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PROJECTIVE AND INJECTIVE 
COMPLETE LATTICES 

EDUARD FUCHS, Brno 

(Received July 1, 1974) 

This paper is concerned with solving the problem of existence of projective and 
injective objects, projective and injective retracts, respectively, in the category whose 
objects are the complete lattices, and morphisms are the complete lattice homo-
morphisms. From the category point of view, it is quite evident that while problems 
of injective objects of this category are trivial, the situation with projective objects 
and even with projective retracts is much more complicated. In the present paper 
there are mentioned some necessary conditions for the given lattice to be projective 
object, projective retract, respectively, and there are given necessary and sufficient 
conditions e.g., for chains. 

There are used the following symbols: 
Categories are denoted by 21, 23, Ct, ..., objects of categories by capitals A,B,C,..., 

morphisms by letters/ g, h, .... If A, B are objects of the category 21, then symbols 
H%(A, B) or briefly H(A, B) denote the set of all morphisms from A to B. Identity 
morphism from A to A is denoted by symbol idA. For fe H%(A, B), g e H%(B, C), 
the composition of given morphisms is denoted by g o h or gh. 

If X, Y are sets, the symbol / : X -> Y denotes the mapping of the set X into the 
set Y. 

If / : X -> Y, we put f(X) = {f(t) \teX} and for ye Y, / _ 1(y) = {x\xeX, 
f(x) = y}. For U g X,f\ U denotes the restriction of the mapping/on the set U. 

We say the mapping/: X-> Yis an injection if/(*i) ¥:f(x2) holds for any two 
elements xt, x2 e X, xt 7-= x2, and a surjection in case f(X) = Y. If / is both an 
injection and a surjection, then it is called a bijection. 

By ordered set we mean a partially ordered set i.e., a set with reflexive, antisym-
metrical and transitive relation. If A is an ordered set, 0 *-= X g A, the least upper 
bound of the subset X in the set A—if it exists—is denoted by the symbol sup^ X 
or only sup X. Analogously, the greatest lower bound of a subset X in the set A is 
denoted by infA X or inf X. x vy is also used instead of sup {x, y} and x Ay instead 
of inf {x, y}. X — Y denotes the difference of sets X, Y. 

If A is an ordered set, x, ye A, the symbol x \\ y means that the elements x, y 
are incomparable i.e., neither x ^ y nor y ^ x holds. For x, y e A, x ^ y, <*,y> 
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denotes a closed interval {t | t e A, x S t ^ y}, (x, y) denotes the corresponding 
open interval {t | t e A, x < t < y}. We say the element y covers the element x if 
y > x, <x, >>> = {x, y}. If there exists the smallest element in the ordered set A, it is 
denoted by 0^, the greatest element —if it exists— by \A. 

An isomorphism of ordered sets is denoted by the symbol ^ . 
If A, B are ordered sets, A + B denote their cardinal sum, A® B their ordinal 

sum, and A x B their cardinal product (see [1], pp. 55 and 198). If a e A, b e B, then 
[a, b] G A x B. 

Let 21 be a category. An object A e 21 is called projective if for arbitrary B, C e 21, 
for arbitrary epimorphism geH%{B, C) and for arbitrary morphism fe H%(A, C) 
we have h e H%(A, B) so that gh = f 

A e 21 is called the projective retract if for every B e 21 and for arbitrary epi­
morphism g e Hgj(B, A) we have h e H%(A, B) such that gh = id*. 

Ae 21 is called the injective object if for arbitrary B, Ce2l, arbitrary mono-
morphismg e Hm(C, B) and arbitrary morphismfe H^C, A) there exists a morphism 
h e Hm(B, A) such that hg = f 

A e 21 is called the injective retract if for arbitrary B e 21, and arbitrary mono-
morphism g : A -» B, there exists h e H^B, A) such that hg = id^. 

It is evident from the above definitions that every projective object is a projective 
retract, and every injective object is an injective retract. 

§ 1. Basic properties of the category of complete lattices 

1.1. Definition. Let A, B be complete lattices. The mappingf: A -> B is called the 
complete homomorphism if 

f(suPyl X)'= supB {f(X)} f(infA X) = inffl {f(X)} 

holds for arbitrary subset 0 ?- X s A. 

1.2. Definition: Let A be a complete lattice. A subset 0 # X g A is called the 
closed sublattice of the lattice A if 

sup^YGX, inf^YGX 

holds for every subset 0 # 7 g X. 
Thus it is obvious that a closed sublattice of a complete lattice is a complete lattice. 
It may be easily proved 

1.3. Lemma: Let A, B be complete lattices, f: A ~» B a complete homomorphism. 
Then f(A) is a closed sublattice of the lattice B. 
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1.4. Notation: The category whose objects are complete lattices and morphisms 
complete homomorphisms is denoted by £. 

1.5. Lemma: The morphismfe £ is a monomorphism if and only if it is an injection 
and an epimorphism if and only if it is a surjection. 

Proof: It is evident that iffe £ is an injection, then it is a monomorphism and 
if it is a surjection, then it is an epimorphism. Now the reverse statements will be 
proved. 

I. Let fe H%(A, B) be no injection. Then there exist elements a, be A, a # b 
so thatf(a) = f(b). Let C be an arbitrary one-element lattice. Let us define a : C -• A, 
P : C -> A in the following way: a(x) = a, p(x) = b. Then a € H^C, A), p e H2(C, A), 
fa = fP, but a 7- p so that f is not a monomorphism. 

II. Letfe H^(A, B) be no surjection. It will be shown thatfis not an epimorphism. 
By assumption f(A) = Bx # B. Let us denote 2?2 = B - Bt. Thus B2 # 0, and 
by Lemma 1.3, Bx is a closed sublattice of the complete lattice B. 

Let us now consider the following three cases: 
1. Let B2 = {\B}> Let us denote f(\A) = b0. Then b0eBt, b0 is the greatest 

element in Bx, and 1B covers b0. Now let us define morphisms a, PeH%(B, B) as 
follows: 

\x for xeB, x #= 1B, 
a = td.. />(*) = [K f o r x = u 

Then a # /? and af = Pf Thus f is no epimorphism. 
2. The assertion can be analogously proved if B2 = {0B} or B2 = {0B, 1B}. 
3. Let x e B2, 0B ^ x ^ \B exist. Now let us define the mapping 

<p* : B2 —> Bt u {1B} as follows: 

JinfB {b | b e B1, b > t} if such b e Bt exists 
V B if b <=£-., ft > * does not exist. 

