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1. Introduction. Weak homomorphisms and weak isomorphisms are studied by
many authors, see for example [2], [3], [4], [5] and [11]. It was proved that weak
homomorphisms have many of ‘“nice* properties analogous to ordinary homo-
morphisms (e.g. they give relations between subalgebras'and kernels of weak homo-
morphisms, they preserve map superposition and restriction on subalgebras etc.).
But for direct products of weak homomorphisms this analogy is rather complicated,
i.e. the direct prodyct of weak homomorphisms need not be a weak homomorphism.
One can easily state the conditions securing this analogy, as it is shown in this paper.
However, we shall rather be concerned with the converse problem, for which algebras
are weak homomorphisms decomposable into direct products of weak homo-
morphisms. The analogical problem for ordinary homomorphisms was solved in [6],
[7], [8] and [9]. In the present paper there are given some sufficient conditions for
solving this problem.

2. Basic concepts. Let A = (4, F) be an algebra with the support 4 and a set F
of fundamental operations. We use the notation introduced in [10]. By A is denoted
the set of all algebraic operations of the algebra U, i.e. A contains all operations
from F, all trivial operations and all operations derived from fundamental and
trivial operations as successive superpositions of these (see [10]). Let B = (B, G)
be also an algebra and B the set of all algebraic operations of B. Let /& be a mapping
of A into B. Making use of the mapping h we introduce a relation R, between A
and B setting for fe A and f*e B

SR, f* ~ ifandonlyif f*.h=~h.f
ie. h(f(xy, ..oy X)) = f*(h(xy), ..., b(x,)) for each x, ..., x, € A.

Definition 1. A mapping 4 of A4 into B is called a weak homomorphism of A =
= (4, F) into B = (B, G) if to every fundamental operation fe F there exists an
algebraic operation f* € B such that fR,f* and, vice versa, to each g* € G there
exists g € A such that gR,g*. If h is a one-to-one mapping of 4 onto B and 4 is
a weak homomorphism of %« onto B, then & is called a weak isomorphism.

Definition of weak homomorphism is usualy formulated for algebraic operation
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only. However, it was proved in [5] that it can be also formulated for fundamental £, g
as in the definition 1.

Let U, be a set of algebras for 7 € T. If all A, are of the same type, then they have
the same set of fundamental operations. Let us denote it by the same symbol F,
i.e. A, = (4., F) for 7 € T, and not make any difference between operations from 2,
for different t € T. In other words, we shall not index these operations by indices t
of the algebras ..

By the symbol A = [] 2, is denoted the direct product of algebras U, i.e. A =

1eT

= (A, F), where A = [] 4, is a Cartesian product of sets A, and operations are
. teT

performed component by component.

Definition 2. Let U, = (4., F), B, = (B,, G) be algebras for t € T and A, be a mapp-
ing of A, into B, for each 1 € T. The direct product of mappings h,, denoted by h =
= [] ., is a mapping & of A = [JA, into B = [] B, such that

teT teT teT

pr.(h(a)) = h(pr(a)) foreach teT,aeA, %)

where pr, denotes the t-th projection of 2 (or B) onto A, (or B,, respectively), and 4
is the support of 2.

It is clear that the direct product of homomorphic mappings is a homomorphic
mapping (see [6], Theorem 1). This cannot be true for weak homomorphisms in
general. If A, , A,, B,, B, are Boolean algebras and if 4, is an isomorphism of A,
onto B, and 4, is an antiisomorphism of A, onto B,, then k,, h, are weak homo-
morphisms of Boolean algebras (see [11]), but 2 = h, x h, is not because #(0) # 0,
h(0) # 1.

3. Direct products. Let A, = (4., F), B, = (B,, G) be algebras for te T and 4,
be a weak homomorphism of 2, into B, for each 7 € 7. By the definition of direct

products of algebras, A = [[ A, has the same fundamental (and also algebraic)
teT

operations as each A, i.e. A = (4, F), B = (B, G). Weak homomorphisms #4, for
t € T are called similar if R, . = R, for each 7' 7" € T.

Theorem 1. Let N, = (A, F), B, = (B,, G) be algebras and Iit be a weak homo-
morphism of W into B, for each v € T. If h, are similar for T € T, then the mapping
h =11 k. is a weak homomorphism of A = [[ U, into B =[] B..

teT teT teT

Proof. Let A, be similar, then fR, f* implies fR,f* for h =[] h,, because the

1eT
operations on U, B are performed componentwise. Then for each fe F there exists

S* € B such that fR,f*, because for each fe F there exists f* € B such that fR, f*
for each 7€ T, and vice versa, for each g* € G there exists g€ A such that gR,g*,
thus 4 is a weak homomorphism.
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It is clear that for Boolean algebras and weak isomorphisms also the converse
statement is true. Thus we obtain:

Corollary 2. Let %, %,. be Boolean algebras and h, be a wéak isomorphism of U,
onto B, for each 1€ T. Then h = [| h, is a weak isomorphism of Boolean algebra

teT
A = [] A, onto Boolean algebra B = [| B, if and only if either h,(0) =0 or h,(0) =1
teT teT

forallteT.

