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1. Consider a differential equation

y” +f(t’ Vs yl) =0,
1)) <where f(t, y, y’) is continuous on D = {(¢, y, v):
tela, 00), —0{y,v < 0}, f(t,y,v) y > 0 for y + 0.

It is evident that the Cauchy initial problem for (1) has a continuous solution but
we do not suppose its uniqueness. In all the work we shall omit the trivial solution
y = 0 from our considerations.

A non-trivial solution y of (1) is called oscillatory if there exists a sequence of
numbers {¢,}7 such that a < 1, < 4y, Y(t) =0, y(t) £0 on (f, t4y), k=
=1,2,..., lim #, = oo holds.

k—

In the present paper we shall deal only with oscillatory solutions of (1), especially,
we shall prove some monotonicity theorems concerning the amplitudes and the
distribution of zeros of these solutions and their derivatives.

The special cases of the differential equation (1) were studied in the above mentioned
direction in [3], [4], [5], [6], [7]. -

Let y be an oscillatory solution of (1) and {#,}7 the sequence of all its zeros. Then
there exists exactly one sequence of numbers {7,}{’, called the sequence of extremants
of y, such that ¢, < 7, < t,+;, ¥'(ty) = 0 holds. This a consequence of the following
lemma (see [1], [2]):

. Lemma 1. Let y be an arbitrary non-trivial solution of (1) and t, < t, its consecutive
zeros (y(t) # O for te(ty, t;)). Then t, and t, are the simple zeros of y, there exzsts
exactly one number t such that t; < t < t,, y'(t) = 0 holds. Further,
f(y@),y®))y() >0, te(ty,),
f(6y@, y®) y () <0, te(,ty),
[ V()| (x = 1,) > | »@)].
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Put: Ai=ti+1_ti’ 51'*‘11—’1, y,=t;+1—1‘,i=1,2,...Thus Ai=yi+‘si‘
Our aim consists of finding of conditions under which the sequences
{| ¥(t) |}c1°’ {ly'(ti) l}:o, {437

are monotone ({| »'(#)) |} is the sequence of the absolute values of all local extremes
of y' because of ()" =) — f(1,5,y) =0y =01t = 1,).
2. We start with the investigation of a monotonity of {| y'(z,) |}7.

Theorem 1. Let y be an oscillatory solution of (1). Let the function | f(t,y,v) ] is
non-increasing with respect to t and non-increasing with respect to v in D and further
let f(t,y,v) = f(t,y, —v) in D. Let z€[0, | W (Te) |] be an arbitrary number. Denote
by 't, *t such numbers that 't € [t,, 1}, *t € [ty t,44), | y('1) | = | ¥(3t) | = z. Then

[y |z |yC)|, w-"ts*-u, k=123..
holds so that, in particular, the sequence {| y'(t) |}‘{° is non-increasing and

O = > k=12,...
holds.

Proof. By multiplying the equation (1) by —2)’ and by the integration in the
limits from ¢ to 7, we obtain

T

93] Y1) =2 J.f(t, y®,y®)y'(dt,  te[t, iyl

t

Let y(t) > Oon (4, t,+,). If y < 0, the proof is similar. Thus especially (¢, y, y") >
> 0 on this interval, y'(t) > 0for t € [t;, 7,), y'(t) < Ofor t € (7, #,4 1] (see Lemma 1).

Denote by *#(y) the inverse function to y(¢), 7 € [t;, 7] and 2#(y) the inverse function
to y(¢), te€ [t tsq). These functions exist as p'(?) + 0 for te[t, tis(] t + .
Performing the substitution of the integral in (2) ¥ = y(¢), the equation (2) is trans-
formed into

y(tx)
y(y =2 I fCty, y()dy, yel0, y(z)],i=1,2.

y

From this and when using the assumptions of the theorem we obtain: y € [0, y(ti)],

3 idy 2C) = y2Cr) = =20fCe 3y C)) = £Cty, yCON} =

= =2[f(*, 3, y'() = fCt, 3, Y (O + [f(36 3. C0) = £33, | yCOD} =
< =2/Cuy, | YO0 - fCLy | yE))
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With regard to the function | f| being non-increasing with respect to y’ the following
relation is valid