Then we define dually q>* : B2 -> Bx u {0B}. 
Let us denote B'2 = B2 — {0B, 1B}. We have B'2 ̂  B2 S* B, and by assumption 

B2 # 0. Let 1?2 o e a n arbitrary ordered set isomorphic with B2, where B n B2 = 0. 
Let q> : B'2 -+ B"2 be a corresponding isomorphism. 

Let us put C = i?2 u B, and let us define the relation g c on the set C as follows: 
For xu x2 e .5, there holds xt g c x2 if and only if xt ^ x2 in A 
For x t , x2 e ^2, there holds x% ^cx2 if and only if xx ^ x2 in ^J. 
For x e B, cp(t) e JBJ, t h e r e holds * ^ c <p(f) if and only if x g <p*(t) in A and 

3>(0 Scx ^ an(* only if <p*(0 ^ JC in A 
It is easily seen that the relation g c is an ordering on the set C and that (C, ^ c ) 

is a complete lattice. 
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Let us define the mapping ifr : B -> C in the following way: 

\x for x e B — B'2, 

^ ~ | < p ( * ) for xeB2. 

Then it is obvious that xj/ is an isomorphism from B into C. 
Let now 0 # I e C be arbitrary. The following three possibilities may occur: 

(1) X £ B. But then necessarily supc X = supB X. 
(2) X g B2- Then obviously supc X = >{supB {cp~l(X)}}. 
(3) X n B 7- 0, X n B2 # 0. We shall prove that supc X exists also in this case. 

Denote X n B = Y, X n B2 = Z.By (I) and(2) there exist supc Y = y, supc Z = 
= z. If we prove now that there exists supc {y, Z}, then there will be supc {y, z} = 
= supc X. If Z e B or Z e C — B, but Z comparable with y, it is nothing to be proved. 
Thus, let z € C — B, y || Z. Then we have Z = (p(t) for a suitable element l € B and 
there holds obviously 

supc {y, z} = supc {y, <p(t)} = supB {>>, <p*(t)}. 

So there exists supc X also in this case. 
The existence of infc X may be proved analogously. 
Hence C is a complete lattice and obviously \j/ e H2(B, C). 
Now let us define a : B -* C as follows: a(x) = x for every x e B. Then a e H%(B, C), 

a # i/s but af= i/(fso that f is no epimorphism. By this Lemma 1.5 is proved. 

§2. Reducible elements 

2.1. Definition: Let A be an ordered set, B §i A. We say an element xeA is 
J°-reducible in respect ofB if there exists a set 0 ^ X g= B such that x ^ X, x = supx X. 
We say an element x e A is M°-reducible in respect of the set B if there exists a set 
0 ^ X s B such that x £ X, x = inf* X. 

Let us denote 

J°(A; B) = {x | x e A, x is J°-reducible in respect of B}, 

M°(A; B) = {x | x e A, x is M°-reducible in respect of B). 

Further we put 

R(A; B) = J°(A; B) u M°(A; B), 

JM(A; B) = J°(A; B) n M°(A; B). 

Elements of the set R(A; B) are called reducible elements of the set A in respect of the 
set B, elements of the set JM(A; B) are called JM-reducible in respect of the set B. 

Instead of J°(A; A), we write briefly J°(A) and in analogy with it also M°(A), R(A), 
JM(A). Elements of the set R(A) are called reducible elements of the set A, and elements 
of JM(A) JM-reducible elements of the set A, etc. 
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2.2. Theorem: Let Abe a complete lattice. Then the set R(A) of its reducible elements 
is either empty or it forms a closed sublattice in A. 

Proof: Let R(A) 7- 0. Let 0 * X g R(A) be arbitrary. Then supA Xe R(A)9 since 
if x0 = supA X$ R(A), it would hold x0 e J(A) g R(A), which is a contradiction. 
Analogously infA XGI?(A). Thus i?(A) is a closed sublattice in A. 

2.3. Definition: Let A be a complete lattice, such that JM(A) = 0 and let all chains 
in the set R(A) be finite. Let the sets J°(A), ..., J\A), M°(A), ..., M*(A) be already 
defined. Then we say that the element x e M°(A) is Mk+1(y)-reducible in A (or more 
concisely Mk+1-reducible in A) if y e J*(A), y > x is such that x e M°(A; A — <x, j » . 
We shall denote the set of all Mk + ̂ reducible elements in A by M*+1(A). 

Analogously we say that the element ue J°(A) is Jk+x(vy reducible in A (or more 
concisely Jk+]-reducible in A) if veMk(A),v<u exists such that ueJ°(A;A — <v,w». 
We shall denote the set of all J*+1 -reducible elements in A by J* + 1(A). 

Further we put 
00 00 

SJ°°(A) = n J\A)> SM™(A) = n M*(A). 
j = 0 i = 0 

Finally for k = 0, 1, 2, ... we denote 

SJ*(A) = {x I x e J*04) and for every / > k is x $ J*(A)}, 

SM*(A) = {x I x e M*(A) and for every i > k is x £ M*(A)}. 

If x G SJ\A) u 5M*(A), k is called the characteristic of the element x (k = 
= 0,1,2, . . . ,oo.). 

2.4. Remark: It is clear that if xeJi+1(A) or xeMi+1(A) (i = 0, 1, 2, ...), 
then x G J'(A) or x G Ml(A), respectively. At the same time it is clear that to every 
x G R(A) there exists exactly one k such that x e SJk(A) u SMk(A). 

2.5. Example : Let A be a complete lattice on Figure 1. Then 

1Ac J\A) = {Ъ, c, lA}, 
M\Ä) = {0л,a}, 
JM(A) = 0, 
ҖÄ) = {0A,a,b,c, ÌA}, 
J\A) = {C U , 
M\A) = {0л,a}, 
J\A) = {C \A}, 
M\A) = {Oл}, 
J\A) = /*(.4) = ... = 0 
M\A) = {Oл}, 
SM\A) = 0. 
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2.6. Definition: Let A ?- 0 be an ordered set with the least element 0^ and the 
greatest element \A. We say that A is below ramified (above ramified) if the elements 
x, y € A, x # 0^ =£ j (x ^ \A # y) exist such that inf* {x, y} = 0^ (sup^ {x, y} = 
= 1 AI 

We say that A is ramified if it is below and above ramified. 

2.7. Definition: Let A be a ramified complete lattice such that JM(A) = 0 and all 
chains in the set K(A) are finite. Let SJk(A) =*- 0. Then we denote: 

SJi(A) = {x | x is a minimal element of the set SJk(A)}. After having defined the 
set SJk(A), we put 

i 

SJh\(A) = {x | x is minimal element of the set SJ*(A) - \J SJ)(A)}. Let us define 
1=1 

the sets SM\(A) (i = 1, 2, 3, ...) in case SMk(A) # 0 as follows: 

(a) If 5J*(A) # 0, we put 

SMftA) = {x |xeSM*(A), x < / for some t e SJ\(A)} and for / = 2,3, ... 
we put 

» - 1 

SM[(A) = {x ) x e SM*(A) - U SMJ(A), x < / for some / e SJk(A)}. 

