
Archivum Mathematicum

Bohumil Šmarda
Connectivity in tl-groups

Archivum Mathematicum, Vol. 12 (1976), No. 1, 1--7

Persistent URL: http://dml.cz/dmlcz/106920

Terms of use:
© Masaryk University, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/106920
http://project.dml.cz


ARCH. MATH. 1, SCRIPTA FAC SCI. NAT. UJEP BRUNBNSIS 
XII: 1—8, 1976 

CONNECTIVITY IN TL-GROUPS 

BOHUMIL ŠMARDA, Brno 
(Received May 31,1974) 

In this paper the algebraic structure of topological 1-groups in relation to their 
topological connectivity is investigated. By a topological 1-group (tl-group) we 
mean a lattice-ordered group (1-group) G with a topology being a r0-space, a topolo­
gical group and a topological lattice at the same time. With regard to the homogeneity 
of topological group, its topology x(I) is defined by a neighbourhood basis I of 
zero in G. This tl-group is denoted by (G, I). The group operation has the additivity 
notation and the lattice operations are A and v . By [6] 1.5 a !T0-space of a topological 
group is a Kuratowski space and thus a complete regular space as well. 

The paper is divided into two parts. In the first part there are results concerning 
mostly fully ordered tl-groups. Namely, a topological component of fully ordered 
tl-group is 1-isomorphic with the fully ordered additive group of real numbers* in 
case of being different from zero. 

The results from the first part are applied to the case of non fully ordered tl-groups 
to which the second part of the paper is devoted. 

In this paper the terminology and the notation usual in the theory of 1-groups and 
topological groups are used—see References. The fully ordered additive group of 
real numbers is denoted by J?. 

Remark. 1. A clopen set is a closed and open set at the same time. 
2. If the elements x, y are incomparable, we write x || y. 

1.1. Let (G, I) be a tl-group. Then the next assertions are equivalent: 
(i) For any element g e G {x e G: x < g}, {x e G: x > g} are open sets. 
(ii) For any element geG Ng =- {x e G: x || g} is a clopen set. 
Proof, (i) => (ii): Let y e Ng\Ng. Then y - g non || 0, y - g e N0\N0 and in 

the open set {JC 6 G: \ y - g \ > x > - | y - g |} there exists an element x such 
that (y - g) - x || 0. It means y - g || x, which is a contradiction. Further Ng » 
« {x e R: x non ^ g} n {x e G: x non g g} is open (see [2]). (ii) ==> (i): The set 
{xeG: xnon ;> g} n (G \Ng) is open. 



Definition. Let (G, I ) be a tl-group, x(Z) its topology, where the sets {xeG: 
x > g)> {x e G: x < g} are open for any g e G. Then x(Z) is called a semiinterval 
topology (si-topology). 

1.2. If a tl-group (G, I) is fully ordered, then its topology x(Z) is a si-topology. 
Proof follows from 1.1. 
1.3. A convex subgroup //4= {0} in a tl-group G with a si-topology is a clopen set. 
Proof. For any 0 + h e H {x e G: h > x > —h} is an open set in H. 
1.4. Any connected subset M 4= {0} in a tl-group (G, I) with a si-topology is convex. 
Proof. Let h, k e M, g e G \ M, h > g > k. Lg = {x e G: x > g}, Ug = {x e G: 

x < g} .are open. Then the sets A == (Lg u Ng) n M, B = Ug n M are open in M 
and AKJ B =- H, A n B = #, A + <P ^ B hold, which is a contradiction. 

Definition. A component K of a tl-group (G, Z) is a maximal connected subset 
containing zero in G. 

1.5. Let (G, Z) be a non-fully ordered tl-group with a si-topology. Then (G, Z) is a 
totally disconnected topological space. 

Proof. There exists a system {Q{: iel} of convex prime 1-subgroups in G with 
a property r\ {Qt :iel} == {0}. All Qt(iel) are clopen sets (see 1.3) and thus for 
the component Kin G it is Kc n {Qt :ie 1} = {0}. 

1.6. Let (G, Z) be a tl-group with a si-topology and Kbe a component in G. Then K 
has the following properties: 
1. K is a clopen convex normal subgroup in G. 
2. For any geG, g#0 and any keK there exists a positive integer n such that 

»kl>H-
3. If K # {0}, then K is the only subset in G fulfilling properties I. and 2. 