Proof. By [l], each weak isomorphism 4, of Boolean algebras fulfils #,(0) = 0
or h(0) = 1. A direct product of Boolean algebras is a Boolean algebra (see [1])
and each weak isomorphism is a one-to-one homomorphism (see [5]); then the
assertion follows directly from the theorem 1 and foregoing contraexample.

Lemma A. Each chain considered as a lattice has exactly two binary algebraic
operations which are not trivial. These operations are fundamental.

Proof. On a chain considered as a lattice there exist two binary fundamental
operation only, namely v and A, and two binary trivial operations (see [10]),
namely e, e,, where e,(a, b) = a, e,(a, b) = b for each a,b. Further (see [10]),
each algebraic operation can be obtained by a successive superposition of fundamental
and trivial operations. Dznote as f; g the fundamental binary operations, i.e. f = v,
g=nAorf=A,g= v.Wecaneasily prove e,(f,g) =/, e,(f, 8) = &, flei,€) =f
for i # j and fle;, e;) = e;, flei, 8) = e; for f+# g and f(e;, /) =1, f(g, &) = e,
U e) =1 ) =1, gf, f) = f. Because each two elements are comparable, we
obtain f(f, g) = f(g,f) = f. Accordingly, superpositions of binary fundamental and
trivial operations are fundamental and trivial operations only which completes
the proof.

Let L, L, be lattices. A mapping / of L, into L, is said to be a dual homomorphism
if h(avd) = h(a)A h(b) and h(anb) = h(a) v h(b) for each a,be L,.

Lemma B. Each weak homomorphism of a chain into a chain is either a homo-

morphism or a dual one.

Proof. This follows directly from the definition 1 and lemma A.

Corollary 3. Let U, be chains for © € T. Then there exist exactly two algebraic binary
operations which are not trivial on the distributive lattice W = [ ..
teT
Proof. The algebras U, A have the same set of algebraic operations, i.e. A@) =
= {Vv, A} by the lemma A. By [I], U is the distributive lattice. (The symbol A™ jg
introduced in [10].)

Theorem 4. Let U, B, be chains for teT,ceSand A = [, B=[]B,.

teT des
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Each weak homomorphism of the distributive lattice W into the distributive lattice B
is either a homomorphism or a dual one.

This follows directly from the definition 1 and corollary 3. From the theorem 1
and the lemma B we can easily obtain the following

Corollary 5. Let ., B, be chains and h, be a weak homomorphism of W, into B,
for each teT. Then h =[] h, is a weak homomorphism of the distributive lattice

teT
A =[]A, into B =[] B, if all h, are either homomorphisms or all h, are dual homo-
teT teT
morphisms.

4.- Algebras with zero. Denote A a class of algebras with zero element 0 and a binary
operation @ such that:

(i) a®0 =0@a = a,

(ii) f(00 ... 0) = 0,
for arbitrary A = (4, F)e A, a€ A, fe A n-ary for n = 1. From (i), (ii) it follows
that {0} is a one-element subalgebra of each W e A.

Let A e A for te T and A = [],. Evidently, 2 € A. By the symbol 2, (or [J¥,

teT teT’
for T' € T) is denoted a subalgebra of 2 such that

pr, =AU, pr.A ={0} fortv #1
(orpr, [[¥, =¥, for te T" and pr,. [[ YU, = {0} for ' € T — T, respectively).

teT’ teT’
Evidently, U, is a subalgebra of % isomorphic with2[,, [, is a subalgebra of %A
—_ teT’
isomorphic with [, and [, = [[A, for T’ = T.

teT’ teT teT
Let A e A, A = (4, F). An operation fe A is called regular on U if the arity of f
is greater than 1 and -
(iii) f(a,a, -.- a,) = 0 if and only if a; = 0 for at least one i€ {1, ..., n}, where
ag, ...,a,€A.

Lemma C. Let A, e A for te T. If A = [ U, and f € A is an n-ary regular operation

t€T
on each W, (f need not be regular on N), then a,, ..., a, € A, a; = 0 for at least one i,

implies f(a,a, ... a,) = 0, where A is the support of .

