). This is a 
contradiction, hence / = 1. Since the equality gf(a) = g(a) leads also to a contra­
diction, because of | Ck(g(a)) | = | Ck(a) | and gCk(a) = Ck(g(a)), we have #/(a) = 
= fg(a). This equality holds for each aeA, thus g e E(A,f). In a similar way we get 
the same result for C = Ck, 1 ̂  k ^ r - 2, therefore E(A , /) = E(A, C) for each 
Ce&A, q.e.d. 

Remark 2. A question of a description of all pre-closures on a cyclic autonomous 
automaton (A,f) (or a periodic automaton in general), endomorphism monoid of 
which coincides with E(A,/), seems to be open. 

215 



A pre-closure space (A9 C) is called discrete (trivial) if C(X) = X for each X £ A 
(if C(X) = A for each X £ A, X -* 0 and C(<£) = 0 or C(<£) = A). 

3.3. Lemma. Let (-4i,/i), (Al9f2) be cyclic autonomous automata, where \ A2 \ is 
a prime number and the divisor of\A1\. Let (Al9 Ct), (Al2, C2) be algebraic closure 
spaces such that li((AiJi\ (AiJi)) = H((Al9 Ct), (A2, C2)). Then the space 
(Al9 C2) is either discrete or trivial. 

Proof. (A2,f2) is admissible to (Al9fx) according to the assumption, thus 
H((^i»/iX (Al9f2)) ^ <f>. If g : (Al9fj) -+ (A29f2) is a homomorphism then q>x = 
= gf",92 =f2g are homomorphisms of (A ! , / ) into 042,/2) for each non-nega­
tive integer n. Let C ^ Q be closures on Aj,A2 respectively, such that U((Al9 

/i)> (A2, f2)) s H((A[ i, d ) , (i42, C2)). It is easy to show that/2 : (A2, C2) -* (A2, 
C2) is an endomorphism for each non-negative integer n. Indeed, let on the contrary 
Y be a subset of A2 with f2(C2(Y)) * C2(f

n
2(Y)). Put X -. g_1(F), where g e 

e H ^ / M A , , / , ) ) . Then <p2Ct(X) = fn
2gCx(X) = /2"C2(g(X)) =f«C2(Y)# C2 

/2(F) = C2f2g(X) = C2<p2(X), which is in a cotradiction with (p2eH((^1C1), 
(Al9 C2)). Thus f2 €E(A2, C2). Let b0 e A2 be an arbitrary element. I? C2(bo) = 
= {b0} then, sincef2eE(A2, C2) for each integer n and C2 is algebraic, C2 is 
discrete. Let C2(b0) = Y ^ {ft0}- P u t ^ = {*o> *i,.. . ,ft f c-i}, where k = | A2 |, 
£j =£ iy for / # / Assume the notation is choosen in such a way thatf'*(6f) = bi+1 

for i = 0 ,1 , . . . , k - 2 and fli~l(bk-d = b0, where /£ are the least non-negative 
integers with this property fl(bt)e Y for / < /,. Let 6fe F be arbitrary. Since 
g is an automorphism of (Al9 C2), there holds | C2(bt) \ = | Y\. Further, Y is 
a closed set in (Al9 C2)hence C2(bi) = F. Let/f < li+1.Thenfli(bi+1)e Y. On the 
other hand bi+1eC2(bt)9 thus fli(bi+1) efliC2(bt) = C2(f

li(bt)) = C2(AI+1) = F, 
which is a contradiction. Thus /f = li+1 for each /. Let / be the least natural number 
with the property f\b0) = bt. Then F = {f*(b0)9 f(b0\ f2l(b0)9 ...,fik~l)l(bo)}, 
ft0 = ffk'1)l(b0) =fkl(b0)9 thus k . / = | A2 | = R(A29f2). By the supposition 
| A2 | is a prime number, 1 < k = | A2 \, hence / = 1 and k = | A2 |, i.e. F = A2. 
Consequently (A2, C2) is a trivial closure space. 