Proot. The property 1. follows trom the properties of a component of a topological 
group and 1.3, 1.4. 
2. If 0 # g e G, then Ug -= {JC e G: \ g \ > x > -1 g \} is open and thus a convex 

subgroup [Ug] in G generated by Ug has the form [Ug] = {x e G: n \ g | > x > 
> —n | # | ) f° r a suitable positive integer n. The set [Ug] is clopen and thus 
Kc[tg. 

3. If K =# {0}, then according to 1.5, G is fully ordered. Further, if L a G is a set 
fulfilling 1. and 2., then for any leL, ke K, Z + O + k there exist positive integers 
«, m such that n \ 11 > | k | and m\k\ > \l\. Finally K = L. 

1.7. Theorem. Let (G, Z) be a tl-group with a non-discrete si-topology and L # {0} 
be a subgroup in G. Then the following assertions are equivalent: 

1. L is a connected set, 
2. L is a component in G, 



3. L £ R and x(I) is not a totally disconnected space, 
4. L £ R, x(IL) is the interval topology and L is a clopen set in x(I), where IL — 

= {UnL: Uel), 
5. L s fl. 

Remark. L = /? means that L is 1-isomorphic with a fully ordered additive group R 
of real numbers. 

Proof of Theorem 1.7. 1 => 3: If L + {0} is a connected subfroup in G, then G 
is fully ordered (see 1.5)andLisarchimedean(see 1.6). Thus there exists an 1-isomor-
hism <p : L -* R. Now we consider the interval topology s on R. (R, s) is a tl-group 
and cp is a continuous mapping. cp(L) is connected, convex (see 1.4) and it means 
that <p(L) = R. 

3 => 5 immediately. 5 => 4: With regard to [8], 2.13 the topology x(SL) is the inter­
val topology. From the fact that L is a clopen set (see 1.3, 1.4), there follows the 
locally compactness of (G, I). 

4 => 2: The set L is a connected set in x(I) and therefore L £ K, where K is a com­
ponent in G. For any / e L, / 4= 0 and any k e K there exists a positive integer n such 
that n\l\ > \k\ (see 1.6). L is a convex subfroup in G (see 1.3) and L 2 K. Together 
L = K. 

2 => 1 is trivial. 

1.8. Corollary. If (G, I) is a tl-group with a si-topology x(I) and K # {0} is its 
component, then G is fully ordered and x(I) is locally compact. 

Proof follows from the proot of Theorem 1.7. 

1.9. Example. Let P be a connected tl-group with the interval topology, Q be a 
fully ordered tl-group with the discrete topology. Then the topological product 
G = P x Q with the lexicographical order is a fully ordered tl-group with the 
component K = P x {0}, {0} # K ^ G. 

1.10. Let (G, I) be a tl-group with a si-topology, K # {0} be a component in G. 
Then G is l-isomorphic with the fully ordered additive group R of real numbers if and 
only if G is a connected space. 

Proof follows from 1.7. 

Definition. An element g e G, g ^ 0 is called archimedean if for any h e G, h # 6 
there exists a positive integer n such that n \ h \ non g | g |. 

1.11. Lemma. If(G, I) is a fully ordered tl-group and A is the set of all archimedean 
elements ofG,A ?-= <P, then A u {0} is a clopen l-ideal in G. 

Proof. The case G = A u {0} is trivial. If Au {0} ¥> G, g, g' e A, then there 
exist positive integers n, n' such that n \ h \ > \ g \, n' | h | > | g' \ for any h e G, 
h^O. It is | ~ # | <n\h\, -geA and \g + g' \ £ \g\ + \g'\ + \g\<(2n + 
+ n')\h\, g + g'eA. If zeR, \z\ < \g\, then \z\ < \g\<n\h\ and zeA. 



Further for any zeG, geA, h & 0 there exists a positive integer n such that n \ z + 
+ h - z | > | g | and thus | ~ z + £ + z | = - z + | g | + z < - z + » | z + A~ 
— z | + z = n( -z + |z + A ~ z | + z ) = / i | - z + z + A - z + z | = » |A| , i.e., 
~ z + g + z e A. The rest follows from 1.2 and 1.3. 

1.12. A component Kofa tl-group (G, Z) with a non-discrete si-topology in G that 
is not totally disconnected is the greatest subgroup in G l-isomorphic with R and K = 
*• A u {0}, where A is a set of all archimedean elements ofG. 

Proof. foUows from 1.6, 1.7 and 1.11. 
1.13. Let (G, Z) be a tl-group with a non-discrete si-topology nad A be a set of all 

archimedean elements of G. Then (G, Z) is totally disconnected space if and only if 
{A u {0}, ZA) is totally disconnected space, where ZA = {U n(A u {0}): UeZ}. 