(b) If SJ\A) * 0, we put 

SM\(A) = {x I x is a minimal element of the set SMk(A)} and after having defined 
the set SM)(A), we put 

i 

SMk
+1(A) = {x | x is a minimal element of the set SMk(A) - U SM)(A)}. 

j = i 

The set SJ\(A) u SM\(A) will be called i-rh layer of the set SJ*(A) u SMk(A). 

2.8. Example: In the complete lattice A on Figure 2 we have J°(A) = {fg,j,p, 
0, 1A}, M°(A) = {0A, e, i, m, «}, J104) = {g, 0} because the element g is Jj(e)-reduc-
ible and the element o is J^^-reducible. Ml(A) = {0^} because 0X is, e.g., 
M1(f)-reducible (but also Ml(g)-, Ml(})- or M ̂ -reducible and similarly.) 

Then, e.g., 

SJ°(A) ={fifp,\A}; 
SM°(A) = {e, i, w, n}9 

and thus 

s/°(^) ={/,j}, 5M°(A) = {e}, 
SJ°2(A) = {/>}, SM°(A) = {/, m, n}, 
SJ°3(A) ={\A}, SM°3(A)~t>. 
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2.9. Definition: Let A be a complete lattice, let x, y e A. We say the elements x, y 
form an aprojective couple in A if it holds: 

1°: x<y, 

2°: xeM°{A;A-<x,y», 
3°: yeJ°(A;A - <x ,y» . 

2.10. Lemma: Let A be a complete lattice such that JM(A) = 0 a/id all chains 
in R(A) are finite. Let the elements x < y form in A an aprojective couple. Then x e 
e SM°°(A), y e SJco(A). 

Proof: From definition 2.3 it follows immediately that x e Ml(A). Then certainly 
y e J2(A), x e M3(A) etc. Now the assertion is clear. 

2.11. Example : In the lattices shown in Figs. 3a—3d, the elements d, e form an 
aprojective couple. 

2.12. Remark : It is easy to see that every complete lattice containing an aprojective 
couple has at least 8 elements. AH four lattices demonstrated in Example 2.11 are 
eight-element lattices. It will be easily shown that there does not exist any eight-
element lattice containing an aprojective couple and being not isomorphic with some 
of them. 

By 2.12, the following lemma can be easily proved: 
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2.13. Lemma: Let ^ °e a complete lattice in which all chains are finite. Then A 
contains an aprojective couple if and only if it contains eight-element subset isomorphic 
with some of lattices in FigS, 3a —3d, namely, such that its subset which is isomorphic 
with the set {a, b, c, d, e} forms a join-subsemilattice, and its subset which is isomorphic 
with the set {d, e,f #> ̂ } forms a meetsubsemilattice of the complete lattice A. 

Fig. 3. 

2.14. Theorem: Let A be a complete lattice such that JM(A) = 0 and the set R(A) 
is finite. If the set SJCC(A) u 5M°°(A) is nonempty, then an aprojective couple exists 
in A. 

Proof: Let, e.g., exist x0 e SM°°(A), i.e. x0 e Mk(A) for every k = 0, 1,2, .... 
Since there exist finitely many elements y e J°(A) such that x0 < y, there must exist 
among them an element of the characteristic oo, i.e. y0 e SJ°°(A) such that x0 e 
e M°(A; A — <xo ,y 0 » . If the elements x0,yo do not form an aprojective couple, 
i.e. if y0 $ J°(A; A — <x0, y0}), there must exist analogously the element xt e SM°°(A) 
such that y0 e J°(A; A — < x i , y 0 » . If, moreover, the elements xi,y0 do not form 
an aprojective couple, i.e. if xt^ M°(A; A - < x i , y 0 » holds, there must exist 
analogously the element yx e SJco(A) such that xx e M°(A; A — <xi, yX» etc. Thus 
we shall construct the sequences { x j in SM°°(A) and {yn} in SJ°°(^). Since, however, 
we suppose the set R(A) to be finite, each of these sequences contains only finitely 
many elements mutually different. Then some elements xi9 yj form clearly an aproject­
ive couple. 

2.15. Remark: It is evident, that there exists a complete lattice A such that 
JM(A) = 0,-4 does not contain an aprojective couple, all chains in A are finite 
and at the same time SJco(A) u SMco(A) ?- 0. Then, however, A must clearly contain 
an infinite antichain. 
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§ 3. Complete congruences. 

3.1. Definition: Let A be a complete lattice, 0 an equivalence relation on A. 
For X, Y _ A, we say X<9Y if there exists a bijection f: X ~> Y such that x@f(x) 
for every x e X. 

We say the equivalence relation 0 on A is a complete congruence if, for arbitrary 
X = A and arbitrary Y _ A such that XQ Y, there holds 

(suPy4 X) 6>(supA Y), (inf^ X) ©(inf^ Y). 

3.2. N o t a t i o n : Let A be a complete lattice, 0 a complete congruence relation 
on A. For every a e A, let us denote a = {x | x e A, x(9a}. Further we put A/0 = 
= { a | a e A } . 

It is known (see [3]) that the elements of the set A\0 are closed intervals in A. It is 
obvious that these closed intervals are closed sublattices in A. 

Further we use the following notation: For aeA, let a° denote the greatest 
element, a0 the smallest element in a i.e., a = <a0, a°>. And finally, let us denote 

A° = {a° | a e A}, A0 = {a0\ae A}. 

3.3. Definition: Let A be a complete lattice, 0 a complete congruence on A, A = 
= A\0. Let us define the relation = on the set A as follows: 

x = y if and only if there exist t! e x, t2 e y, tx ^ t2 in A. 

3.4. Lemma: Let Abe a complete lattice, 0 a complete congruence on A, A = .4/0. 
The« i*he relation _̂  defined in 3.3 is an order relation of the set A. 

Proof: (a) Reflexiviiy and transitivity of the relation _ is obvious. 
(b) Let x = y, y = x. Then tl,t2e x, t3, l4 e y so that tX = l3, t2 = t4. It holds 

ttAt3 = tiGx, t2At4 = t4ey. But we have tl0t2, t30t4 such that tt0t^ since 
(^ A t3) <9(l2 A l4). Thus x = tt = t4 = y, and the relation ^ is also antisymmetric. 