Remark 2. If (A9f) is a cyclic automaton, a0GAf an arbitrary element and for 
a9 b e A. we put a . 6 = / n + m(#o)> where «, m are the least non-negative integer such 
that fn(a0) = a9 f

m(a0) = b9 we get that (A,.) is a finite cyclic group of the order 
I A I (= R(A9f)) with the unit a0. It was shown in the above proof that if C is an 
algebraic closure on A such that E(A,/) c E(A, C), then (C(b0),.) is a subgroup of 
(A,.). If (A9.) is of a prime order, then the subgroup (C(b0)9.) is either trivial or 
non-proper (i.e. C(b0) = A). 

3.4. Theorem. Let (Al9f1)9(A2,f2) be cyclic autonomous automata. There exist 
algebraic closures Cl9C2 on Al9A2 respectively with the property H((Al9f1)9 

(A29f2)) - H((Ax, C,), (A2, C2)) # <i> iff either \ A2 \ = 1 or \ Ax \ = | A2 | = 2. 
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Proof. If | A2 | = 1, then | Af \ = 1, thus H((Al9fx)9 (A2,f2)) = H((At, Cx)9 

(A2, C2)) # (j>. If | Ai | = | A2 | = 2, then the above equality is also valid for Cx, C2 

trivial. 
Let Ct be such a closure on Af (i = 1, 2) that considered sets of homomorphisms 

are non empty and coincide. Assume | A2 | _ 3. If | A2 \ is a prime number, then 
with respect to lemma 3.3 (A2, C2) is trivial. C2 cannot be discrete because no constant 
mapping of Ax into A2 belong to H((A i , f!) , G42,f2)). Suppose | A2 | = 3 and that 
it is not a prime number. Choose bi9b2e A2 such that b, ^ f2(b2) and b2 e C(bi). 
Let g e H((Ai ,fi), (A2,f2)) = H((A i , Cx)9 (A2, C2)). Define a bijection h : A2 ~> A2 

in the following way: h(bx) = b29h(b2) = bl9 h(b) = b for beA2, bt ^ b # b2. 
According to remark 3 we have that (C2(b),.) is a subgroup of (A 2 , . ) , it holds 
C2(bx) = C2(b2) hence heE(A2, C2) and thus hgeU((Ai9 Cx)9 (A2, C2). On the 
other hand, let b0eA2 be such an element thatf2(b0) = bx. Choose aeg~~x(b0). 
Then b0 ^ b2 and there holds hgfx(a) = hf2g(a) = hf2(b0) = h(bx) = b2 ^ bx = 
= f2(bo) =f2h(b0) =f2hg(a)9 hence Age H((A1?fi), 042,f2)), which is a contra­
diction. Therefore | A2 | S 2. Suppose A2 = {bi,b2},bi ¥" b2. Admit that | Ax | > 2. 
There is C2(bx) = C2(b2) = A2. Let geU((Al9fx)9 (Al9f2))9 ax eg'Kb,). Since g 
is a homomorphism of (AX9 Cx) onto (A2, C2), we have Ci(ax) n g - 1(b2) # 0. Let 
a2 e Ci(ai) be such an element that g(a2) = b2. It holds Cx(a2) _ Cx(ax). If Cx(a) # 
^ Cx(a2)9 then there exists a point a3 e C(a2) with the property g(a3) = bx. There is 
Ci(a3) _ Ci(a2) again. Since | Cx(x) | = 2 for each x e Al9 there exists at least one 
pair of elements al9d2e Ax such that Ci(ai) = Ci(a2), xe Cx(ax) implies Ci(x) = 
= Ci(ai) and g(ai) = bi, g(a2) = b2. Now, define a mapping h : Ax -» A2 by 
h(ai) = b2, h(a2) = bx and h(x) = g(x) for xe Ax - {ai9 a2). If Xc Ax - Ci(ax), 
thenCi(X) = '-4i - C^aiXthus/jC^X) = gCx(X) = C2(g(X)) = C2(h(X)).IfXcA 
and Xn Cx(ax) ^ 0, then Ct(X) = Ci(X - Ci(ai)) u Cx(ax) and thus hCx(X) = 
- hCi(X - Cx(a)) u hCi(ai) = C2(h(X . - Ci(ai))) u A2 = C2(h(X - Cx(ax))) u 
u C2(h(Ci(ai) n X)) = C2(h(X)). Especially, if Xc C(ax)9 then Ci(X) = C(ax) and 
thus hCt(X) = h(Cx(ax)) = A2 = C2(h(X)). Therefore h is a homomorphism of 
(A1? CO onto (A2, C2.) However, iffi(ai) = a2, then hf(a2) = gfx(a2) =f2g(a2) = 
^f2(b2) =bx^b2 =f2(bi) =f2h(a2) a n d f ^ a j ¥= a2 implies hfx(ax)= gfx(ax) = 
^f2g(di)=f2(bx)=b2^bx=f2(b2)=f2h(ax). Hence we get A e H ^ A ^ f O , 
C^2>./2))> which is a contradiction. Therefore it holds | Ai \ = 2 , q.e.d. 

