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This paper is concerned with solving the problem of existence of projective and
injective objects, projective and injective retracts, respectively, in the category whose
objects are the complete lattices, and morphisms are the complete lattice homo-
morphisms. From the category point of view, it is quite evident that while problems
of injective objects of this category are trivial, the situation with projective objects
and even with projective retracts is much more complicated. In the present paper
there are mentioned some necessary conditions for the given lattice to be projective
object, projective retract, respectively, and there are given necessary and sufficient
conditions e.g., for chains.

There are used the following symbols:

Categories are denoted by U, B, €, ..., objects of categories by capitals 4, B, C, ...,
morphisms by letters f, g, 4, .... If A, B are objects of the category 2, then symbols
Hy(A, B) or briefly H(A, B) denote the set of all morphisms from 4 to B. Identity
morphism from A4 to A4 is denoted by symbol id,. For fe Hy(A, B), g € Hy(B, C),
the composition of given morphisms is denoted by g o h or gh.

If X, Y are sets, the symbol f: X — Y denotes the mapping of the set X into the
set Y.

If f: X > Y, we put f(X) = {f(t)|teX} and for ye ¥, f7!(y) = {x|xeX,
fxX)=y}. ForUcX,f | U denotes the restriction of the mapping f on the set U.

We say the mapping f: X — Y is an injection if f(x,) # f(x,;) holds for any two
elements x,, x, € X, x; # x,, and a surjection in case f(X) = Y. If f is both an
injection and a surjection, then it is called a bijection.

By ordered set we mean a partially ordered set i.e., a set with reflexive, antisym-
metrical and transitive relation. If A is an ordered set, § # X £ A, the least upper
bound of the subset X in the set 4—if it exists—is denoted by the symbol sup, X
or only sup X. Analogously, the greatest lower bound of a subset X in the set 4 is
denoted by inf, X or inf X. x vy is also used instead of sup {x, y} and x A y instead
of inf {x, y}. X — Y denotes the difference of sets X, Y.

If 4 is an ordered set, x, y € 4, the symbol x || ¥ means that the elements x, y
are incomparable i.e., neither x < y nor y £ x holds. For x, ye 4, x £ y, {x,y)
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denotes a closed interval {r|ted, x <t = ¥}, (x,y) denotes the corresponding
open interval {t|re 4, x <t < y}. We say the element y covers the element x if
y > x,{x,y> = {x, y}. If there exists the smallest element in the ordered set 4, it is
denoted by 0,, the greatest element —if it exists—by 1,.

An isomorphism of ordered sets is denoted by the symbol ~.

If A, B are ordered sets, 4 + B denote their cardinal sum, 4 @® B their ordinal
sum, and A x B their cardinal product (see [1], pp. 55 and 198). If a € A4, b € B, then
[a, ble A x B.

Let A be a category. An object 4 € U is called projective if for arbitrary B, Ce U,
for arbitrary epimorphism g e Hy(B, C) and for arbitrary morphism fe Hy(4, C)
we have h € Hy(A, B) so that gh = f.

A e U is called the projective retract if for every Be U and for arbitrary epi-
morphism g € Hy(B, A) we have h e Hy(A, B) such that gh = id,.

A e W is called the injective object if for arbitrary B, C € U, arbitrary mono-
morphism g € Hy(C, B) and arbitrary morphism f'e Hy(C, A) there exists a morphism
h € Hy(B, A) such that hg = f.

A € U is called the injective retract if for arbitrary B e U, and arbitrary mono-
morphism g : A — B, there exists h € Hy(B, A) such that hg = id,.

It is evident from the above definitions that every projective object is a projective
retract, and every injective object is an injective retract.

§ 1. Basic properties of the category of complete lattices

1.1. Definition. Let 4, B be complete lattices. The mapping f: 4 — B is called the
complete homomorphism if ’

flsup, X) = supg {f(X)}  flinf, X) = inf, {f(X)}
holds for arbitrary subset & # X < A.

1.2. Definition: Let 4 be a complete lattice. A subset & # X < A is called the
closed sublattice of the lattice 4 if

sup, Ye X, inf, Ye X

holds for every subset 8 # Y < X.
Thus it is obvious that a closed sublattice of a complete lattice is a complete lattice.
It may be easily proved

1.3. Lemma: Let A, B be complete lattices, f: A — B a complete homomorphism.
Then f(A) is a closed sublattice of the lattice B.
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1.4. Notation: The category whose objects are complete lattices and morphisms
complete homomorphisms is denoted by L.

