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ARCH. MATH. 4, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
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ON THE ASYMPTOTIC PROPERTIES 
OF SOLUTIONS OF NONLINEAR SYSTEMS 

M. HOSAM EL-DIN 

(Received September 18, 1975) 

Abstract. The method of variation of constants. BIHARI inequality [2] and the 

SCHAUDER-TYCHONOV fixed point theorem [3] are used to study the asympto­

tic relations between the solutions of the systems (1) ------- =- A(t)x +f(t9x) and 
dy (2) -JL- = A(t)y. The application of the results deduced here to an n-th order 

differential equation yields a generalization of a result for the second order 
differential equation by Mehri and Zarghamee [4]. 

1. INTRODUCTION 

The paper is devoted to the study of the system 

(1) x' = A(t)x+f(t,x), 

where A(t) is an n x n continuous matrix defined on / = [0, oo) and f(t, x) is an 
//-dimensional vector function defined on the domain D : t ^. t0, \x\ < oo9 where 
| . | denotes any appropriate vector norm. 

Moreover, it is assumed that/(t, x) is "small" in some sense so that we can consider 
the system (1) as a perturbation of the linear system 

(2) % = A(t)y. 

Let Y(t) be a fundamental matrix of solutions of (2). In the present paper sufficient 
conditions are established for the following: 

(1) every solution x(t) of (1) whose initial condition satisfies a given inequality can 
be expressed in the form x(t) -= Y(t) c(t) where c(t) is a suitable differentiate vector-

00 

function such that f | c'(t) | dt < oo; 
to 

(2) for every constant vector f there exists a solution x(t) of (1) such that lim x(t) = 
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2. MAIN-RESULTS 

Theorem 1. Let the function f(t, x) satisfy the condition 

(3) \Y-\t)f(t,Y(t)z)\^g(t)iD(\z\) 

for every w-veetor z. 

Here g(i) and co(r) are functions with the following properties: 

(4) g(t) is continuous and nonnegative for * = t0. 

(5) co(r) is continuous, positive and nondecreasing for r > 0. 
00 

(6) g(0d*<fi(oo), 

where 

ß M = f ^ > t-o>o-ds 
ш(s)' 

ro 

Then every solution x(t) of (1) such that 

(7) I Y-1(r0)x(Oi < O-^QCoo) - J g(0dt] 

fo 

(0~ * means the inverse function of Q(r)) can be expressed in the form x(t) = Y(t)c(t) 
where c(f) is a suitable differentiable vector function such that 

00 

(8) c(t0)=Y-1(t0)x(t0), f | c ' (Oldt<oo. 

to 

Proof. Using the formula of the variation of constants, any solution x(t) of (1) can 
be written in the form x(t) = Y(t) c(t), where c(t) satisfies the following differential 
equation 

(9) d = Y~\t)f(t, Y(t)c), c(t0) = y-^o)x(t 0 ) . 

Integrating (9) in norm and applying (3) we get 

t t 

f | c'(s) I ds = f I y - \s) f(s, Y(s) c(s)) | ds S 

to to 

t 

= g(s)w(|c(s)|)ds. 
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t^Łtn 

From the monotooity of co(r) and the fact that 

(10) |c(0l<:|c(to)!+ f|c'(s)|ds 
to 

we get 
t t s 

(11) J | C ' ( s ) i d s g ig(s)co\_\c(t0)\+ (V(T)|dT]ds, 
to tQ to 

Now, let us define a continuous function Q(t) by 
t 

02) Q(0=lc( . o )|+ f|c'(r)|dr. 
fo 

Then (11) may be rewritten in the form 
t 

(13) Q(0 < I c(t0) I + J g(s) co(Q(s)) ds, t £ to • 
to 

Hence by the Lemma of BIHARI [2, p. 83] 