3.5. Corollary. Let (A, f) be a cyclic autonomous automaton, C an algebraic closure 
operation on the set A. Then E(A, f) = E(A, C) iff \ A \ = 2. 
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4. TREES 

One of the types of connected autonomous automata which is studied in more 
detail in [9] is a tree. 

4.1. Definition. An autonomous automaton (A,f) is called a tree if there exists 
a non-negative integer k such thatf* is a constant map (cf. [9], p. 68). 

Evidently, a tree is a connected autonomous automaton. 

4.2. Definition. Let (A,f) be a tree. The smallest non-negative k, for which fk is 
a constant map, is called the height of (A,f) and is denoted by H(f), the uniquely 
determined constant is called the base of (A,f) and is denoted by zf, i.e. {zf} = 
== Z(A,f). Let aeA. The smallest non-negative integer k such thatf*(a) = zf is 
called the level of a in (A,f) and will be denoted by X(a). An element a e A is said to 
be extremal in (A,f) if X(a) = H(f). 

4.3. Theorem. Let (A,f) be a tree with the base zf. If H(f) = 1, then there are 
precisely two algebraic pre-closures Cx, C2 on the set A with E(A,f) = E(A, Cf), 
/ = 1, 2, where CX(X) = X uf(X), C2(X) = CX(X) u {zf}for each X c A. IfH(f) = 

= 2, then Cx is the only algebraic pre-closure on the set A such that E(A,f) = 
= MA, Cx). 

Proof. Let g e E(A,f), X cz A. Then gCx(X) = g(X uf(X)) = g(X) u {gf(x) : 
:xeX}= g(X) u {fg(x) : xeX} = g(X) u fg(X) = Cx(g(X)), hence E(A,f) c 
S E(.A, d).LetAeE(i4, Cx). It holds {Afy)} = AC-.^) = C^Afy)) = {/Kz^f/^z,)}, 
thus h(zf) =fh(zf) = Zy. Then for Xc A arbitrary we have hC2(X) = h(Cx(X) u 
u {zf}) = Cx(h(X)) u {z,} = C2(h(X)), i.e. A e E(A, C2). Hence E(A,f) c E(A, Cx) ^ 
= E(A, C2). 

Let geE(A,Cx),aeA. Then {g(a),gf(a)} = g{a,f(a)} = gCx(a) = Cx(g(a)) = 
= {g(a), fg(a)}. Thus either gf(a) = g(a) =fg(a) or gf(a) =̂  g(a) and gf(a) * fg(a)% 

hence g e E(A, f). Suppose that (A, f) is a tree of the height H(f) = 1, g e E(A, C2). 
It holds {g(zf)} =gC2(<j>) = C2(g(<j>j) = C2(4>) = {zr}. If aeA, we have {#(a), 
gf(a), zf} = gC2(fli) = C2(g(a)) = \g(a), zf} for f(x) = zf if x e A. It follows from 
here that either g(a) = zf = gf(a) or g(a) # zf and sincef(a) = z/? we have gf(a) = 
= ^(zj) = zf. Thus gf(a) = zr = fg(a) for each a e A, i.e. g e E(A, f). Consequently 
E(A,f) = E(A, dx) = E(A, C2) for a tree (A,f) of the height 1 and E(A,f) = 
= E(A, CO for each tree (A,f). 

Now, consider an algebraic pre-closure C on the set A satisfying the condition 
E(A,f) = E(A, C). Since the constant transformation of A with the value zf belongs 
to E(A,f), we have C(zf) = {zf}. Let a0 be an extremal element of the tree (A,f), a 
an arbitrary element of A. According to definition 9. and 2.12. in [8] there exists 
an endomorphism g of the tree (A,f) such that g(a0) = a and g(A) = [a)f. Then 
C(a) = C(g(a0)) = gC(a0) s [a)f. If H(f) = 1, because off(a) = zfsmd C(<f>) c C(a) 
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for each a e A9 we have C(<t>) e {$, {zf}}- The pre-closure C is algebraic thus either 
C = Ct or C = C2. 