Proof. Let a; = 0, then for each te T is pra; = 0 and pr.f(a, ---a; ... a,) =

=fl(pra,) ... (pr.a) ... (pra,)] =fl(pr.ay) ...0 ... (pr.a,)] =0, then f(a, ...0 ... a,)=
=0. '

Lemma D. Let U, B € A and h be a weak isomorphism of W onto B such that h(0) =
= 0. If f is regular on W and fR,f*, then f* is regular on B.
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Proof. Let f is regular n-ary operation on % and fR, * for weak isomorphism &
fulfilling #(0) = 0. Let b,, ..., b,e Band a,, ..., a, € A be elements such that A(a) =
= b, for each i; 4, B are supports of U, B respectively. If b; = 0, then a; = 0 because
h(0) = 0 and & is a one-to-one mapping, thus h(f(a, ... a; ... a,)) = h(0) = 0 and

f*by ...0...b) =h(f(ay ...0...a)) =0.Ifb; #0foralli = 1,...,n, then g, # 0
and f(a, ... a,) # 0, thus 0 # A(f(a, ... a,)) = f*(b, ... b,), i.e. f* is regular on B.

We say that fe A fulfils (P) on A = (A, F) if for arbitrary a,, ...,a,€ 4, a, # 0

for each i, is true f(a, ... a,) # O.

Lemma E. Let N = (4, F) and each n-ary fundamental fe F for n = 1 fulfils (P)
on W. Then also each n-ary algebraic operation of W fulfils (P) on A for n = 1.

Proof. Evidently, each trivial operation fulfils (P) on % and each superposition
of operations fulfilling (P) is an operation fulfilling (P).

5. Direct decompositions. In this paragraph, we shall not make any difference
between algebra and its support to simplify notation. Now, we summarize assump-
tions which will be used in the formulation of the subsequent theorems. '

Assumptions.
1) A, = (4., F), B, = (B,, G) are at least two-element algebras from A for each
teT,o€S. A
(2) T, S are finite index sets.
BPA=[]%,8=[]%3,.

teT o€eS

(4) his a weak homomorphism of A onto B such that A(0) = 0.

(5) there exists at least one operation from A which is regular on each ..

(6) if fe A is regular on each A, then at least one f* e B fulfilling fR, f* is regular
on each B,.

(7) if fe A is regular on each ., then at least one f* € B fulfilling fR,f* fulfils (P}
on each B,.

By the symbols A, B are denoted sets of algebraic operations of ¥, and A, B, and B,

respectively, as it is introduced above. It is clear that (6) implies (7) but not vice

versa.

Lemma F. Let the assumptions (1), (3), (4), (5), (7) be true. Then h(U,,) N (AA,,) N
N B, = {0} for each t,, 1,€T,0€S, 11 # 1,.

Proof. Let A(%,,) N WA,) N B, # {0} for 1, # 1,. Then there exist a, €U,,,
a,€WUr,, by, b, e H(A,) N KA,,) N B, (we admit b, = b,) such that b, # 0 5 b,
and h(a;) = b,, h(a;) = b,. Let f be regular on each U, then f(a,a, ...a;) =0
because pr.a, = 0 for © # 1, pra, = Ofort # 1, and 7y # 7,. IffR, f*, h(0) = O
and f* fulfils (P) on each B,, then

f*bsb, ... b)) #0  because by, b,€B,, by # 0 #b,,

but f*(b.b; ... by) = h(f(a,a; ... a;)) = h(0) = 0, which is a contradiction.
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Theorem 6. Let the assumptions (1), (2), (3), (4),_(5), (6) be true. Then for each
o € S there exists uniquely 1, € T such that B, < h(U,).

Proof. Let assumptions of the theorem be true and the assertion itself not. Then
there exists at least one o € S such that for any t e T is not B, < h(2,). Let T’ be

an arbitrary subset of T such that A( I—Iil,) 2 B, . Such T” exists, for example T’ = T.

teT’

Evidently, card T' > 1. If the assertion is not true, then card T’ = 2 for each T,
of this property. Thus two following cases are possible only:

(a) thereexistt,,1,€ T', 1, # 1, and a, €U, a, € A,, such that h(a,), h(a,) € B,
and h(a;) # 0 # h(a,). Then contradiction can be obtained by the lemma F.

(b) there exists by € B,, b, # 0 such that for each ae h™'(by) is card T, = 2,
where T, = {t; t€ T, pr.a # 0}. From (2) follows the finiteness of 7,. Then each
a €U can be written in the following form:

a=a® ..®a,, where a,e¥;,T,=1{l,..,n},pra=pra.