1.5. Lemma: The morphism € L is a monomorphism if and only if it is an injecn'onA
and an epimorphism if and only if it is a surjection.

Proof: It is evident that if fe € is an injection, then it is a monomorphism and
if it is a surjection, then it is an epimorphism. Now the reverse statements will be
proved.

I. Let fe Hy(4, B) be no injection. Then there exist elements a, be 4, a #b
so that f(a) = f(b). Let C be an arbitrary one-element lattice. Let us define « : C — A,
B : C - Ain the following way: a(x) = a, f(x) = b. Thena € Hy(C, A4), f € Hy(C, A),
fo = fB, but a # B so that fis not a monomorphism.

I1. Letfe Hy(A, B) be no surjection. It will be shown that fis not an epimorphism.
By assumption f(4) = B, # B. Let us denote B, = B — B,. Thus B, # #, and
by Lemma 1.3, B, is a closed sublattice of the complete lattice B.

Let us now consider the following three cases:

1. Let B, = {15}. Let us denote f(1,) = by. Then b, € By, b, is the greatest
element in By, and 15 covers b,. Now let us define morphisms «, fe Hy(B, B) as
follows:

, X for xeB, x + 1g,
o = ldn, ﬁ(x) = {bo for x = IB, B

Then « # B and of = Bf. Thus fis no epimorphism.

2. The assertion can be analogously proved if B, = {0z} or B, = {0p, 15}.

3. Let xe B,, Op # x # 15 exist. Now let us define the mapping
©*: B, —» B, U {1} as follows:

*(1) = infg {b| beB,, b > t} if such be B, exists
o (1) = 1, if be B,, b > t does not exist.

Then we define dually @, : B, — By U {0g}.

Let us denote B, = B, — {05, 15}. We have B, < B, < B, and by assumption
B), # 0. Let B}, be an arbitrary ordered set isomorphic with B,, where B n B; = 0.
Let ¢ : B, - B} be a corresponding isomorphism.

Let us put C = B; U B, and let us define the relation <. on the set C as follows:

For x,, x, € B, there holds x; <. x, if and only if x; < x, in B.

For x,, x, € B}, there holds x; <. x, if and only if x; < x, in B;.

For x € B, ¢(t) e B;, there holds x <. ¢(t) if and only if x < ¢,(?) in B, and
o(t) <. x if and only if *(f) < x in B.

It is easily seen that the relation < is an ordering on the set C and that (C, <)
is a complete lattice.
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Let us define the mapping  : B — C in the following way:

X for xe B — Bj,
V(x) = {(p(x) for xe B).

Then it is obvious that s is an isomorphism from B into C.
Let now 8 # X < C be arbitrary. The following three possibilitics may occur:

(1) X < B. But then necessarily supc X = supy X.
(2) X < Bj;. Then obviously sups X = Y{supy {9~ (X)}}.
(3) X~ B # 0, X n B, # @. We shall prove that sup; X exists also in this case.

Denote X n B =Y, X n B = Z. By (1) and (2) there exist supc ¥ = y, supc Z =
=z If we prove now that there exists supc {», z}, then there will be sup¢ {y, z} =
= sup¢ X. Ifze Borze C — B, but z comparable with y, it is nothing to be proved.
Thus, let ze C — B, y || z. Then we have z = ¢(¢) for a suitable element ¢t € B and
there holds obviously

supc {y, z} = supc {y, @(1)} = supy {y, 9*(1)}.
So there exists supe X also in this case.
The existence of inf; X may be proved analogously.
Hence C is a complete lattice and obviously y € Hy(B, C).
Now let us define o : B —» Casfollows: a(x) = x forevery x € B. Then « € Hy(B, C),
o # Y, but af = Yf so that fis no epimorphism. By this Lemma 1.5 is proved.

§ 2. Reducible elements

2.1. Definition: Let 4 be an ordered set, B < A. We say an element x€ 4 is
J°-reducible in respect of Bif there existsasetd # X < Bsuchthatx ¢ X, x = sup, X.
We say an element x € 4 is M°-reducible in respect of the set B if there exists a set
¥ # X < B such that x¢ X, x = inf X.