3.5. Lemma: Let Abe a complete lattice, 0 a complete congruence on A, A = A\0. 
Let a, be A. Then the following is equivalent: 

(1) a = b in A, 
(2) a° = b° in A, 
(3) a0 ^ b0 in A. 

Proof: I. From the definition of the ordering on A, it follows that (2) =.*• (1), 
( 3 )^ (1 ) . 

II. Let (1) hold. Then tt e a, t2eh, ti <>t2. We have (a0 A b0) 0(tt A t2) and 
tlAt2 = tl9 i.e., (a 0Ab 0 )ea , and thus a0Ab0 = a0, so that (3) holds. 

Analogously (1) implies (2). 
From Lemma 3.5 it follows directly 
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3.6. Corollary: Let Abe a complete lattice, 0 a complete congruence on A, A = A/0. 
Then A ~ A° s A0. 

3.7. Lemma: Let A be a complete lattice, 0 a complete congruence on A, A = A/0. 
Then A is a complete lattice. 

Proof: Let 0 ^ X £ A be arbitrary subset in A. Let us denote X = {x | x e A, 
x G X}. Then 0 # X g A. From the definition of the complete congruence relation, 
it follows that X has in A both the least upper bound and the greatest lower bound 
since inf^ X = inf^ X, sup^ X = sup^ X. 

3.8. R e m a r k : It follows from 3.6 and 3.7 that A0 and A° are also complete 
lattices. But generally they are not closed sublattices of the complete lattice A. 
A0 is obviously closed in respect to the greatest lower bounds and A0 in respect to the 
least upper bounds in A. 

3.9. Definition: Let A, B be sets,f: A -> B. Let us define the relation Kerf on the 
set A as follows: 

[x, y] e Kerf if and only if f(x) = f(y). 

It is evident that there holds 

3.10. Lemma: Let A, B be complete lattices, f: A -> B a complete homomorphism. 
Then the relation Kerf is a complete congruence on A. 

3.11. Lemma: Let A, B be complete lattices, f: A -» B a complete homomorphism. 
Then 

A\Kerfzf(A). 

Proof: Let us denote A = A/Kerf and let us define the mapping / : A ->f(A) 
as follows: 

For x G A let us choose an arbitrary x e x. We put f(x) = f(x). Then obviously / 
is a bijection A on f(A). At the same timefis evidently a complete homomorphism, 
and hence 

x ^ y in A if and only if f(x) S f(y) mf(A)-

T h u s / i s an isomorphism Ai/Kerf on f(A). 

3.12. Lemma: Let Abe a complete lattice, 0 a complete congruence on A, A = A/0. 
Then it holds: 

(a) a e J°(A) if and only if a0 G J°(A), 
(b) a G M°(A) if and only if a0 G M°(A). 

Proof: We shall prove, for instance, the statement (a). The proof of the state­
ment (b) is analogous. 
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1. Let a e J°(A), i.e., there exists a set 0 ?- I £ I such that a$ X, a = sup^ X. 
Let us denote X0 = {x0 | xex, xeX}. Then a0§§X0, a0 = supi4X0, so that 
*o e J°(-4). 

II. Let a = <a0, a°> e l , a0 e J°(A). Then there exists a set 0 # X g A such 
that a0 £ X, a0 = supx X. But then obviously a = sup^- X, a$ X, where X = 
= {x | x e X}. Hence a 6 J°(A). 

3.13. Lemma: Let A be a complete lattice, 0 a complete congruence on A, A = A/0. 
Let a, he A, a < b. Let us choose arbitrary, as a, beh such that a < b. Then for 
every c e <a, by, we have <a, b> n c ^ 0. 

Proof: Let c = <c0, c°> eA[ be arbitrary such that a < c < b. Let a ea , b e 6 
be arbitrary such that a < b. Since 0 is a complete congruence, it holds avc0e c, 
where a v c0 > a. By 3.5 it holds further b0 > c0 so that b > a v c0 for b > a, b _ 
_ bo > c0. Then avc0e (a, b> so that <a, b} r\ c ^ 0. 

3.14. Definition: Let A be an ordered set with the smallest element 0A, and with 
the greatest element 1A. Let K be a component of the set A — {0A, 1A}. The set 
K u {0A, 1A} is called a (0, l)-component of the set A. Further we say the set A is 
(0, l)-connected if it contains only one (0, I)-component. In case A is not 
(0, I)-connected, we say it is (0, l)-disconnected. (Obviously the set A is (0, I)-connect-
ed if and only if the set A — {0A, 1A} is connected. 

3.15. Lemma: Let A be a (0, l)-disconnected complete lattice with more than two 
(0, l)-components. Let 0 be a complete congruence on A, A = A\0. Then there occurs 
one and only one of the following possibilities: 

(1) 0A = {0A}, 1A = {1A} and every further element ae A is a subset of one and 
only one (0, l)-component of the set A. 

(2) A = {A}, 

Proof: 1. Let {0A}, {\A} be the elements of the lattice A. Let ae A, {0A} # a # 
# {1^}. Let K, L be (0, I)-components in A such that anK^fd, anL^fd. For 
arbitrary xea n K, y ea n L, we have xvy = 1A provided K # L. But since a 
is a closed sublattice in A, then lAea and thus a = {Î } which is not possible. 
Hence K = L and every element ae A is a, subset of one and only one (0, ^-compo­
nent. 

2. Let e.g., \A # {I^}. Then x0 e A, x0 # 1A, xo01A. Let K s A be the 
(0, I)-component for which x0 e K is valid. Let L, M be different (0, l)-components 
in A, L # K ?-: M. (By our supposition, such components exist.) Let ye L,ze M 
be arbitrary such that y\\x0,z\\x0. Then y AX0 = 04 = ZAX09 (y AX0) 0(y A lA) 
i.e., (yAX0) 0y9 and finally (zA.v0) 0(ZA\A) i.e., (zA*0) OZ. Hence y00^, *00A. 
But then (yvz) 0(OAvOA) i.e., 1^00^ and thus .1 =* U} . 
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3.16. Lemma: Let A be a (0, l)-disconnected complete lattice, 0 a complete congru­
ence on A, A == A\0. If A has two and only two (0, l)-components, then there may 
occur, besides (1), (2) of Lemma 3 A 5, the possibility 

(3) A is a two-element chain 0A < IA. 