From (i) it follows that this expression does not depend on any bracketing because
in each projection all elements except one are equal to zero and the operation @
is performed component by component. Leto be a binary algebraic operation from B
such that @R,o. Then b, = h(a) = h(@,)o ...o h(a,). It evidently also does not
depend on any bracketing. If 4(@,) € B, for each i e T,, then (by (@) it is A(@) = 0
for i # 15€ T,, thus b = h(a) = h(a,), i.e. a' € h™'(b,), card T, =1 for a’ = a,,
which is a contradiction with assumption (b). Let for je T, be h(a)) ¢ B,. If fis
regular on each . (it exists by (5)), then f(@;a; ... @) = 0 forie T,, i # j. If fR,f*
and f* is regular on each B, (it exists by (6)), then 0 = A(0) = h(f(a;a; ... a;)) =
= f* (h(dj) h(a;) ... h(@))), thus for each o € S there exists at least one ie T, such
that pr,h(a;) # 0. If h(a;) ¢ B,, then there exists ¢’ # ¢ such that pr,h(a;) # 0 and,
by the above mentioned consideration, pr,.h(a,) = O for each i # j. Thus pr,.h(a) =
= pra,(h(dl)o ...0 h(d,,) = [pr,h(@)]o ...o [proh(a@;)] = 0o ...0 [pra,h(ﬁj)]o ..o =
= pr,.h(@;) # 0 (because 0®a = a = a®0 = 00 h(a) = h(a) = h(a)o 0 for h(0) = 0),
however, h(a) = by € B,, i.e. pr,h(a) = 0 for ¢’ # o, which is also a contradiction.

The uniqueness follows directly. from the lemma F. g.e.d.

For weak isomorphisms the condition (6) can be replaced by the weaker condi-
tion (7) and the condition (2) of the finiteness of index sets can be omitted.

Theorem 7. Let the assumptions (1), (3), (4), (5), (7) be true and h be a weak iso-
morphism. Then for each o € S there exists just one t, € T such that B, < hQL,).

Proof. Let the assumption of the theorem be true and the assertion not. Consider
the same cases as in the proof of the theorem 6 and use the notation introduced
there. In the case (a) we obtain contradiction by the same way as in the proof of the
theorem 6 because we need the assumptions (1), (3), (4), (5) for it only. Let us consider
the case (b). There exists b, € B,, by # 0 such that for each a € h™1(b,) is card T, = 2.
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Let 1 T,, then @ = c®d,, Wwhere ¢ # 0, a, # 0, @, e, pr.a, = pr.a, prc =0 and
proc = proa for v # 7. If fis regular on each %, then

flac...c) =o.

Let @R,o, then b = h(a) = h(c)o h(a,). Because h(0) =0 and 4 is a one-to-one
mapping, it is h(c) % 0, A(@,) # 0. If h(c) e B,, h(a) € B,, fR,g and g fulfils (P) on
each B, (such g exists by (7)), then

g(h(@) h(c) ... h(c)) # 0

but g(h(@,) h(c) -.. h(©)) = h(f(a.c ... ¢)) = h(0) = 0 which is a contradiction. 1f
h(a,) (or h(c)) does not belong to B,, then there exists 6’ # ¢ such that pr,.h(a) # 0
(or pr,h(c) # 0); then from g(h(@,) h(c) ... h(c)) = h(f(@.c ... ¢)) = h(0) =0 it
follows pry-h(c) = 0 (or proh(a,) = 0), then pr,by, = pr,h(a) = pr,(h(c)o h(@a,)) =
= [pryh(e)] o [proh(@)] = proh@) # 0 (or proby = [proh(c)] o [proh(@)] =
= pr,.h(c) # 0, respectively) which is a contradiction with b, € B, for ¢ # d’.

Corollary 8. Let the assumption (1), (3), (4), (5), (6) be true and h be a weak iso-
morphism. Then card S = card T and each U, is weak-isomorphic with some B,.

Proof. It follows directly from the theorem 7 because A~! is also a weak iso-
morphism such that 271(0) = 0 and for f* € B which is regular on each B, there
exists fe F such that fR,f* (or f*R,-1f), where f is regular on each U, further
(6) = (7) and the restriction of weak isomorphism onto a subalgebra is also a weak
isomorphism.

Corollary 9. Let the assumptions (1), (3), (4), (5), (6) be true and h be a weak iso-
morphism. Then there exist a bijection T of the index set S onto T and an isomorphism 1
of T1 B, onto [] B, = [1 B.(which permutes the direct factors only) thati.h = [] h.,

geS

o€S teT teT
where h, is a weak isomorphism of W, onto B, = B, .