Let us denote

J°(A; B) = {x|xeA,xis Jreducible in respect of B},
M°(4; B) = {x | x € A, x is M°-reducible in respect of B}.
Further we put .
" R(A; B) = J°(4; B) u M°(4; B),
JM(A; B) = J°(A; B) n M°(4; B).
Elements of the set R(A4; B) are called reducible elements of the set A in respect of the
set B, elements of the set JM(A; B) are called JM-reducible in respect of the set B.
Instead of J°(4; A), we write briefly J°(A) and in analogy with it also M°(4), R(A),.

JM(A). Elements of the set R(4) are called reducible elements of the set A, and elements
of JM(A) JM-reducible elements of the set A, etc.
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2.2. Theorem: Let A be a complete lattice. Then the set R(A) of its reducible elements
is either empty or it forms a closed sublattice in A.

Proof: Let R(4) # 0. Let ¥ # X < R(A) be arbitrary. Then sup, X € R(A), since
if xo = sup, X ¢ R(4), it would hold x, € J(4) < R(A), which is a contradiction.
Analogously inf, X € R(4). Thus R(A) is a closed sublattice in A.

2.3. Definition: Let 4 be a complete lattice, such that JM(A4) = 0 and let all chains
in the set R(A) be finite. Let the sets J°(A), ..., J(4), M°(A), ..., M*(A) be already
defined. Then we say that the element x € M°(4) is M**'(y)-reducible in A (or more
concisely M**'-reducible in A)if y € J*(A), y > xis such that x e M°(4; A — {x, D).
We shall denote the set of all M**'-reducible elements in 4 by M**1(4).

Analogously we say that the element u € J°(4) is J**!(v)-reducible in A (or more
concisely J**'-reducible in A) if ve M*(4),v <u exists such that ue J°(4; A — {v,u)).
We shall denote the set of all J**!-reducible elements in 4 by J**!(A).

Further we put

SI(A) = N J(A),  SM=(A) = ) MY(A).
i=0 i=0

Finally for k = 0, 1, 2, ... we denote
SIKA) = {x|xeJX4) and forevery i > kis x ¢ Ji(A)},
SM*(A) = {x| xe M"(4)  and forevery > kisx¢ M'(A)}.
If xeSJ*(A) u SM*(4), k is called the characteristic of the element x (k =
=0,1,2, ..., c0.).
2.4. Remark: It is clear that if xe Ji*'(4) or xe M*'(4) (i =0, 1, 2, ...),
then x € J/(A) or x € M'(A), respectively. At the same time it is clear that to every
x € R(A) there exists exactly one k such that x € SJ%(4) U SM*(4).

2.5. Example: Let 4 be a complete lattice on Figure 1. Then

W JA) = 1{bc 1},
MO(A) = {OAy a};
JM(4) =0,
R(A) = {OA’ a, bs c, IA},

J A = {c 1.},
M'(4) = {0,,a},
JZ(A) = {c, 1,4}’
M*4) = {04},

J}A) =JYA) =.. =9,
M 3(A) = {OA},
SM?(A) = 0.
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2.6. Definition: Let 4 # @ be an ordered set with the least element 0, and the
greatest element 1,. We say that A is below ramified (above ramified) if the elements
x,yeA, x #0, #y (x # 1, # p) exist such that inf, {x, y} = 04 (sup, {x, y} =
= IA)'

We say that A4 is ramified if it is below and above ramified.

2.7. Definition: Let A be a ramified complete lattice such that JM(4) = 0 and all
chains in the set R(A) are finite. Let SJ*(4) # 8. Then we denote:

SJ§(A) = {x| x is a minimal element of the set SJ¥(A)}. After having defined the
set SJf(4), we put

SJ (A = {x | x is minimal element of the set SJ*(4) — U SJ4(A)}. Let us define
i=1
the sets SM¥(A) (i = 1, 2,3, ...) in case SM*(A) # 0 as follows:

(@) If SJX(A) # 0, we put

SM{(4) = {x|xeSM*A), x <t for some teSJ{(A)} and for i =23, ..
we put

i-1
SMi(A) = {x | xe SM¥A) — U SM}(4), x < t for some 1€ SJ}(A)}.
i=1
(b) If SJ¥A) + 9, we put

SM¥(A) = {x | x is a minimal element of the set SM*(4)} and after having defined
the set SM*(A4), we put

SM}, (A) = {x| x is a minimal element of the set SM*(4) — U SM%(4)}.
j=1
The set SJF(4) U SM¥(4) will be called i-th layer of the set SJ*A4) U SM*(A).