Proof: Let the complete lattice A have two (0, I)-components K, L. Let us admit 
that there have occured no one of two cases (1), (2) in 3.15. First, let us realize that 
it is not possible that only one of the sets 0A, IA is one-element set. If, namely, for 
example 0A = {0A}, T

A # {I^}, the elements x, y e A, x \\ y would exist such that 
x01A, ySlA, XAy = 0A (for, with regard to the validity of Theorem 3.5, IA cannot 
be clearly a subset of a unique (0, I)-component) so that it would hold (x A 1A) 00A 

as well, i.e. xeOA, which is a contradiction. 
Now let a = IA 7- {1A}, A 7- a. If a n K / 0, a n L ^ 0 were true, it would be 

obviously hold a = A which, by assumption, is not possible. Thus a is a subset of 
some (0, I)-component e.g., K. First we shall show that L — {I^}eA. Let xe 
eL — {7^} be arbitrary. Since x < a holds (because of x < 1A), thus x0 < a0. 
But xeL and a unique element teL such that t < a0 is an element 0A. Hence 
*o = 0A i.e., x = L — {I^}. It can be analogously proved that a = K — {0A}, thus 
A={K-{0A},L-{1A}}. 

From Lemmas 3.15 and 3.16, it follows 

3.17. Corollary: Let A be a (0, l)-disconnected complete lattice, 0 a complete 
congruence on A. If the complete lattice A\0 is (0,1 )-connected, then it is either 
A\0 = {A}, or it is a two element chain. 

§ 4. Injective objects of the category 2. 

4.1. Lemma: Let A be a complete lattice, card A > 1. Let B be an arbitrary set such 
that B n A = 0, card B > card A. Let us put C = A u B and let us define the relation 
^ c on the set C as follows: 

x Hkcy if and only if (a) x ^ y in A9 or 
(b) x = 0A,yeB,or 
(c) xeB,y = 1A. 

Then :g c is an ordering on C, and (C, ^ c ) is a complete lattice. If g : C -* A is 
a complete homomorphism, then g must be a constant mapping. 

Proof: It is evident that < c is an ordering on C and (C, Sc) -S a complete lattice. 
Let g: C -• A be a complete homomorphism. Then by 1.3, g(C) = At is a closed 
sublattice in A. Let bY be the greatest element in Al9 ax the smallest element inAl9 
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and let us admit that ax # bx. Let x, y e B be arbitrary, x ^ y. Then g(x) ^ g(y) 
since g(x) v g(y) = g(xvy) = g(lc) = bi,g(x)Ag(y) = g(xAy) = g(0A) = a t . Thus 
g | B : B -> Aj is an injection which is, however, not possible, since card B > card 
A ^ card AX. Thus at = bt and hence g(C) is one-element set. 

4.2. Theorem: The complete lattice A is an infective retract in the category £ if and 
only if card A = 1. 

Proof: I. If card A = 7, then obviously A is an injective retract. 
II. Let card A > 1. Let us form a complete lattice C in the same way as in 

Lemma 4.1. Let us define the complete homomorphism / : A -• C as follows: 

f(x) = x for every x e A. 

Then there does not exist the complete homomorphism h : C -* A such that h/ = idx, 
since by 4.1, every h e H%(C, 4̂) is constant. 

Since it is evident that one-element lattice is an injective object in fi and every 
injective object is an injective retract, there follows from Theorem 4.2 

4.3. Corollary: The complete lattice A is an injective object in the category fi if and 
only if card A = 1. 

§ 5. Projective retracts and projective objects. 

5.1. Definition: Let A be a complete lattice, 0 a complete congruence on A, A = 
= A\0. A projective selection in A is a set P g A with: 

(PI) P is a closed sublattice in A. 
(P2) P n a is a one-element set for every a e A. 

5.2. Lemma: Let P be a projective selection in A = A\G. Then P ~ A. 

Proof: Let us denote P n i == {lp} for t e A. Since P is a closed sublattice in A, 
it is sufficient to prove that for arbitrary x, y e A such that x ^ y, there holds xp ^ yp. 
By 3.3 and 3.4, xp > yp cannot hold. Let us admit that xp \\ yp. Then we have 
xpvyp > xp, xpvyp > yp. But (xpvyp) 0yp holds, and since P is a closed sublattice, 
there must hold xpvypeP, which is in contradiction with the supposition (P2). 
Thus xp _ yp. The implication xp = yp => x <* y follows from 3.3. 

By this Lemma is proved. 

5.3. Lemma: Let Abe a complete lattice, 0 a complete congruence on A, A = A\0. 
Let P be a projective selection in A, B a closed sublattice in A. Denote B = {x | x e A, 
x n B / 0}. Then P n {x | x e fi, be B) is a projective selection in B. 

The p roo f is evident. 
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5.4. Theorem: A complete lattice A is a projective retract in 2 tf and only if for 
arbitrary complete lattice B, and for arbitrary complete congruence 0 on B such that 
A £ B\&, there exists a projective selection in B\0. 

Proof: I. Let A be a projective retract, B a complete lattice, and g : B -> A an 
epimorphism. By suppositions, there exists a complete homomorphism h : A -> B 
such that gh = idA. By Lemma 3.11, we have B \ Kerf ~ A, h(A) SE B and it is 
obvious that h(A) is a projective selection in B \ Kerf. 

II. Let A, B be complete lattices, let g : B -> A be an epimorphism. Let the projec­
tive selection P exist in B = B | Kerf. Let us denote p(b) = P n b for b e B. Let us 
define the mapping h : A -» B as follows: 

^ W = P [ g " 1 W ] for xeA. 

Then obviously h is a complete homomorphism and gh = id* is valid, so that A 
is a projective retract. 

5.5. Theorem: A complete lattice A is a projective object in 2 if and only if any 
of its (0, l)-component is a projective object in 2. 

Proof: I. Let A be a projective complete lattice, Kits (0, I)-component. Let A ?- K 
Let B, C be complete lattices, g : B -> C an epimorphism, andf: K -> C a complete 
homomorphism. Let us denote f(K) = Cl9 g - 1 (C i ) = Bx. Thenf: K-> Ct is an 
epimorphism, CY a closed sublattice in C and by Lemma 3.11, there holds K | Kerf £ 
= Ci = I?i | Ker gx, where g^ = g\Bt. Let us denote FT = A — K. By assumption, 
we have H # 0 and obviously Hu {0^, Ix} is a closed sublattice in A. Let Hj be 
an arbitrary ordered set such that Hx £ H, Hj n (B u C) = 0, and let us denote cp 
an isomorphism of the set H on the set Hx. Let us put B2 = B u Hi9C2 = C KJ Hl9 

and let us define the relation ^ on B2 (and analogously on C2) as follows: 
For x, y e B2, we have x g y if and only if: 

x G B, y e i?, x ^ >> in B, or 
x e Hx, y G FTi, x S y 1n Hi, or 
x e B, y e Ht, x ^ 0Bi in B, or 
xeHl9yeB, y = lBl in B. 