@ ()l = 1y(C)ls0= 3"; CROESEQIELY
y € [0, y(w)).
Suppose that there exists a number y € [0, ¥(t,)] such that
[yt )| < [y Cu) |
Then it follows from (4) that
[y (@) | = [y Cio) | = [yEm) | = [yCr) | <0, ey y@l
But it is a contradiction because for y = y(t;) we have
|y = |yCo|=|y@| - |y@E)]| =0.
Thus finally

Q) |y z|yeDl,  yelo, y@)l

Consider two functions fi(y) = 1, — '1(y) Z 0, /,(y) = %1(y) — ©, 2 0, y € [0, y(r)].
From the proved part (5) of the theorem it follows that

AY

1 1
R 20, ye[0, y(z))

Thus the function f; — f, is non-decreasing and with regard to f,(3) = f5,(3) = 0
for y = y(t,) we can conclude that f; < f5,i.e. '

%=y S H0) — % ye[0, ymw)]
and the first part of the theorem is proved. The special case follows from it for

y = y(w).
The following Theorem can be proved in the same way as Theorem 1.

5 U0) - £0] = -

Theorem 2. Let y be an oscillatory solution of (1). Let the function |f(t,y, v) |
is non-decreasing with respect to t and non-decreasing with respect to v in D and further
let f(t, y,v) = f(t,y, —v) in D. Let z€ [0, I y(t) l] be an arbitrary number. Denote
by t, 2t such numbers that 't € [t,, 1), 2t € [t, tirql, | y('1) | = | p(*t) | = z. Then

Iy'(lt)lélyl(zt)L tk"ltgzt""tk’ k=192,"~
holds so that, in particular, the sequence {| y'(t,) |} is non-decreasing and
5hg’)’k, k=1,2,...
holds.
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Two next theorems deal with monotony of the sequence {| y(z,) |} The second of
them can be proved similarly to the first.

Theorem 3. Let y be an oscillatory solution of (1). Let the function | f(t,y, v) | is
non-increasing with respect to t and non-decreasing with respect to v in D and further
Ietf(t,y! U) = —f(t’ —y’ U)’ (t’y7 U)ED'

(i) Let z€[0, | y(z) || be an arbitrary number. Denote by t', t* such numbers that
tr e[t fedd 12 € [few s Thw o), Iy(tl) I = [J’(tz) I = z. Then

' [y ] s |yaed|.
(i) The sequence {| y(t,) |}7 is non-decreasing.
Proof. By multiplying the equation (1) by —2p’ and by integration we obtain

tic+1

Y1) = y2(tery) = 2 j £t v, ')y di.

t

Let '#(»)(*t(»)) be the inverse function to y(¢), t € [Ty, tes ()t € [ts g Tow1]). The
substitution y = y(¢) in the integral gives us the relation

Y2 = ¥ (e ) = =2 jf (t, y, y'(1)dy,

i=12 |y|é[0, min (I y(m) la‘J’(Tkﬂ) I)] dif. J.

From this (we must use the assumption of f being odd with respect to y)
d ! /‘ ’ y . 4 R
W(J’ (') = y2C0) = =2f(t, 1y L,y () = FCs 1y |, y'Co)l-

So we have the same situation as in the proof of Theorem 1 and we can derive by the
same way that the similar relation to (3) holds:

® dldyl (730 — y2C) £ —21Ct 1y 1, Y (D) = 1Co 1y 1L yCE)), 1y e .

For y =0 we have y'("t) = y'(*t) = y'(t,+,)- Assume that there exists a num-
ber ye J, y £ 0 that

@) [y >|yCn|
holds for | y | = y. Then there exists an interval J, = (2, 7] such that the relation (7)
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is valid on J; and|y'(*t)| = |»'(r)|,| y | = z. From this there exists a number &€ J;
such that
d
diyl
But it is in contradiction with (6) because for | y | = ¢ we have (by using (7) and the
assumption that | f| is non-decreasing with respect to »’)

(21 = Y2 Ct) = > 0.

d 1271 _ 12/2
W(J’ (‘n-=-y*(y) =o.
Thus ‘
(8) [y |yeol,  |y|ed

Now suppose that | p(z,) | > | ¥(ty+,) | Thenfor | y | = | »(ty+,) | we have | y'("1) | >
> 0 (see Lemma 1), | y'(*t) | = 0 and thus

[V(O|>|yC|  for |y| =]y ]|

But according to (8) | '(*#) | < | »'(*¢) |, which is a contradiction. So we can conclude
that '
ly(Tk)l é Iy(1k+1)|9 k= 1"2s--" J= [Osly(Tk)l]

and the statement of the theorem is proved.