Let H(f) = 2. Assume there exist a e A of the level k(a) = 2 and an integer k = 2 
such thatf*(a) e C(a). Since f* e E(A,f) = E(A, C) for each non-negative integer n9 

using the above considered endomorphism g9 we get thatf*(x) e C(x) holds for each 
x e A. Choose bef~ l(zf) - {zf} and put B0 = {x e A : X(x) = H(f)}9 Bt = {x e A : 
:/l(x) = H(f) — 1}, i.e. B0 is the set of all extremal elements in (A9f). Define 
a transformation <p : A -» A by <p(x) = b for x e B0 U 5 t and <p(x) = zf for x 6 
e A — (B0 u J?j). Sincef(x) e Bj for each x e B09 we have <p e E(A, f). On the other 
hand, consider a constant transformation of A with the value zf. We get C(4>) e 
e {0, {zf}}. Let X c A9 X # <£. If X n (j?0 u BO = 0, then <p(X) = {zf} and C(X) n 
c (B0 u BO, = 0 thus <KC(X)) = {zf} = C(zf) = C(q>(X)) in this case. Let 
X n (B0 u BO 4= 0. Sincef*(X) c C(X), we have C(X) n (A - (B0 u BO) # 0 and 
since any constant transformation of A with the value different from zf does not 
belong to E(A, f) = E(A, C) we get q>(C(X)) = {zf9b} = C {zf9b} = C(b). If 
X <= (B0 uBO, then <p(X) = {b}9 if X 4: (B0 u BO, then <?00 = {zf9 b} hence 
cpC(X) = C(cp(X)). If C(<£) = & then <?C(<£) = <£ = C(<p(<M), if C(<f>) = {z,}, 
then (pC((j)) = {zy.} = C((p(4>)). Therefore <p e E(A9 C), which is a contradiction. 
Hence k < 2 and since C(a) = {a} for a ^ zf leads to a contradiction (as is stated 
above), we have C(a) = {a9 f(a)} for each a e A thus C(<f>) = <f>. Since C is algebraic 
we get C = Q , q.e.d. 

Let us prove the corresponding theorem for closures. 

4.4. Theorem. Let (A, f) be a tree with the base zf,C be an algebraic closure operation 
on the set A. Then E(A9 f) = E(A, C) iff H(f) = 1. In this case there are precisely two 
algebraic closures Cl9 C2 on A with the property E(A9f) = E(A, CE), i = 1, 2, where 
Ci(X) = X uf(X), C2(X) = C-(X) u {zf} for each X ^ A. 

Proof. Let H(f) > 1, C be an algebraic closure on A such that E(A,f) = E(A, C). 
Let aeA,a ^ zf. As in the proof of theorem 4.3. denote by g such an endomorphism 
of (A,f) that g(A) = [a)f. The existence of g follows from [8], 9., 2.12. Then ge 
eE(A9 C), hence C(a) <= [a)f. Assume there exists aeA with zf e C(a). Let k = 1 be 
an integer such that f*(a) e C(a), fl(a) e C(a) for each / ^ k. Since f* e E(A, f) = 
= E(A, C), we have C(f*(a)) £ [/*(*)), hence C(a) n C(f*(a)) = {f\a)}. Since 
a closure of each singleton is the least closed set containing its element and inter­
section of two closed sets is a closed set, there is C(fk(a)) = {fk(a)}. This is a contra­
diction because f*(a) # zf and the constant transformation of A with the value fk(a) 
does not belong to E(A,f). Hence zfeC(a) for each aeA. Choose bef""1(zf)9 

b 9-= zf and define a mapping h : A -» {b9 zf} by h(x) = b for each x ^ zf and A(zy) «= 
= z,. Let X c A. if 0 -* x ?- {z,}, we have /*(X) = {6, zf} and C(X) # {zr}. Then 
C(A(X)) = {b9 zf} = AC(X). Further, C(h(zf)) = C(zf) = {z,} = AC(zr) and since 
C((/>) e {0, {z,}}, there holds C(/*(0)) = hC(4>). Thus we have A e E(A9 C). However, 
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H(f) is assumed greater than 1, hence there exists x0eA with l(x0) = 2, con­
sequently heE(A,f) for hf(x0) = b # zf =fh(x0). This contradiction implies 
H(f) = 1. 