The sets JB2> C2 with the ordering defined in this way are obviously complete lattices, 
B and Bt are closed sublattices in B2, C and Ct are closed sublattices in C2. 

Let us define the mapping g2 : B2 -> C2 in the following way: 

\g(x) for XGB, 
g 2 ^ \x f o г x є Я , , 

and the mapping f2 : A -» C2 as follows: 

hW~\(p(x) for xeH. 
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Then g2, f2 are obviously complete homomorphisms and moreover g2 is an epi-
morphism. Since A is projective, there exists a complete homomorphism h2: A -+ B2 

such that f2 = g2 o h2. But then f = f2 | K, g = g2\B and h = A2 | K: K -> B is 
a complete homomorphism such that f = gh, so that K is projective. 

II. Let A be a complete lattice whose each (0, I)-component is projective. Let B, C 
be arbitrary complete lattices, let g : B -» C be an epimorphism and f: A -> C 
a complete homomorphism. Let us denote by X the system of all (0, l)-components 
in A, let KeJf be arbitrary. Let us denote fK = f | K, Q = f(K), B* = g 'HC*), 
£x == 8 | Q:- Then gK: BK -> CK is an epimorphism and since the complete lattice K 
is projective, there exists hK : K -+ BK such that gKohK — fK. With regard to the 
fact that for K, L € Jf, K 7- L, there holds K n L = {0A, f j , the mapping h : A-+ B, 
defined by the relation 

h(x) = hK(x) for x e ^ l n ^ Ke Jf, 

will be a complete homomorphism, if it is possible to select a mapping hK such that 
for arbitrary K, LEJT, there may hold hK(lA) = hL(lA)9 hK(0A) = hL(0J. By 3.13, 
it is possible to put hK(0A) — p, hK(\A) = q for every K e Jf, where p is the 
greatest element of the closed sublattice g~1[f(0A)] of the lattice B and 
q = infB {t I teg"1!/^)], t = p}. But then h : A -> 1? is a complete homomor­
phism and gh = f is valid, so that A is a projective object in £. 

We shall prove now an analogous statement also for projective retracts. 

5.6. Theorem: A complete lattice is a projective retract if and only if each of its 
(0, l)-component is a projective retract. 

Proof: I. Let a complete lattice A be a projective retract. Let K be its arbitrary 
(0, I)-component. Let B be an arbitrary complete lattice and 0 an arbitrary complete 
congruence on B such that K ~ B\G. By Theorem 5.4, it is sufficient to prove that 
in B\0 = B there exists a projective selection. 

Let us denote H = A - K. If H = 0, there is nothing to^be proved. Thus let 
H = 0. Let p be the greatest element in 0 B , q = infB {t\telB, t = /?}, where 0 f lis 
the smallest element and Ib the greatest element of the set E = 2?/0. Furthermore 
let Hx be an arbitrary ordered set such that Ht ^ H, Hx n B = 0. Let us put 
#! = {p} ® [{p9 q) + HJ © {q}. Then 2?! is obviously a complete lattice. Now let 
us define the relation Q on Bt as follows: 

*£>> if and only if (a) x&y, or 
(b)xeH1,yeH1,x = y. 

Then g is a complete congruence on Bt and obviously l?i/g = A holds. Since v4 is 
a projective retract, there exists a projective selection Pi in Bt\Q. But <p, #> n B is 
obviously a closed sublattice in B, and by 5.3, and 5.13 Pt n B is a projective selection 
in 5 . It means that K is a projective retract. 
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II. Let A be a complete Jattice whose each (0, I)-component is a projective retract. 
Let Jf be a system of all (0, I)-components in A. Furthermore let B an arbitrary 
complete lattice, 0 a complete congruence on B such that A £ Bj0. Let q> : A -> B/<9 
be a given isomorphism. To complete the proof that A is a projective retract, it is 
sufficient to prove by Theorem 5.4 that in B = B\G there exists a projective selection. 

Let us denote <pK = <p | K, BK = cp(K), BK = {B\B e B, b n BK ?- 0} for Ke Jf. 
BK is a closed sublattice in B and by assumption, there exists a projective selection 
in BK denoted by PK. By 3A3 the projective selection PK may be chosen so that PK £ 
Hi <P> q>> where p is the greatest element in 0B and q = infB {f | t e 1B, t = p}. But 
then (J^je is evidently a projective selection in B. 

5.7. Theorem: if a complete lattice is a projective retract, it does not contain 
JM-reducible element. 

Proof: Let A be a complete lattice, a e JM(A) JM-reducible element. Let us put 
B = A u {ax}, where at $ A, and let us define the ordering g B of the set B as follows: 

For x € A, y e A, we have x :gB y if and only if x _ j> in A. 
For x e A, there holds: x g B ax if and only if x _ a in A, 

a! <£ B x if and only if a < x in A. 

It is easy to see that (B, ^ B ) is a complete lattice. Let us define now the mapping 
f:B-+A as follows: 

fx for x e B , x 4= ax, 
fix) = ) , 

[a for x = a,. 
Then evidently fe H2(B, A) and it is an epimorphism. In A, by assumption, there 
exist sets X ?- 0 + Y such that a £ X u Y, a = supB X = inf^ Y. But then a projec­
tive selection does not exist in B | Ker/ though A £ B | Kerf since supB X = a, 
infB Y = a! and thus it is not possible to select in a suitable manner a unique element 
in the interval <a, ax> e B j Kerf 

From Theorem 5.7, there directly follows 

5.8. Corollary: If a complete lattice contains a JM-reducible element, then it is not 
a projective object of the category 2. 

5.9. Example : (a) Let A be the lattice shown in Fig. 4a. The element d is 
JM-reducible element in A. If we form the lattice B in the same manner as in the 
proof of Theorem 5.7, we get the lattice in Fig. 4b. Now it is obvious that if we define 
/ : B -> A, so that f(dx) = d, f(x) = x for the other x e B, there does not exist 
a projective selection in B | Kerf Thus A is not a projective retract. 

(b) Let A be a closed interval {0,1) of real numbers. Then JM(A) = (0,1) and if 
we double an arbitrary element x e (0, I) analogously to the example (a), it is again 
evident that A is not a projective retract. 
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It will be seen later that it is not possible to reverse in general the statement of 
Theorem 5.7 and its Corollary respectively. But it will be shown now that the mention­
ed necessary condition is a sufficient condition for chains. 

FiaЛ 

5.10. Theorem: A chain A e £ is a projective object of the category £ if and only 
if it does not contain JM-reducible element. 