Theorem 4. Let y be an oscillatory solution of (1). Let the function | ft, y,v) [ is
non-decreasing with respect to t and non-increasing with respect to v in D and further

letf(t’ya U) = —'f(t’ ) U) in D.

(i) Let z€ [0, | y(ty+1) || be an arbitrary number. Denote by t, t such numbers that
‘e[, i), 2t € [ty Ter1), I)’(lt) l = Iy(zt) I = 2 holds. Then

|y(¢o |z |yCo|.
(if) The sequence {| y(z,) |}7 is non-increasing.
3. This paragraph deals with the special type of the differential equation (1):

Y+ f(t,)807) =0
) where f(t,y) is continuous on Dy = {(t,y):t€[a, ©), —© <y < ©},
f(t,y)y > Ofory £ 0, gis continuous on (— 00, ), g(v) > 0, v € (— 00, 00).

For (9) we can derive the more substantial results for the solutions.

Theorem 5. Let y be an oscillatory solution of (9). Let the function |f(t,y)| is
non-increasing with respect to t in D,. Let z € [0, | y(t) I] be an arbitrary number.
Denote by t, 2t,3t such numbers that 't € [t,, T, 2t € [Ty, tisq], 2t € [tents Touids

[y | =|yC0| =]y | ==z
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() If g(v) = g(—v) for v e (— 0, ®©), then ]
(10) |y |z Ve, -t -1,k=1,2...
In particular, the sequence {|¥'(t) |} is non-increasing and
O = Vi k=12,...

Gi) Iff(t, ) = —f(t, =), (t, y) € Dy, then the sequence {| y(z,) |} is non-decreasing
and
(11) [yC)| < |yCo|.
Proof. By multiplying the equation (9) by —»’(g(»")) ™" and by integration in the
limits from ¢ to t, we obtain
ly' (ol y(tx)
w [ a- j” dat = ff(t nya= [ renan
J &0 g(») e

te b, tyql
If '#(»)(*#(»)) is the inverse function to y(¢), €[, 7] ([, t+4]), then it follows from
(12) that for the fixed | y | € [0, | »(zo) |1

Iy(Unl 1y'(3n)l y(tx)
t t '
dt — __dt=J‘f1t,z —f(’t,2)|dz=0
[ - [ o= [ueen-seea
V] 1] y
holds because of | f | being the non-increasing function with respect to z. Thus

(13) | (D] z [yCD].

The validity of the relation 7, — 't < ¢ — 7, can be proved (by use of (13)) by the
same considerations as the same relation in Theorem 1.

Let 3¢ be the inverse function to y(t), t € [ty +1, Tc+1]- By multiplying the equation
(9) by »'(g(y))"" and by integration in the limits from € [y, Tys1] to fisy We
can get:

Y (tk+1) te+ 1 e +1 3G]]

YV qt= —
o fg(y a ff(ty)ydt jf(ry)dy

From this for the fixed y € [0, min (| ¥(z}) |, | ¥(Te+1) I)] I 7 there holds

¥ (t+1) ¥ (tc+ 1) Iyl
—g—(t—t—)—dt - | = f [fCt2) — (1, 2)]dz 2 0

y'(3t)

174



because | f| is non-increasing with respect to ¢. Thus | y'(%¢) | < | »'(%t) | and the first
part of the statement of the theorem is proved. The rest can be derived in the same
way as the same result in Theorem 3.

The following theorem can be proved similarly.