2.8. Example: In the complete lattice 4 on Figure 2 we have J°(4) = {f, g, /,p,
0, 1}, M°(4) = {04, e, i, m, n}, J'(4) = {g, o} because the element g is J'(e)-reduc-
ible and the element o is J'(m)-reducible. M'(4) = {0,} because 0, is, e.g.,
M(f)-reducible (but also M'(g)-, M*(j)- or M'(0)-reducible and similarly.)

Then, e.g.,

SJO(A) = {f,J,P, IA}’.
SM°(A) = {e, i, m, n},

and thus

SJNA). = {£.j}, SM2(4) = {e},
SI%(4) = {p} SM3(4) = {i, m, n},
SI3A) = {14 SM3(4) = 8.
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2.9. Definition: Let A be a complete lattice, let x, y € A. We say the elements x, y
form an aprojective couple in A if it holds:

1°: x <y,
2° xe M°(4; A — {x, D),
3%t ye JU(A; A — {x, p)).

2.10. Lemma: Let A be a complete lattice such that JM(A) = 0 and all chains
in R(A) are finite. Let the elements x < y form in A an aprojective couple. Then x €
€ SM*®(A), y € SJ®(A).

Proof: From definition 2.3 it follows immediately that x € M'(4). Then certainly
y e J*(A), x e M3(A) etc. Now the assertion is clear.

2.11. Example: In the lattices shown in Figs. 3a—3d, the elements d, e form an
aprojective couple.

2.12. Remark: Itis easy to see that every complete lattice containing an aprojective
couple has at least 8 elements. All four lattices demonstrated in Example 2.11 are
eight-element lattices. It will be easily shown that there does not exist any eight-
element lattice containing an aprojective couple and being not isomorphic with some
of them.

By 2.12, the following lemma can be easily proved:
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2.13. Lemma: Let A be a complete lattice in which all chains are finite. Then A
contains an aprojective couple if and only if it contains eight-element subset isomorphic
with some of lattices in Figs. 3a—3d, namely, such that its subset which is isomorphic
with the set {a, b, ¢ d, e} forms a join-subsemilattice, and its subset which is isomorphic
with the set {d, e,/ & h} forms a meetsubsemilattice of the complete lattice A.

h

(al

Fig. 3.

2.14. Theorem: Let A be a complete lattice such that JM(A) = ¥ and the set R(A)
is finite. If the set SJ®(A) U SM*(A) is nonempty, then an aprojective couple exists
in A.

Proof: Let, e.g., exist xo € SM®(A), i.e. x,€ M*(A) for every k =0, 1,2, ....
Since there exist finitely many elements y € J°(4) such that x, < p, there must exist
among them an element of the characteristic co, i.e. y, € SJ/®(4) such that x, €
€ M°(A; A — {xq, yoy)- If the elements x,, yo do not form an aprojective couple,
i.e.ifyo ¢ J°(4; A — {xq, yo>), there must exist analogously the element x, € SM®(A4)
such that y, € J°(4; 4 — {x{, yo»). If, moreover, the elements x,, ¥, do not form
an aprojective couple, i.e. if x; ¢ M°(4; A — (x{,yoy) holds, there must exist
analogously the element y, € S/°(4) such that x; € M°(4; A — {xy, y)) etc. Thus
we shall construct the sequences {x,} in SM*(A4) and {y,} in SJ*(4). Since, however,
we suppose the set R(A) to be finite, each of these sequences contains only finitely
many elements mutually different. Then some elements x;, y; form clearly an aproject-
ive couple.

2.35. Remark: It is evident, that there exists a complete lattice 4 such that
JM(A) = @, A does not contain an aprojective couple, all chains in 4 are finite
and at the same time SJ®(4) U SM®(A) # 0. Then, however, 4 must clearly contain
an infinite antichain.
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§ 3. Complete congruences.

3.1. Definition: Let. 4 be a complete lattice, ® an equivalence relation on A.
For X, Y < A, we say XOY if there exists a bijection f: X — Y such that xOf(x)
for every x € X.

We say the equivalence relation © on A is a complete congruence if, for arbitrary
X < A and arbitrary Y = A4 such that X@Y, there holds

(sup, X) O(sup, Y), (inf, X) O(inf, Y).

3.2. Notation: Let A4 be a complete lattice, ® a complete congruence relation
on A. For every ae A4, let us denote @ = {x | x € A, x@a}. Further we put 4/0 =
= {a|ae4}.

It is known (see [3]) that the elements of the set 4/@ are closed intervals in 4. It is
obvious that these closed intervals are closed sublattices in A.