If H(f) = 1, then by theorem 4.3. there exist precisely two algebraic pre-closures 
Cl9 C2 on A such that E(A , / ) = E(A, C(), i = 1, 2. However, C^X) = Cx(X) u 
u d ( / ( X ) ) = Xu {zf} = Ci(X) for X s A, X # $ and C?(0) = 0 = Cx(0) and 
similarly C2(X) = C2(X) for each X G A. Hence C-, C2 are closure operations. The 
proof is complete. 

5. G E N E R A L CASE 

In this paragraph there will be considered arbitrary autonomous automata (A, f) = 
= £ (At, f), where (A t, f) : 1 ^ i ^ n is the system of all components of (A, f ) . 

If (Al9f) is a tree, then the base of (Al9f) will be denoted by zt instead of zfr 

5.1. Definition. Let (A i , Cx), (A2, C2) be pre-closure spaces. We shall say that (Ax, 
Cx) is embedded into (A2, C2) if there is a one-to-one mapping cp : Ax -> A2 such 
that for each set X c A there holds cpCt(X) = C2(cp(X)) n <p(At), (cf. [2], p. 183). 

5.2. Proposition. To every autonomous automaton (A,f), there can be assigned an 
algebraic pre-closure C on the set A such that 

1°E(A , / )=E(A ,C) 
2° If(A2,f2) realizes (-4i,/i), then (Ax, Ct) is embedded into (A2, C2). 

Proof. Let (A, f) e 91. Put C(X) = X uf(X) for each Xs A. Evidently, E(A, f) c 
S E(A, C). From 3.2. and 4.3. it follows that E(A.,f) for each component (At,f) 
of (A, f ) , where Ct(X) = C(X) n A, = C(X) for every set X <= ̂ . If (A,, f), (Ax,fx) 
are different components of (A , / ) , H((A t ,C.), (A„, C J ) # </>, where Ct,Cx are 
relativizations of C onto A., Ax respectively, then it is easy to show (similar to the 
proofs of 3.2. and 4.3.) that H((A . , f) , (Ax,fx)) * 4* and H((A t, C.), (Ax, Cx)) s 
<= H((A4,f), (Ax,fx)). Then we get the equality E(A,f) = E(A, C), thus 1° holds. 
Let (^ i , f i ) e9 l , (A2,f2)e% Ci9 C2 be the above defined pre-closures for (Aj ,fi), 
0*2 > fi) respectively. Let g : (At,ft) -» (Ai2,/2) be a monomorphism, X c A3 Since 
g(Ai) is anf2-stable set in 042,f2), we have C2(g(X)) n g(Ax) = C2(g(X)) = g(X) u 
^figiX) = ^Ci(X) hence g is an embedding of (Ax, Ct) into (A2, C2). 

Remark. Condition 2° in 5.2. cannot be replaced by this stronger condition 2° 
(^2^/2) realizes (A1,fl) iff (Ai , Cx) is embedded into (A2,f2), because embeddings 
of algebraic pre-closure spaces in the sense of [3] (defined above) are not morphisms 
corresponding to monomorphism of autonomous automata in the sense of a realization 
of concrete categories. However, if we define an embedding g of (A 1, Ct) into (A2, C2) 
by the requirement that g is injective and gCx(X) = C2g(X) for each X c A, we can 
write 2°' instead of 2° in 5.2. 
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5.3. Theorem. Let (A, f) = £ 04., f) be an autonomous automaton. There exists 

an algebraic closure C on the set A with the property E(A,f) = E(A, C) ^ <t> iff for 
each te {1, 2 , . . . , n} there is f2

t e {f, idAi}9 i.e. (At9f) is a tree of the height 1 or 
aperiodic component with R(At9f) S 2. 