Proof: I. If JM(A) 7- 0 holds, A is not projective by Lemma 5.7. 
II. Let a chain Ae£ contain no JM-reducible element, i.e., JM(A) = 0. Let 

B, C e £ be arbitrary, let / : A -> B be a complete homomorphism, let g : C -> B 
be an epimorphism. Let us denote A = A\ Kerf C = C | Kerg, Ct = g~l{f(A)}, 
Si = S | C1. It is clear that C1 is a closed sublattice in C and Cx = Ct\ Kergx is 
a closed sublattice in C Let us now construct the mapping h : A -> C as follows: 

For x e A, we have h(x) = g_1[/(V)L where x is an arbitrary element of x. By 
Lemma 3.11, h is an isomorphism -I in C (since /* : A -> C! is an isomorphism). 
Now let us construct h : A -> C in the following way: 

Let us denote ix = supc h(x) for every element x e A. There exists the element ix 

for every * e A. Now for every element x e A there occurs one of the two following 
possibilities: 

(a) x$J(A), 
(P) xeJ(A) (i.e., x is /-reducible in A). 

Now let us define 

(«) AC*) -/,; (/0 h(*) = {'* / ^ ^ J ^ ^ V ' 
w [supc {iy I ^ e A, y < x} forx = x0. 
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It is evident that h : A -+ C is a complete homomorphism and gh = / i s valid. Thus ^ 
is a projective object in £. 

Further we get 

5.11. Theorem: Let A be a complete lattice such that JM(A) = 0. Let a e R(A) 
be the smallest andb e R(A) the greatest element of the closed sublattice R(A). If {a, b> 
is a projective object (resp. projective retract) in A, then A is a projective object (resp. 
projective retract) in 2. 

Proof: There evidently holds A = K© <a, b> © L, where of the sets K, L is 
either empty, or it is a chain without reducible elements. The statement of the theorem 
is now quite evident. 

(ăì ibì 

Fiд5 

5.12. Examples: It follows from 5.5, 5.10, and from 5.11 that e.g., the lattices 
in Figs. 5a —5d are projective objects of the category fi. 

Now another necessary condition will be stated for a complete lattice to be 
a projective object or a projective retract in fi, respectively. But first let us mention 
two auxiliary statements. 

5.13. Lemma: Let A, B be complete lattices. Then the cardinal product AxB is 
a complete lattice. 

Proof is evident. 

5.14. Lemma: Let A be a complete lattice, let a, be A be arbitrary such that a S b. 
Let B = {fi, t2}, tx < t2 be two-element chain such that 

(A-(a9b»n«a9b)xB)~0. 
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Let us define the relation ^ c on the set 

C = (A - <a, b» u «fl, b}xB) 
as follows: 

For x, y e C, there holds x ^ c y if and only if there occurs one of the following 
possibilities: 

(a) x, y e A - <a, b>, x ^ y in A9 

(b) x, j> e <a, b> x B, x <; y in <a, b> x B, 
(c) x € A - <a, b>, y = [w, t.] e <a, b> X B, x < u in A9 

(d) x = [u9 tt] e(a9b}xB9yeA - <a, b)9u < y in A. 

Then (C, ^ c ) is a complete lattice. 

Proof: It is clear that the relation ^ c is an ordering on the set C. Now let X g C, 
X # 0 be an arbitrary set. It will be shovvri e.g., that there exists infc X. 

For X £ A - <a, b>, there exists inf^ X. If mfAXeA - <a, b>, then obviously 
infc X = inf* X. If inf* X e <a, b>, then infc X = [inf, X, t2\ 

For X g <a, b> xB9 let us denote Xl = {y\ye <a, b>, [7, t{] eX for 1 = 1, or 
/ = 2}, and Bx = {tt \tteB9 [x, /J e X for some xe <a, b>}. Then there evidently 
holds infc X = [inf* Xt, infB Bx]. Finally, if X g C is such a subset that X n 
n « a , b> x B) # 0, X n (A - <a, b» # 0, there holds 

infc X = infc {infc (X n"«« , b> x B))9 infc (X n (A - <a, b»)}, 

where there exists this greatest lower bound. 
Analogously, there may be proved the existence of supc X. 
By this Lemma 5.14 is proved. 

5.15. Theorem: If a complete lattice is a projective retract in the category fi, // does 
not contain an aprojective couple. 

Proof: Let A be a complete lattice and let the elements a9b e A9 a < b form in A 
an aprojective couple. Let B9 C have the same meaning as in Lemma 5.14 i.e., it holds: 
C = (A — <a, b» u «a , b> xB). Let us define the mapping f: C -» A as follows: 

f(x\ = fx for xeA^-<a,b>, 
J w \Xl for x = [x!, t J e <a, b> x B. w 

It is easy to see thatfis an epimorphism,fe H2(C9 A). By Lemma 3.11, A £ C/Kerf. 
It will be shown now that in C = C/Kerf there does not exist the projective selection. 

It follows from the definition of the mapping f that for ceC9 there holds either 
c = {c}9 where ce A - <a, b>, or c = {[x, f j , [x, f2]} g <a, b> x ,5. By assumption, 
the elements a, b e 4̂ form an aprojective couple in A i.e., (see Definition 2.9) there 
exist the sets Xx, X2 g Al —• <a, b> such that a = inf^ Xx, b = sup^ X2. Since 
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fj (A - <a,ft» = idA.<atb}, we have f-^i) = Xt, f'\X2) = X2. But then 
evidently 

infc X! = [a, t2], supc X2 = [b, t J. 

From this follows that a projective selection does not exist in C, because [a, t2] < 
< [b, tx] and it is not possible to select the representants in these classes in such 
a way that we may get a projective selection, since [a, t2] || [b, f j . 

Thus A is not a projective retract. 

5.16. Corollary: If a complete lattice is a projective object of the category 2, it does 
not contain an aprojective couple. 

5.17. Examples: (a) It follows from 5.15, and 5.16 that no lattice of those in 
Figs. 3a —3d of Example 2.11 is a projective retract and thus no one of them is 
a projective retract and thus no one of them is a projective object of the category 2. 

(b) Let A be the lattice in Fig. 6a where the elements a, b form an aprojective 
couple. Let us form the lattice C in the way described in the proof of Lemma 5A4 
(see Fig. 6b). 

(â) 

Fig. 6 

Now it is obvious that in lattice C it holds: fA# = [a, t2], dye = [b, tt]. If we 
define the mappingf: C -• A by the relation (*) in the proof 5A5, then C/Kerf ^ A 
and in C/Kerf there does not exist a projective selection, since the only closed sub-
lattice in C, containing at least one element of every class of the decomposition C/Kerf, 
is obviously the lattice C itself. 