Further we use the following notation: For a € A4, let a° denote the greatest
element, a, the smallest element in @ i.e., @ = {ay, a°). And finally, let us denote

A° ={a°|ae A}, A, ={a,|ac4}.

3.3. Definition: Let 4 be a complete lattice, © a complete congruence on 4, A =
= A/O. Let us define the relation < on the set A as follows:

x < y if and only if there exist LLEX, teP t; £t in A

3.4. Lemma: Let A be a complete lattice, © a complete congruence on A, A = A[®.
Then the relation < defined in 3.3 is an order relation of the set A.

Proof: (a) Reflexivity and transitivity of the relation < is obvious.

(b)Let x <y, 7 < x. Thent,,t,€X, t;,t,eysothat t; < t;, t, = t,. It holds
ty Aty =t EX, I3 AL, = l,€¥. But we have 1,0t,, t,0t, such that t,0¢, since
(t; At3) O(t, Aty). Thus X = f; = fy, = 7, and the relation < is also antisymmetric.

3.5. Lemma: Let A be a complete lattice, © a complete congruence on A, A = A[O.
Let a, be A. Then the following is equivalent:

() asgbind,

() a°£b°in A,

(3) ag £ by in A.

Proof: I. From the definition of the ordering on 4, it follows that (2) = (1),
(3)= ().

II. Let (1) hold. Then t,e€a, t,eb, t; <t,. We have (ayAby) O(t; At,) and
ti Aty =, i.e., (agAby) €a, and thus a, Ab, = a,, so that (3) holds.

Analogously (1) implies (2).

From Lemma 3.5 it follows directly
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3.6. Corollary: Let A be a complete lattice, © a complete congruenceon A, A = A|O.
Then A ~ A° ~ A,.

3.7. Lemma: Let A be a complete lattice, @ a complete congruence on A, A = A|O.
Then A is a complete lattice.

Proof: Let @ # X < A be arbitrary subset in A. Let us denote X = {x | xe 4,
xe X}. Then @ # X < A. From the definition of the complete congruence relation,
it follows that X has in 4 both the least upper bound and the greatest lower bound
since infy X = inf, X, sup; X = sup, X.

3.8. Remark: It follows from 3.6 and 3.7 that 4, and A° are also complete
lattices. ‘But generally they are not closed sublattices of the complete lattice A.
A° is obviously closed in respect to the greatest lower bounds and A4, in respect to the
least upper bounds in A.

3.9. Definition: Let A4, B be sets, f: A — B. Let us define the relation Kerf on the
set A as follows:

[x,y]e Kerf ifand only if  f(x) = f(p).
It is evident that there holds

3.10. Lemma: Let A, B be complete lattices, f: A — B a complete homomorphism.
Then the relation Kerf is a complete congruence on A.

3.11. Lemma: Let A, B be complete lattices, f: A — B a complete homomorphism.
Then
A[Kerf = f(A).

Proof: Let us denote 4 = A/Kerf, and let us define the mapping f: 4 — f(A)
as follows:

For x € A let us choose an arbitrary x € ¥. We put f(x) = f(x). Then obviously f
is a bijection 4 on f(A4). At the same time f'is evidently a complete homomorphism,

and hence
x<yind ifandonlyif f(¥) £ f(¥)in f(A).

Thus fis an isomorphism A/Kerf on f(A).

3.12. Lemma: Let A be a complete lattice, © a complete congruence on A, A = A|©.
Then it holds:

(a) ae J°(A) if and only if aj € J°(A),
(b) ae M°(A) if and only if a° € M°(A).

Proof: We shall prove, for instance, the statement (a). The proof of the state-
ment (b) is analogous.
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I. Let ae J°(A), i.e., there exists a set ¥ # X & 4 such that a¢ X, @ =sup; X.
Let us denote X, = {x,|xex, xe X}. Then ao¢ X,, a, = sup, X,, so that
ay € J°(A).

I. Let @ = {ay,a°) € 4, a, € J°(A). Then there exists a set § # X < A such
that a, ¢ X, a, = sup, X. But then obviously a = sup; X, a¢ X, where X =
= {x | x e X}. Hence a e J°(4).

3.13. Lemma: Let A be a complete lattice, © a complete congruence on A, A = A|©.
Let a,be A, a < b. Let us choose arbitrary, ac a, beb such that a < b. Then for
every ¢ € {a, b), we have {a,b) N ¢ # 0.