(14) Q(t) <. Q~ l[Q(\ c(t0) | ) + | g(s) ds], r0 g t k b, < oo, 
t o 

where the constant bt is determined by the requirement 

(15) O(|c(r0)|)+ |g(s)d5^0(co). 
to 

From the fact that c(t0) = Y~l(t0) x(t0) and from the conditions (6) and (7) it is 
seen that (14) is valid for all bx ^ 0. Since the argument of Q~ * in (14) is an increasing 

00 

function and Q(\ c(t0) |) + J g(s) ds < O(oo) by (7), Q(t) is bounded. Hence 
to 

oo 

J I c'(s) | ds < oo and (8) is proved. 
t o 

oo 

Remark 1. If —-— = oo, which means that fl(oo) = oo, the condition (6) may 
J < " ' 1 

co(l) 

be replaced by j g(t) dt < 'bo and the restriction (7) on x(t0) may be omitted. 
to 
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Remark 2. From (8) it follows that lim c(t) exists and is finite. 
/-•oo 

Theorem 2. Let the function f(t9 x) satisfy for every /i-vector z the condition 

(16) \Y-1(Of(t, Y(t)z)\^F(t9\z\)9 

where F(t9 r) has the following properties: 

(17) F(t9 r) is continuous and non-decreasing in r for each t on t ^ f0, r = 0. 

00 

i F(í,a)d. (18) I F(t9 a)dt < oo for each constant a ^ 0. 

Then for every constant n-vector £ there exists a /*, f* ^ f0
 a nd a solution x(t) of 

(1) defined for t ^ **, which can be expressed in the form x(t) = Y(t) c(t), where c(t) 
is a differentiable n-vector function such that 

(19) lirnc(0 = £. 
t-*oo 

Proof. Using the formula of the variation of constants, any solution x(t) of (1) 
can be written in the form x(t) = Y(t) c(t)9 where c(t) satisfies (9). 

Consider the integral equation 

00 

c(t) = Í - í Y~\s)f(s, Y(s)c(s))ås, (20) c(t) = í - У- J(s)/(s, У(s) ф)) ds, í = l*. 

By direct differentiation one can show that each solution c(t) of (20) if it exists, 
is a solution of (9) for t ^ t *. 

Using Schauder—Tichonov fixed point theorem [3, p. 9], we shall prove the exist­
ence of a solution of (20) for t ^ t*. 

00 

Let x > 0 be any constant, x > | £ |. Let t* be chosen in such a way that j F(s, x) x 

x ds < x — | £, |; this is possible with respect to (18). 
Let E denote the set of all«-vector valued functions h(t) continuous on [t*, oo) and 

| Kt) | 5 x. . 
Using (16), (17) and (18), we get 

00 00 00 

f y-J(s)/(s, Y(s)fc(s)ds| = ÍF(s,|fc(-)|)ds = J F(s,x)ds £ * - |« | . 
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This insures that the operator 

00 

Th = «j - f Y_10)/(s, yo)*o))ds 
t 

is defined on E and maps E into E. 

To prove that T is continuous on E, let hn eE (n = 1, 2,...) be a sequence of 
functions in E, which converges uniformly on every finite interval [f *, tt] to a function 
h9heE. By (16) we have 

QO 00 

I Th - TK\ = i J Y-'(s)/0. y0)*(-))ds - Jy- ] ( s )/(s, y(s)h(s)dsi g 
f f 

00 

= J i Y- »ox/o. ns) *o)) - /o, n») *.o))) i ds= 
r* 

^ J i y - !ox/o. n*) M-)) - /o. y(s) *-(-))) i ds + 
t* 

00 00 

+ JI y " W O . y ( s ) fc(s)) I d s + JI y ' *(')/('* Y(°) Ms) I ds = 

-1 -1 

*1 00 

g JI y- *(s)(/(s, r(») *(*)) - /(s, Y(s) hn(s)) | + 2 J F(s, x) ds. 
- * - 1 

Given any s > 0, by (18) we can choose tt such that 

00 

jfO,x)ds<-J-. 