Proof. By the corollary 8 and theorem 6, it is card S = card T, and we can permute
S such that A, is weak-isomorphic with B, = B,,, and n(s) = 7,. Denote by #,
this weak isomorphism of 2, onto B,, then i- A is a weak isomorphism of []2,

teT
onto [[B,, i- A(A,) = B,, thus
teT
prh(a)) = h(pr(a)) foreach teT,ac4

and, by the definition 2, itis i. h = [] A,. q.e.d.

1eT
For the weak homomorphisms the situation is rather complicated.

Definition 3. Let A = (4, F) be an algebra with the set of algebraic operations A.
An operation f€ A is called strong idempotent if f is regular on U and for arbitrary
ay, ..., a, € A there exists i € {1, ..., n} such that f(ay, ..., a,) = a;.
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It is clear that if fis strong idempotent on 2, then each element a € A4 is idempotent
with respect to f (but not vice versa in the general case). Further, each strong idempo-
tent operation on U fulfils (P) on .

Theorem 10. Let the assumptions (1), (2), (3), (4) be true and, furthermore, there
exist at least one n-ary algebraic operation which is strong idempotent on each ..
Let there exist at least one algebraic operation g such that fR,g and g is strong idempo-
tent on each B,. If card S = card T, then there exists a bijection n of S onto T such

that n(o) = t,, where 1, corresponds to o by the theorem6,and i- h = || h,, where i
teT

is’ the isomorphism of H B, onto [| Bu =[] B. which permutes the direct factors

cES ageS teT

only and h, is a weak homomorphism of U, onto B, for each te T.

Proof. By the theorem 6, there exists just one 7, € T for each o € S such that
B, < KA,,).

(a) Let for 64,0, € S, 0, # 0, is 1,, # 1,,. If there exists o € S such that B, =
< h(,,), B, # h(AU.), then there exists an element ¢ € A(A,)) — B,,c#0and g, # o
such that pr,.c = ¢; # 0. Denote d e, such element that A(d) = ¢ and d, e, ,
such that A(d,) = ¢,, where ¢, = pr,,¢, and pr,é, = 0for ¢ # ;. By the theorem 6,
such elements exist. Let £, g be strong idempotent on each U, B_, respectively, and
SR,g. Then f(dd, ... d;) = 0 because for o, # ¢ is 7,, # 7, by the assumption (a)
of the proof and for 7, # t,is A, (A, = {0}. However, pr, [h(f(dd; ... d\))] =
= pro,lg(ce; ... )] = gl(pr,,€) (pry,&y) - (pry;y)] = glesCy - ¢4) = ¢; # 0, which
is a contradiction with 4(0) = 0. Accordingly, we obtain B, = A(3, ) for each t € T.

(b) Let there exist g, 0, € S, 6, # 0, such that 7, = 7,,. Denote 1,, = 1,, = 7,.
Then B,, = h(3,), B,, = AU, ), i.e. there exist b, € B,,, b, €A, , b, # 0 # by, a,
a, €A, , h(a,) = by, ha,) = b,. Thenf(a,a, ... a;) = a;, but a; # 0 for i = 1 or 2.
However,0 = g(b,b, .. b,) because g is regular and g(b,b; --- b;) = h( f(a,a, ... a,)) =
= h(a;) = b; # 0 which is a contradiction.

Summary: there exists just one 7,€ T for each g€ S such that B, = A, ),
card S = card T, i.e. the mapping @ : 6 — 1, is a bijection. Denote n(s) = 7,. Then
hA,) = B,.If j, is the insertion of A, onto A, and pr, is the projection of B, onto B,

then, evidently, i - A = [] h,, where h, = pr,- h - j, and i is the above mentioned iso-
teT
morphism.

Theorem 11. Let A, B, be chains with the least and the greatest elements and W =
=[1%Y., B =[] B. for finite index set T. If h is a weak homomorphism of U onto B,
teT teT
then there exists a permutation n of T and an isomorphism i of [| B, onto [ | Bz
teT teT

permuting direct factors only such thati - h = [] h,, where h, is a weak homomorphism
Te€T

of W, onto B, ., for each 1€ T.
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Proof. By the corollary 5, 4 is either a homomorphism or a dual one. Let 0 is the
least element on A, @ = v, f = A. Then fis a strong idempotent on each ..
If 4 is a homomorphism “onto*, then A(0) is the least element of B and the assertion
follows directly from the theorem 10, because corresponding g such that fR,g is
g = A, which is strong idempotent on each B,. If 4 is a dual homomorphism, then
h(0) is the greatest element of B, it is zero element in the sense of algebra from A,
where @ = A and g = Vv and the assertion follows also from the theorem 10.
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