Proof. Let (A9f) = £ 0 4 , , / ) be an autonomous automaton satisfying the 

condition given in the theorem. Put C(X) = Xu/(X) for each Xc= A. Evidently 
(A, C) is an algebraic closure space and E(A , / ) c E(A, C). Let geE(A, C), aeAt, 
g(a)eAx. If R(At,f) = 2, then (Ax,fx) is admissible to (At,f). Let R(At,f) = 1. 
Then C(zt) = {zt}9 {g(zt)9fxg(zt)} = Cg(zt) = gC(z,) = {g(zt)} hence J l M ^ / j = 1. 
Then we get, in the similar way as in the proof of theorem 4.3., that gf(a) =fxg(a) 
i.e. gf(a) =fg(a). Let R(Al9f) = 2. If R(Ax9fx) = 1, since geE(A, C), Z(At9f) = 
= C(a) for each aeAt and C(zx) = {zx}, we have gZ(At,f) = {zx} thus gf(a) = 
= z» = f*g(a)- If R(^x,fx) = 2, then #Z(A t,f) = Z(A x , fJ , simultaneously x ^ e 
e Z(Af, f ) , x ^ y implies g(x) ?- g(y\ thus we have gf(a) = fxg(a), too. Hence gf(a) = 
= /?(#) f ° r e v e r y « e A, i.e. g e E(A,f). 

Now, let C be an algebraic closure on A such that E(A, C) = E(A, f ) , where 
(A,f) = YJ (Al9f)> Let* «e {1, 2 , . . . , »} be arbitrary. Consider such endomor-

phismsgeE(A , / ) , forwhichg(x) = xifxeA - At.]fR(At9f) > 1, then according 
to 3.5. it holds R(At,f) = 2. If (At9f) is a tree, then with respect to theorem 4.4 
we have H(f) = 1. Let R(At,f) = 2. Assume At * Z(At, f). Let a e At - Z(At, f) 
be such that f(a) e Z(At,f). Consider a mapping A : A -» A defined by A(x) = a 
for xeAx- Z(At9f)9 h(f(a)) ~f](a)9 h{f2

t(a)) «/ .(*) and A(x) = x for each 
xeA — At. Since Z(At, f) c C(x) for each xeAi9 we have AeE(A, C). However, 
*(/(*)) = /?(«) ¥tfHfl) =f{h(a))9 thus he E(A,f), which is a contradiction. Hence 
At = Z(At,f) and we have te {1,2, ...9n} implies/? = / or / t

2 = i d ^ , q.e.d. 
Now, describe all closures on A having the property E(A , / ) = E(A, C), where 

( - 4 , / ) = I (At9ft).VutNt={i:l£i£n9R(Ai9ft) = l}9N2={i:l£i£n9 

R(dl9f) = 2}. With respect to theorem 5.3. it holds Nx u N2 = {1, 2,...9n}. Put 
CX(X) = X u/(X) for each X <= A. 

5.4. Theorem. Let (A9f) = ]T ( A . , / ) be arc autonomous automaton, %A be the 

system of all closure operations on A such that E(A, / ) = E(AI, C). Let Ni9 N29 Ct be 
symbols defined as above. Then it holds: 

( - ) ' / |-Vi | = 1, N2*(t> and (A9f)=(Al9fl) + Z(Ai,f)9 then dA = 
ceN2 

= {C19C29 C3}, wAere C2(X) = Ct(X) u { z j /or (̂  # Xc A, C2(<£) = <£ a»rf 
C3(X) = CX(X) u { z j /o r eacA X c A. 

(ii) I/etYAer Nx = <£, | N2 | = 2 or | Nt | = 2, /Aen C^ = {CJ. 
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Remark. For the case Nt = <t>9 \ N2 \ == 1 see 3.5., for the case | Nt \ = 1, N2 as <£ 
see theorem 4.3. 

