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SOLVABILITY OF INFINITE SYSTEMS 
OF LINEAR EQUATIONS 

ALEXANDER ABIAN 
(Received February 28, 1975) 

Let S be a finite or infinite system of polynomial equations over a field F. It is not 
true in general that if every proper subsystem of *S has a solution in F then S has 
a solution in F. For instance, the system S of polynomial equations 

(1) (a-x)ya-l=*0 mthaeF 

is such that every proper subsystem of it has a solution in F, however, the entire 
system has no solution in F. Indeed, if P is a proper subsystem of (1) such that, say, 
the equation (b — x) yb — 1 -= 0 does not appear in P, then a solution of P is given by 
x = b and ya — (a — b)~l which exists since a ^ b. Nevertheless, the entire system 
(1) has no solution in F since if (1) had a solution in F with, say, x = r, then the 
equation (r — x) yr — 1 = 0 would have no solution in F. 

In sharp contrast to the above is the case of a system of linear equations over 
a field. As shown below any system (finite or infinite) L of linear equations over 
a field F has a solution in F under a weaker assumption; namely, the assumption 
that every finite subsystem of L has a solution in F. 

Theorem. Let (L{ = 0)ie£ be a (not necessarily finite) system of linear equations 
L( = 0 over afield F. Then the system (Lt = 0)ie£ has a solution in F if and only if 
every finite subsystem of it has a solution in F. 

Proof. Clearly, if the entire system has a solution in F then every finite subsystem 
of it has a solution in F. 

Thus, in what follows we suppose that every finite subsystem of (L{ = 0)ieE has 
a solution in F and we prove that the entire system has a solution in F. 

Let (xdieu be the set of all the variables appearing in the system (Li = 0)i6E- More­
over, let (Lt)ieV be the set of all linear polynomials in variables (x^^y with coefficients 
in F, including the constant polynomials, i.e., F g (L^)isV. 

Next, let (Lt)ieQ be the subspace of (L^ieV generated by the set of vectors (Lt)ieE. 
We prove that: 

(1) r $ (Lt)ieQ for every nonzero element r of F 
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Assume on the contrary that r e (L^ieQ. Hence, r is equal to a finite linear combina­
tion of vectors belonging to (Li)i6E, i.e. 

(2) 0 # r = YJ riLi for a finite subset N ofE 
ieN 

where rt e Ffor every i e N. However, by our supposition, the finite system (Lt = 0)ieN 

has a solution in F. Thus, there exists a substitution by elements of F of the variables 
appearing in (Lt)ieN such that the right-hand side of the equality in (2) is equal to 
zero. But this contradicts (2). Hence, our assumption is false and (1) is established. 

Now, let (Lt)ieB be a basis for the subspace (L^ieQ and let 1 be the multiplicative 
unit of F. From (1) and the axiom of choice it follows that {1} u (L^ieB can be en­
larged to a basis, say, 

(3) { 1 } U W W U ( I | W 

for the entire vector space (Lt)ieV. 
Finally, based on (3), we consider the linear mappingffrom(Li)ier onto Fdefined 

by: 

(4) f(l) = 1 and f(Lt) = 0 for every ie(Bv D) 

Since (Li)i€B is a basis for (L^ieQ, we see thatf(Lf) = 0 for every ieE. But then 
from the linear additivity off, it follows that rf = f(xt) for every i e U gives a solution 
(in F) of the entire system (L{ = 0)i6£, as desired. 
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