Theorem 6. Let y be an oscillatory solution of (9). Let the function | f(t, y) | be non-
decreasing with respect to t in D,. Let z € [0, | Y(Ths1) |] be an arbitrary number and
let 't,*t, 3t be of the same meaning as in Theorem 5.

() If g(v) = g(—v) for v e (— o0, ), then
(14 [y |yCDH], w-'tzi-1.
In particular, the sequence {] y'(t) l}‘f’ is non-decreasing and 6, = y,, k = 1,2, ...

@) If f(t, y) = —f(t, —y), (t, y) € D,, then the sequence {[ y(T) |}‘{° is non-increasing
and

(15) [yCn| z |yCol.

Remark 1. Theorems 5 and 6 are the generalizations of some results in [3], [4],
[5), [6], [7]. Das [4] studied the equation

¥+ flt,y) =0,

Bihari [5] proved the monotonity of the sequences {| y(z) |}, {| »'(8) [} for the
equation

(16) V' + o) fO) k() = 0,

but under many other assumptions (¢ > 0 is continuous, increasing and bounded
for t = a, f(») is odd, non-decreasing and f(») € Lip (1) for | y | < b, h(w) > 0, | k| is
non-increasing, h(u) € Lip (1) for all , h is even). The papers [3], [6] deals with the
special types of the differential equation (16), Katranov [7] proved some results of
Theorem 6.

Remark 2. It is evident from the proofs that the theorems 5 and 6 are valid, too if
we replace the words and symbols non-decreasing, non-increasing, <, = by increas-

ing, decreasing, <, >, respectively with the exceptions of (11), (15) for z = 0, (10)
for z = | y(r,) | and (14) for z = | Y(tx+1) |, of course.

Remark 3. If the function f(¢, y) = f(») is constant with respect fo t and f(y) =
= —f(-y), g(v) = g(—v), then every oscillatory solution of (9) is a half-periodic
function. From the proofs of Theorems 5 and 6 we can see that’ :

00| = [yC| = [¥Cn], s tt==x
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and the required relation #,,; — 2t = 3¢ — #,,, can be proved in the same way as the
_relation 7, — 't = %t — 1,. So the above mentioned conclusion is valid. This situation
was studied in [5] for the differential equation (16). ‘

Theorem 7. Let y be an oscillatory solution of (9). Let

() 5. 3), 5116, ) exist in D,
(ll) f(t9y) = —'f(h -J’) in Dla
Gil) = |/t,)| < 0 in Dy,

. . G
(iv) W f@t,y) =0in D,, let By f(t, y) be non-increasing with respect to y in D, =

0
={ty):(t,y)eD,,y = 0}, —a?f(t,.y) be non-increasing with respect to t
inD,.
Then
Ve = Opers =1,2,...

If, in addition, g(v) = g(—v), v € (— o0, ), then
AkéAk"'l’ k=.1,2,...

Proof. Denote by '#(y")(*#(y')) the inverse function to y'(f), t€ [ty, is1] (L€
"€ [ty+1, Tk+1])- These functions exist because y"(t) = 0<> y(f) = 0<> 1 = f;,, on
[tx, Tx+1]- Suppose that y'(#) > 0 on (7, T4+ 1). The statement for the case y'(f) < 0
can be proved similarly. Then y(f) <0, f< 0, y"(t) > 0 on [, t+4), ¥(t) > 0,
£>0,9"(t) <0 on (s, Tk+1] (use (9) and Lemma 1).
According to (9) and by use of f being odd with respect to y the following estimation
holds for the fixed y’ € [0, y'(tx+1)]

_‘L{ Ly (ol 1y'Co)l } - d‘;’ {1£C y("0) 1 = 1£Ce y(C0) 1} -

dy’ U g() g(y)
5 o | o y
oy e y'('t)
<G ,,12,) -y Ve
< ————f(tly( D) — ,,(1)| f( YO0 T "( 0l

— y O f2 2 2 1 |
OS] e . ’))]'y GOL*
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2 d y 0 e
+ [;y f('t,'y(.zt)) - —’5y-f(’t, 1y('t) I)] ()l + T?]Tf(lt’ |y("0) 1) x
oo (1YCOL YOI )
o1y} s - (L2001 |
<yl -1y Con} s - (P - 12
o) =—240) 2y 2,
H(y) I_V"(lt) y”(zt)i ay ( | ) = | |
because according to (11) | y(*t)| < | ()| Suppose that there exists a number
z€[0, y'(te+ 1)] such that