From the continuity of f(t, x) and the uniform convergence of hn(s) to h(s) on 
[t*, ti] we get that for e > 0 there exists an integer n0(e) such that for each n Ss n0(e) 

l/0.-'O)*O))-/(-.-'(-)*»O))l< e 

2 J I У - Ҷs) I ds 
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Hence for n ^ n0(s) we have 

• | T f c B - T h | < y + y = e for t = t* 

so that T is continuous on E. 
From the fact that TE cz E it follows that the functions in TE are uniformly 

bounded. 
Now, we shall prove that the functions in the image set TE are equicontinuous at 

every point of [/*, oo). Let tx, t2 be any pair of numbers, /* z£ tt < t2 < oo, we get 

t\. 

| Th(tl) - Th(t2)\ = | ( Y-\s)f(s, Y(s)h(s))ds\ = 

t2 

tl 

= (\Y~\s)f(s, Y(s)h(s))\ds. 

Applying (16), (17) and (18), we get 

' | Th(tx) - rh(/2) | g F(s, x)ds 

ti 

and the right hand side of the inequality does not depend on h. Hence the functions 
in TE are equicontinuous. 

Now all the assumptions of Schauder — Tiehonov fixed point theorem are satisfied, 
hence the mapping T has at least one fixed point in K, say h0(/) so that 

00 

h0(í) -= lh0(t) = ç - J Y-ҚS^ĄS, У(s)h0(S))ds, t > г . 

This means that h0(/) is a solution of (20). 
Consequently x(t) = Y(t)h0(t) is a solution of (1) existing for / ^ /*. 
Further we have to prove that lim h0(/) = £ but this is a direct consequence of 

t-*oo 

(16), (17) and (1$) since we have 

00 

Һ(t) - < | = I ľ Y-\Ş) f(s, Y(s)h0(s))ás | = Ңs, x) ds -> 0 

as / -> oo. This completes the proof. 

184 



Remark. If it is assumed instead of (18) that 
o 

f(t9 a) dt <* M < oo lor every a _ 0, I 
to 

one can choose x such that x > \ £ \ + M and then the statement of the theorem is 
valid for the whole interval [t09 oo) that means we can take t* = t0. 

A direct consequence of Theorem 2 is the following corollary which we shall use 
in the proof of Theorem 3. 

Corollary 1. Let the hypotheses of Theorem 1 be satisfied. Then for every constant 
w-vector £ there exists a t*9 t* = t0 and a solution x(t) of (1) defined for t = /*, 
which can be expressed in the form x(t) = Y(t) c(t)9 where c(t) is differentiable /i-vector 
function such that lim c(t) = £. 

t->oo 

Proof. To prove Corollary 2, one needs to observe that the conditions (4)—(7) 
imply the assumptions of Theorem 2, which can be easily proved. 

Theorem 3. Let the hypotheses of Theorem 1 be satisfied and let, in addition, 
oo 

(21) —p- = oo (that means Q(oo) = oo). 
I 

Then for every solution x(t) of (1) on [t0, oo) there exists a solution y(t) of (2) 
such that 

(22) | Y~x(t) (x(t) - y(t)) | -> 0 for t -> oo 

and vice versa. 

Proof. Let x(t) be any solution of (1). Respecting (21), the restriction (7) on x(t0) 
may be omitted. By Theorem 1 x(t) can be expressed in the form x(t) = Y(t) c(t) and 
there exists a constant fi-vector £ such that lim c(t) = £. Consider the solution y(t) = 

t-*oo 

= Y(t) £ of (2). We get 

| Y~\t)(x(t) - y(t)) | = | Y~\t)(Y(t) c(t) - Y(t) £) | = | c(t) - { | - 0 

for t -> oo. Then (22) holds. 
Now, let y(t) be a solution of (2). Then there exists a constant n-vector £0 such 

that y(t) = Y(t) £0. By Corollary 1, given £0, there exists a t*91* = t0 and a solution 
of (1) of the form x(t) = 7(f) c(f) and limc(t) = t̂ 0. This implies also that 

f-*oo 

I Y~x(t) (x(t) - XO) | f= | c(0 ~ £o | -• 0 f o r t -> oo. This completes the proof. 
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3. COROLLARIES AND APPLICATION TO AN n-th ORDER 
SCALAR EQUATION 

Now we shall apply Theorem 1 and Corollary 1 on an n-th order scalar differential 
equation. For n = 2 the result yields a generalization of a result of MEHRI and 
ZARGHAMEE [4]. 