Proof. foUows from 1.12. 

Definition. We say that an 1-group G is totally non-archimedean if for any g e G, g =# 0 
there exists an element A e G, A ?- 0 such that | g \ > n \ A |, for any positive integer n. 

1.14. If (G,Z) is a tl-group with a si-topology and G is totally non-archimedean, 
then (G, Z) is a totally disconnected space. 

Proof. foUows from 1.12. 
1.15. Let (G, Z) be a fully ordered tl-group with a non discrete topology. Then 

(G, Z) is a locally compact space if and only if(G, Z) is not a totally disconnected space. 
Proof. 1. If K # {0} is a component in G, then (G, Z) is a locaUy compact space 

{see 1.8). 
2. If (G, Z) is locaUy compact and totaUy disconnected, then according to [3], p. 139, 
Th. 6 there exists a clopen compact subgroup H in G which is a tl-group. From [6], 
2.5 it foUows that {0} # # £ n {U: Ue Z} = {0}, which is a contradiction. 

2. 

Now, we shaU investigate the connectivity in non fuUy ordered tl-groups. 

2.1. Theorem. If (G, Z) is a tl-group and K is its component, then K a P + B, 
where P is a closed convex prime l-subgroup in G, B is a convex l-subgroup in G, B 
non £ P and P or Bis an l-ideal in G. 

Proof. Let n be a restriction of the lattice homomorphism n:G~* GjP, where 
GjP - {P + g : g 6 G} on B. From [1], L. 11 it follows that Bn is an open set in the 
topological space GjP and we prove that Bn is also closed in GjP: IfP + g non e Bn, 
then Bn + (P + g) is a neighbourhood of P + £ in G/P and [.£# + (P + &)] n 
n Bn = #. On the contrary the elements bi9b2eB exist with the property (P + bt) + 
+ OP + g) = -P + *i and bt + geP + b2,bt + g = p + 62 for a suitable element 
p€P . Further P or 5 is normal and thus ^ + g = p + b? = i 3 + Pi, where 



63 e B, px e P are suitable elements. From there g -= (~-bx + b3) + p% « />2 + &4> 
where fc4eB, p2eP are suitable elements and P + g - P + p2 + b^c: P + Bf 

P + ge Bit, which is a contradiction. From this Bn is a clopen set in GjP and J&TG/p <= 
c P#, where KG/P is a component of zero in GjP. It means that Kit s KQIP S 2&* 
andP + KcP + 5, KCP4--5. 

2.2. Lemma. //* (G, I) is a tl-group with a T0~topology, then any polar P in G is 
a closed set in the topology T(I). 

Proof. With regard to [1], Prop. 4g' is a convex 1-subgroup in G, for any ge G, 
and we shall prove that (7)+ cz g'. It holds {| g |} A (?)+ {[#"[} A ^ V C {|g|} A 
A (g')+ = {0} = {0} (see the proof of Prop. 4, [1]). Further, for any polar P in G 
there is P = Q' for aflsuitable set Q in G and P = n {#': g € (>}, P == P. 

Definition. Let G be a non fully ordered 1-group. We say that a system {Pt: i e 1} 
of minimal convex prime l-subgroups in G has the property (cc)ifit is n {Pj: iel} =* 
= {0}, n {P,: i e / \{j} non £ Pj for any jel. 

2.3. //*(G, I) is a non fully ordered tl-group with a T0-topology and a system {Pt: i e 
£ 1} has the property (a), then Pt is a closed set for any i e I. 

Proof. We choose arbitrary elements aier\{Pi:ieI \{j}} \Pj for any je L 
Then a'j^Pj and for any xePj it is | x \ A \aj\ePj n n {Pt: iel \{j}} * {0}. 
From this x e a} and Pj = a] is a closed set (see 2.2). 

2.4. Theorem. Let (G, I) 6e a now fully ordered tl-group, {Pt: iel} be a system 
of closed prime l-ideals in G, n {Pt :iel} = {0}. Let (G, I) be a connected topological 
space. Then G is l-isomorphic with a subdirect product of fully ordered additive group 
of real numbers. 

Proof. x(I) is a r0-topology. Then GjPj is a connected fully ordered tl-group for 
any ye 7. From 1.7 it follows that G/Pj is l-isomorphic with J?. Finally, G is l-iso­
morphic with a subdirect product of groups of the type R. 

2.5. Theorem. Let (G, I) be a non fully ordered tl-group, {Pt: i e 1} be a system 
with the property (a). If (G, I) is a disconnected topological space, then (G, S) is a 
totally disconnected space. 