Proof of theorem 5.4. Let C be an algebraic closure operation oil A such that 
E(A9f) = E(A, C). Let |Ni | = 1, N2 = <£ and(A,/) =(Al9fi) + EG*, , / ) i.e. Nt = 

teN2 

= {1} and (-4i,/i) is either a tree of a singleton. With respect to theorem 4.4. there 
is zt e C(a) for each a G At and H(f) = 1 whenever (At,/) is a tree. If a, b e At, 
<z # 6 # zx, then 6 e C(a). Assume C(a) n Ax # $ for some a e Ax, xeN2. Then 
Ci(zi) n Ax ^ <t> and since the constant self map of A with the value zx belongs to 
E(A, C), we get a contradiction. Hence X s Ai9 X # 0 implies C(X) = Xu/(X), 
C(<£) e {<£, {zj}. Let t G N2 be arbitrary, a e At. Then Z(At, / ) c C(a). Since (At, / ) 
is admissible to each (AX9fx)9 x G N2 and thus for each xeN2 there exists an endo-
morphism of (A, C) which] maps Ax onto At, we have that Xc Al9xeN29x 7-= « 
implies C(X) n Ax = <j). Let there exists a G At with C(a) n At ^ $. Since the mapp­
ing A which is an identity mapping onto A — At and h(x) = f(x) for xe At belongs 
to E(A,/) = E(A9 C), we have C(a, n Aj = {zj . Then C(X) n At = {ẑ } for each 
X ^ A9 X ^ <j>. Consequently, we get these possibilities: Either C(X) = Xu/(X) 
for each X = A or C(X) = X u f(X) u {zj for <£ 7- X = A and C(<£) = <£, or C(X) = 
= X u/(X) u {zj for each X c A. If Nj = 0, | N2 | = 2, then each two compo­
nents of (A9f) are mutually admissible, thus X e At implies C(X) n Ax = <t> for 
each x 7-= t. Then the closure operation C having the property E(A,/) = E(A, C) is 
equal to Cx. Let | Nt | = 2. Let (At, / ) , (A2, f2) be such components of (A, / ) that 
R(Al9f1) = R(A29f2) = 1. Since (-4i,/i), (Al9f2) are mutually admissible, then as 
above Xe At implies C(X) n A2 = $ and / c A2 implies Q F J n ^ = <£ and 
also C(X) n A! - C(X) n A2 = <£ for each X c \JAt. Since C(<£) c C(X) for each 

«6iV2 

X c A it holds C(<£) = <£. Hence C = Cx, q.e.d. 

A closure C on A is said to be topological if C(X u Y) = C(X) u C(Y) for X_= A, 
7 = A. Of course, a topological closure is algebraic and vice versa whenever the 
underlying set is finite, which is our case. A topological closure C such that C((j>) = <f) 
is also called a topology; we shall denote it by x. If (A, T) is a topological space, then 
E(A, x) is the monoid of all closed deformations of (A, T), i.e. of all closed continuous 
self maps of the space (A, T). We write S(A, T) instead of E(A, T). If (A, T) is a finite 
Ti-space (i.e. x{x} = {x} for each x G A), then x is the discrete topology hence the 
problem treated here becomes trivial. For x being r0-topology (i.e. feebly semi-separ­
ated in the terminology of [4]) we get, using above results, the following theorem. 

5.5. Theorem. Let (A9f) = ]T (At, / ) be an autonomous automaton. There exists 

a Tropology x on the set A such that S(A, x) = E(A, / ) iff each component (At, / ) of 
(A, f) is either a tree of the height 1 or a singleton. Such a topology x is unique and it is 
given by xX = X u/(X)/0r each X = A. 
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Proof. Let (A,f) be an autonomous automaton each component of which is either 
a tree or a singleton and let T be a r0-topology on the set A. According to the theorem 
5.3. and (ii) of 5.4. it holds S(A, T) = E(A,f). 

Let (A, f) e % (A, f) = X (At, f ) . Let T be a r0-topology on A such that 

E(A,f) = S(A, T). With respect to theorem 5.3. we have R(At,ft) <L 2 for each 
IG {1,2, ...,n} and (At,f) is either a tree of the height 1 or a periodic component 
(i.e. component without non-cyclic elements). Let there exist xe {1, 2, . . . , n} such 
that R(Ax,fx) = 2, let Ax = {ax, a2}. Denote by Q(at) the system of all neighbour­
hoods of the point ai9 (i = 1, 2) in the space (A, T). Since a set X £ A is a neighour-
hood of a point a e A in the topological space (A, T) iff a e A — %(A — X), we have 
n £(#!) = n Q(a2) = {ai,a2} = *̂> thus points av,a2 are not F0-separated in 
(A, T). This is a contradiction hence R(At,ft) = 1 for each *. The last assertion 
follows from theorem 5.4. 
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