5.18. Remark: The statements of Theorems 5.7, and 5.15 may be summarized 
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in the following way: we say the complete lattice contains an aprojective subset if it 
contains JM-reducible element or an aprojective couple. Then from 5.7, and 5.15 
there follows: 

If a complete lattice is a projective retract in the category £, // does not contain an 
aprojective subset. 

It will be shown that the mentioned necessary condition is by certain assumptions 
also a sufficient condition. 

5.19. Theorem: Let A be a ramified complete lattice such that the set R(A) of its 
reducible elements is finite. Then A is a projective retract in £ if and only if it does not 
contain an aprojective subset. 

Proof: If A is a projective retract, it does not contain an aprojective subset by 5.18. 
Let now A be a ramified complete lattice such that R(A) is finite and A does not 

contain an aprojective subset. We shall prove that A is a projective retract. 
Let Ce £ be arbitrary,f: C -> A be an epimorphism. By Theorem 5.4 it suffices 

to prove that in C = C/Kerf there exists a projective selection. A construction of this 
projective selection will be mentioned in conclusion of this proof. But first let us be 
aware of the requirements that such a construction must satisfy. 

Since C £ A, then also R(C) ~ R(A) and thus R(C) is a nonempty finite subset 
in C and at the same time C does not contain an aprojective subset. From Theorems 2.2 
and 5.3 there follows further that if P is a projective selection in C, then {x\xeP, 
x e R(C)} is a projective selection in R(C). When constructing a projective selection 
in C, the choice of representants in the classes of the set R(C) is obviously "critical" 
and that is why we shall choose first the representants in these classes. To be, however, 
our construction correct, we must obviously choose representants of classes from 
R(C) so as 

(1) to obtain a projective selection in R(C), 
(2) to be able to complete this projective selection by choosing representants of 

classes from C — R(C). 

Requirement (1) in our construction can be satisfied by choosing the greatest 
"admissible" elements as representants in classes from M°(C), and the smallest 
"admissible" elements as representants in classes J°(C). (The meaning of the word 
"admissible" will be cleared in the construction). 

If we construct the projective selection Q in R(C) in this manner, for fulfiUing 
requirement (2) it is necessary to satisfy the following conditions: If a, Be R(C), 
a < B are arbitrary, aea n Q,beB n Q, and c e C is arbitrary such that a < c < bt 

then there must be c n (a, b} # 0 for to choose a representant in the class d. From 
Lemma 3.13, however, it follows that this set is nonempty. From the construction 
of the set Q it immediately follows that in the set c n <a, b} any element may be 
chosen as a representant. 
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Thus, the construction of projective selection in R(C) will be as follows. The 
choice of representants in these classes is naturally in a certain manner forced because 
each element a e R(C) is subjected to certain "connections". At the same time it is 
not difficult to mention that the choice of a representant in a e R(C) is the more 
complicated the higher is the characteristic of this element a. (See Definition 2.3). 
Therefore we shall proceed from the elements with the highest characteristic to 
those with the lowest characteristic and in the sets SMk(C) u SJk(C) we shall choose 
representants by layers (see Definition 2.7). The fact, that in the set C an aprojective 
subset does not exist, ensures that the choice of more than one representant cannot 
be forced in a class a e R(C) (compare e.g. with 5.17). 

And now 

Construction: The following terminology will be used in the whole construction: 
Let a representant x be chosen in the class x e R(C). Let y e C, y be comparable with x 
in R(C). Then the elements of the set {t | t e y, t is comparable with the element x 
in C} will be called the admissible elements of the class y. By Lemma 3.13 the set 
of all admissible elements in y is nonempty and there exists the greatest element and 
the least element in this set (since admissible elements in y forms obviously a complete 
lattice). 

As a representant of the class 0C let us now choose its greatest element, as 
a representant of the class 1C its least admissible element (obviously 0C9 lce R(C) 
since C is ramified). 

Only finitely many sets SMk(C) u SJk(C) are nonempty since the set R(C) is finite. 
Let now k be the greatest number such that SMk(C) u SJk(C) # 0. Then we shall 
choose the representants in classes of this set in the following way: 

(a) SJk(C) 7-- 0: We shall choose the least admissible elements in the sets x e SJk(C), 
and then the greatest admissible elements in the sets x e SMk(C). After having de­
termined the representants in classes from SJk(C) u SMk(C), we choose the least 
admissible elements in the sets x e SJk

+1(C) and then the greatest admissible elements 
in the classes from SMk

+i(C), etc. Since the set SJk(C) u SMk(C) is finite, then after 
finite number of steps we choose the representants in all classes from this set. 

(b) SJk(C) = 0: Then necessarily SM\C) # 0 and representants are chosen as 
follows: 

We choose the greatest admissible elements in classes from SM\(C), then the 
greatest admissible elements in classes from SMk(C) etc. After a finite number of 
steps a choice of representants in all classes of this set is obtained. 

After having chosen representants in the classes from SM\C) u SJk(C), we choose 
quite analogously representants in the classes from SM\C) u SJ*(C)9 where i is the 
greatest number such that i < k and SMl(C) u SJ\C) # 0 (at the same time the 
"admissibility" of elements is obviously influenced by the previous choice of 
representants in SMk(C) u SJk(C)) etc. After a finite number of steps we choose 

238 



representants in the whole set R(C) and from the construction it is obvious that we 
have got a projective selection in R(C). A construction of projective selection in the 
whole set C is now quite simple since in remaining classes from C (i.e. in classes 
x e C — R(C)) we can choose arbitrary admissible elements as representants. 

5.20. Remark : The statement of Theorem 5.19 can be extended also to complete 
lattices that are not ramified. Namely, it is obvious that in case A e £ is not a chain, 
then A — P® Q® G, where the sets P, G —provided they are nonempty —are 
chains and Q is a ramified set. At the same time it obviously holds 

5.21. Theorem: Let Al9 A2, ..., An e 2. Then the complete lattice At ® A2 © ... 
... © An is a projective retract in fi if and only if every complete lattice Ai9 

(i = 1, 2, . . . ,«) is a projective retract in £. 
5.20, 5.21 and 5.10 imply 

5.22. Theorem: Let A be a complete lattice. Let JM(A) = 0 and A = P © Q © P, 
where P, R are empty or complete chains and Q is a ramified complete lattice such that 
R(Q) is a finite set and Q does not contain an aprojective couple. Then A is a projective 
retract in £. 

5.23. Example : In the case when a is an ordinal number, let us denote W(oc) = 
= {/? | p is an ordinal number, p < a}. From 5.22 it follows that if a is an isolated 
ordinal number and C is a complete lattice from the example 5.17 (see Fig. 6b), 
then W(a) © C is a projective retract in fi. 
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