Proof. If K is a component in (G, Z), then with regard to 2.1 and 2.3 it holds 
K£ n {Bj + Pj : j e / } , where Bj = n {Pt: iel \{j}}- K means that for any 
jeland any k e Kthere exist elementspjePj,bje Bj with the property k = bj + Pj-
Now, we choose a fixed element j0 e I. Then fc = i i 0 + P^o — bx + pt for suitable 
elements bjoeBjo, Pj0ePjo> bieB1, pxePt and any lei. Evidently \bs\ A 
A j p j _. o, bj + Pi = Pj + */ for any bseBj,pse Pj. From there for any / + jo 
we have pp ~ *i = -fyo + Pi> PIo - *i eP/0> ~fyo + Pi sP t and pJ0 - bt ** 



= -bJ0 + px ePJ0 n BJ0 = {0}. It means that pj0 = bt, p\ = bj0 and Pjo G n 

n {Py : j * 1, fe/}, / e / \{f0}. Together pj0eP{ for any i e / and pj0 -* 0 and 
becausej0 e / was chosen arbitrarily it is k = byo for any k e K, i.e., fc = 0, K = {0}-

2.6. Le/ (G, T) fo a non-fully ordered tl-group with a non discrete topology, {Pi t 
: iel} be a system of closed prime l-ideals in G, n {Pt: i e /} = {0}, Kbea componen: 
in G. Then K = {0} or K is the greatest subgroup in G l-isomorphic with a subdirect 
product II Rt, where Rt is a fully ordered additive group of real numbers, in case K 
non c Pf and Rt = 0, in case K c P., / e /. 

Further K c A u {Q}, where A is the set of all archimedean elements in G. Moreover 
ifG is totally non archimedean, then G is a totally disconnected space. 

Proof. With regard to 2.1 it is Kc Pt + {ge G : nx = g ^ -nx} for any 
0 < x # P i , i e / . (K + Pi)/P| is a fully ordered tl-subgroup in a tl-factorgroup 
G/Pi that is connected and in case Knon^ P(, it is the greatest subgroup in G/Pf 

l-isomorphic with a fully ordered additive group of real numbers for ie I (see 1.12). 
Further G has a realisation n : G -» II G/Pf, n is an 1-isomorphism and thus the 

ie/ 

first part of the proposition is proved. 
If K ^ {0}, then Kis l-isomorphic with Yi^i- If there exists an element 0 # k e K, 

iel 

k$A, then there exists an element 0 ?- heG such that n\h\ < \ k | for any positive 
integer n. Further there exists / e / such that h<£Pi and thus k$P{. Then k + Pte 
eG/Pi, k -f Pte(K + Pf)/Pi cz KGlPi, where Kc/Pi is a component in the fully 
ordered tl-group G/Pi5 k + P, is no archimedean element in G/Pf, which is in a 
contradiction with 1.12. 

Definition. A topological product I~[*(̂ i> ^-) of tl-groups (Gf, It) is a topological 
ie / 

product of topological groups (Gh St), iel and a direct product of 1-groups Giy 

iel at the same time. 
2.7. A topological product n*(^*> *̂) of tl-groups (Gt, li), iel, is a tl-group. 

iel 

IfKi is a component of (Gi, Et), i e I, then a topological product f]*Ki of topological 
iel 

groups Kj «r a component in Yl*(Gi> -£/)• 
iel 

Proof. If we denote f{*(G i,I i) = (G, I), then (G, I) is a topological group. 
iel 

If Ue I is an arbitrary neighbourhood and g e G is an arbitrary element, then U = 
= n*^i» where UieZt for ieJczI, card / < Xo, Ui = ^i f°r iel \J, g = 

i e / 

= (gdisl, gi^Gi. Then for / e J there exists Vf c J7,, Vt^Iiy - g* v (Vf -f 
-f- gf) c: £/y because (Gi9 It) are tl-groups (see [6], 1.1). If we choose Vx = Gt for 
1 6 / \ / , then for V = f j* V. it holds Vel, -g+ v (V + g~) c t/ and thus 
;.' i e / 

(G, I ) is a tl-group (see [6], 1.1). The rest follows from [7], p. 151, Th. 8. 



2.8. Example. If R{ is a fully ordered additive group of real numbers with the 
interval topology for i e J cz I and Rt is a fully ordered r.dditive group of real numbers 
with the discrete topology for iel \ J, then the (topological) component K of the 
topological product j"j* R{ is l-isomorphic with | " j* Rt. 

І Є I ІGІ 
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