Consider the «-th order scalar differential equation 

(23) u(tt) = h,(t) ii*"-" + ... + hn(t) u + h(t, u, u\ ..., u(n~X)), 

where ht(t) e C[0, oo) (i = 1,..., n) and h(t, u,u',..., w(rt~1}) e C([0, oo) x Rn). 
Let vx(t),..., vn(t) be a set of n-linearly independent solutions of the linear equation 

(24) v(n) = hx(t) vl*-" + ... + An(0 ^ 

*i'-1}(0) = ih ( / ,J=1,. . . ,«). 

Let W(t) be the Wronskian of the functions vx(t),..., vn(t) and let Wk(t) be the 
determinant obtained from W(t) by replacing the k-th column by (0,..., 0, 1). We 
define the functions q>(t) and nit) (i = 1,...,«) as follows 

tlit) = max (| v(?(t) | , . . . , | vn
l)(t) | ) (i = 0, 1,..., n - 1), 

and 

^(O-maxd^Ol,...,!^^)!). 
Let us suppose that h(t, u, u',..., w(n""1}) satisfies the following condition. 
H: If the functions u(i)(t) are such that there exists a nonnegative continuous 

function y(t) such that | u(i)(t) | S nit) y(t) for t = 0, (i = 0,..., n - 1), then 
A(t, w(0, u'(t),..., M^"1^?)) satisfies the following estimate 

(25) | h{t, u(t), u'(t),..., u(n~l)(t)) | ^ ijj(t)co{y(t)). 

Here co(s) is a continuous function which is positive and nondecreasing for s > 0, 
and ^(0 is continuous and nonnegative for t = 0. 

Now we shall prove the following theorem: 

Theorem 4. Suppose that h{t, u(t), u'(t),..., w(n_1)(0) satisfies H and that 
00 t 

(26) J xl/(t) cp(t) exp —- I fc^s) ds dr < — Q(oo). 
0 0 

Then every solution u(t) of (23) satisfying at t = 0 the inequality 
OO f 

(27) Y | u(0(0) | < A"» jfl(oo) - n f ^(0 <p{t) exp I"- f hx(s) dsl d. j 
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can be expressed in the form u(t) = ]T ct(t) vt(t), where ct(t) (i = 1, . . . , n) are contin-
i = l 

uous scalar functions such that 

0 0 

(28) J | c | ( 0 | d f < o o . 
0 

Further ifai9...,an are ^-arbitrary constants, there is a solution u(t) of (23), which 
n 

can be written in the form u(t) = ]T c.(t) t;f(t) with 
i = l 

(29) limc,(0 = a.. 
«->00 

Proof. Let equations (23) and (24) be put into system forms (1) and (2) respectively, 
with 

x(0 = («(0,«'(0,...," ("- 1 )(0) r, 

y(t) = (v(t),v\t),...,v^-1\t))T, 

/(t, x(t)) = (0, 0,..., 0, h)t, u(t), u'(t),..., ^"-"(t))7 

and 

0 1 0 ... 0 
0 0 1 ... 0 

A(t) = ' 
0 0 0 ... 1 

\K(t)K-i(t)K-2(t)---h1(t)) 

Hence the fundamental matrix of (2) will be given by 

7(0 

(Vl(t) ... vn(t) 
v'г(t) ... vn(t) 

yr1^)... vn»-«(t)j 
with Y(o) = /. 