P ) | P4 ) L
o) g(y") g(y) <

holds for y' = z, Then according to the above mentioned estimation G(y") £ G(z) <0,
¥ €[z, ¥'(t+1)] is valid, but this is a contradiction because G(y’(t,‘ﬂ)) = 0. Thus
G(') =z 0 on [0, y'(¢,4+,)] and finally :

amn [y 2|y COl, ¥ el0,y(t)l
Consider two functions

hy(y) =ty — 't B (Y) = ?t — tigrs V' €00, Y (s 1))
According to (17) :

d 1 S :
7 [h - hz] = T AN - N _2.. 09 y’e[O, y (tk+l))'
dy O EEAQ))

Thus h; — h, is non-decreasing and with regard to hl(y') = hy(y") =0 for y' =

= y'(t,+,) we can conclude that h; < h,. So the first part of the statement of the
theorem is proved and the rest follows from the Theorem 5.

The following theorem can be proved similarly to Theorem 7.

Theorem 8. Let y be an oscillatory solution of (9). Let

() 5 .3), 5= ft,) existin Dy,
(11) f(t’ y) = _f(t9 —J’) in Dla

(iii) gt |ft,»| =z 0inD,,

. 0 . 0
(@iv) _67f (t,y) 20inD,, let o S(t, ) be non-increasing with respect to y in D,

0
= {(t,y):(t,y)e D,y 2 0}, Wf(l‘, ) be non-decreasing with respect to t in D, .
Then

Yk Z Ot1s k=1,2,...
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If, in addition, g(v) = g(—v), v € (— 00, ®©), then
Akgdk'l‘l’ k=l,2,...

Remark 4. The statement of Theorem 8 was proved by Bihari [3] for the differential
equation (16) but under the more restrictive assumptions on the functions &(y’)
(h > 0 is an even, non-increasing function for y’ > 0, non-decreasing for y’ < 0,
heLip (1)) and @(t) (¢ is increasing) and under the different assumptions on the

function f(y) (fe Lip (1), f(») is increasing, f(») y~* = 0 (1) (y — 0), further f(y) y~*
is non-increasing for y > 0 and non-decreasing for y < 0).

REFERENCES

[1] M. Bapryuiek: O nyaax koaebaowuxca pewenui ypasuenua (p(t)x’)’ + f(t, x, x’) = 0. Dudd.
ypae. XII, Ne 4, 621—625.

[2] M. Bartusek: On Zeros of Solutions of the Differential Equation (p(t)y’) + f(t,y,¥) =0.
Arch. Math. XI, Ne 4, 187—192.

(3] T. Dlotko: Sur lallure asymptotique des solutions de I’equation différentielle ordinaire du second
ordre. Ann. polon. math., 11, 1962, N¢ 3, 261—273.

[4] K. M. Das: Comparison and Monotonity Theorems for Second Order Non-linear Differential
Equations. Acta Math. Acad. Sci. Hung., 15, N¢ 3—4, 1964, 449—456.

[5] 1. Bihari: Oscillation and Monotonity Theorems Concerning Non-linear Differential Fquations
of the Second Order. Acta Math. Acad. Sci. Hung., IX, Ne 1—2, 1958, 83—104.

[6] 1. Foltyriska: O pewnych wlasnosciach rozwiazan oscylujacych réwnania rézniczkowego nie-
liniowego drugiego rzedu. Fasc. Math., 1969, Ne 4, 57—64.

[7] A. I'. Karpauos: 06 acUMNMOMUYECKOM nOGeOenur KOAeOAIOuUXCA pewlentil  ypasHeHus
X + ft, x) g(x) = 0. Oudd. ypasuenns, VIII, Ne 6, 1972, 1111—1115.

M. Bartusek
662 95 Brno, Jandékovo ndm. 2a
Czechoslovakia

178



		webmaster@dml.cz
	2012-05-09T16:20:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