Now we shall prove that 7 ( 0 a n d / ( r , x(t)) satisfy the conditions of Theorem 1. 
In the proof we shall use a specific matrix (vector) norm | | . | | defined by the sum 

of the absolute values of the elements. 
Using the formula of the variation of constants, any solution x(t) of (1) can be 

written in the form 

(30) x ( 0 = Y(t) c(t\ 

where c(t) is an n-vector function satisfying the equation (9). 
Let ct(t), (i = 1 , . . . , n) denote the components of c(t). 
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Writing (30) in terms of its components, we have 

tЛO-L^.OKXO, i = o,...,«-i. 
; = i 

Hence 

(3D I u( l )(0 | <i X | vf(t) | | cj(t) | <; ^.(0 Z I *X01 = >h(t) | c(01, 
. / = 1 1 = 1 

in view of the definition of rjt(t). 
Using (25), (30) and the definition of <p(t), we get 

| | y - 1 (0 / ( í ,y (0c(0) | | = 

f . . . w t ( t ) \ l o 
1 l...W2(t)\ 

W(t) 
i... Wя(t)l\h(t, u,u',..., «<"-l>)/ 

ЯQ,M,И ' ,...,^-") - Ij ̂  #(0<ҚQ ,, , 
w(0 *=i * w = | ^ ( o i ю l " c w l 

Since 

W(0 = det Y(0 = det Y(o) exp | | 7 r(A(s)) dsj = exp | \ ht(s) dsl , 

0 0 

we obtain 

|| Y'\t)f(t, Y(t)c(t)) || g #(t)<K0 exp [~J\(s)dsJe»( | | e(0 ||) 

hence (3) and (4) are fulfilled with t0 = 0 and 

g(t) = #(0<K0exp - J ^iW ds . 
0 

The conditions (26) and (27) imply (6) and (7), respectively. Now, all conditions 
of Theorem 1 are satisfied. Hence (28) follows from Theorem 1. 

The conclusion (29) follows from Corollary 1 by taking {=-(«!,. . . , an)
T. This 

completes the proof. 
Let us note that Theorem 4 assumes less restrictive conditions than those given 

in [4] since the condition 
Г ds 

—TT = °° I S omitted and instead of the existence of 

the limit lim ct(t)9 the stronger result J | c\(t) | dt < 00 is proved. 
f-*oo 0 

Theorem 1 implies the following useful corollary. 
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Corollary 2. Let the hypotheses of Theorem 1 be satisfied and let all solutions of (2) 
be bounded for t ^ t0. Then every solution of (1) such that (7) is satisfied, exists and 
is bounded for t ^ t0. The bound will be given explicitly. 

If, in addition, /(t, 0) = 0 for t ^ t0 and 

I 

(32) J —pr -• oo as a -> 0, 

£ 

the solution x = 0 is stable. 

Proof. If all solutions of (2) are bounded, then 

(33) | Y(t) | g d, t^t0 

for some constant d > 0. 
Let x(t) be a solution of (1) satisfying (7), then the boundedness of x(t) for t ^ t0 

follows directly from Theorem 1. 
Really, by (6), (10), (14) and (33), the solution x(t) of (1), if it exists, is bounded 

on [t0, oo) for 
00 

(34) | x(t) | g | Y(t) | | c(t) \ZdQ~11*0(1 c(t0) |) + f g(s) dsj . 
to 

The existence of x(t) for t "> t0 is assured by its boundedness and the assumption 
that/(t, x) is continuous on [t0, oo) xR„. 

In order to prove the stability of the solution x -= 0, we proceed as follows: 
Since (32) implies Q~l(r) -+ 0 for r -+ — oo, we can choose for a given e > 0 an 

M < 0 such that Q~\r) g -^ for r g Af. 
a 

Now, if | c(f0) | = | Y-^to) (̂̂ o) | is sufficiently small, it is 

t 

Q\Y~1(t0)x(t0)\)+ fg(s)ds^M 

for f ^ t0 so that (33) and (34) imply | x(t) \ <J d. — == e. 

This completes the proof. 
Remark. Theorem 3 applied to the special case/(t, x) = G(t) x, where G(t) is an 

nxn matrix-function, continuous on [0, oo), yields the result of BEBERNES and 
VINH [2]. 
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