Proof: Let ¢ = {cy, ¢°) € A be arbitrary such that a < ¢ < b. Let aea, be b
be arbitrary such that a < b. Since © is a complete congruence, it holds av¢g € ¢,
where a v ¢y, > a. By 3.5 it holds further b, > ¢, so that b > avec, for b > a, b >
> by > ¢o. Then avey € {a, b) so that {a, b) n ¢ # 9.

3.14. Definition: Let 4 be an ordered set with the smallest element 0,, and with
the greatest element /,. Let K be a component of the set 4 — {0,, 1,}. The set
Ku {04, 1,} is called a (0, I)-component of the set A. Further we say the set 4 is
(0, I)-connected if it contains only one (0, I)-component. In case A is not
(0, I)-connected, we say it is (0, I)-disconnected. (Obviously the set A is (0, )-connect-
ed if and only if the set 4 — {0,, 1,} is connected.

3.15. Lemma: Let A be a (0, 1)-disconnected complete lattice with more than two
(0, I)-components. Let © be a complete congruence on A, A = A|©. Then there occurs
one and only one of the following possibilities:

(1) 0, = {04}, 1, = {1} and every further element @€ A is a subset of one and
only one (0, 1)-component of the set A.

(2) A= {A}’

Proof: 1. Let {0,}, {1,} be the elements of the lattice 4. Let ae 4, {0,} # a@ #
# {1,}. Let K, L be (0, I)-components in 4 such that an K # 0, a n L # 0. For
arbitrary xean K, yean L, we have xvy = 1, provided K # L. But since a
is a closed sublattice in A4, then I, €a and thus a = {/,} which is not possible.
Hence K = L and every element a@ € 4 is a subset of one and only one (0, I)-compo-
nent.

2. Let e.g., 1, # {I,}. Then xo € 4, xo # I,, x®I,. Let K = A be the
(0, 1)-component for which x, € K is valid. Let L, M be different (0, 1)-components
in A, L # K # M. (By our supposition, such components exist.) Let ye L,ze M
be arbitrary such that y || xo, z || Xo. Then yAxy = 04 = zAXo, W AX) O(YALY)
i.e., ( AXo) Oy, and finally (zA xo) @(zA 1) i.e., (zAX,) Oz. Hence yO0,, z00,.
But then (yvz) ©(0,v0,) i-e., 1,00, and thus 4 = {4}.
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3.16. Lemma: Let A be a (0, 1)-disconnected complete lattice, © a complete congru.
ence on A, A = A|O. If A has two and only two (0, I)-components, then there may
occur, besides (1), (2) of Lemma 3.15, the possibility

(3) 4 is a two-element chain 0, < 1.

Proof: Let the complete lattice 4 have two (0, 1)-components K, L. Let us admit
that there have occured no one of two cases (1), (2) in 3.15. First, let us realize that
it is not possible that only one of the sets O, 7: is one-element set. If, namely, for
example 0, = {0}, 7, # {I,}, the elements x, y € 4, x || y would exist such that
x@1,, yO1,, x Ay = 0, (for, with regard to the validity of Theorem 3.5, I_A cannot
be clearly a subset of a unique (0, /)-component) so that it would hold (x A 1,) ©0,
as well, ie. xe(Z, which is a contradiction.

Now let a =1, # {l,}, A#a If an K ##8,an L # @ were true, it would be
obviously hold @ = 4 which, by assumption, is not possible. Thus a is a subset of
some (0, I)-component e.g., K. First we shall show that L — {I,} e 4. Let xe
€L — {1,} be arbitrary. Since ¥ < @ holds (because of x < 1,), thus x, < a,.
But Xxe€ L and a unique element te L such that ¢t < a, is an -element 0,. Hence
Xo = 041, X = L — {1,}. It can be analogously proved that a = K — {0,}, thus
A= (K- {03,L-{L}} »

From Lemmas 3.15 and 3.16, it follows

3.17. Corollary: Let A be a (0, 1)-disconnected complete lattice, @ a complete

congruence on A. If the complete lattice A|@ is (0,1)-connected, then it is either
A|© = {4}, or it is a two element chain.

§ 4. Injective objects of the category £.

4.1. Lemma: Let A be a complete lattice, card A > 1. Let B be an arbitrary set such
that BN A = 0, card B > card A. Let us put C = A U B and let us define the relation
=< on the set C as follows:

x Scyifandonlyif(a) x £ yin A, or
b) x =04, ye B, or
(¢c) xeB,y =1,.
Then <. is an order.ing on C, and (C, <) is a complete lattice. If g: C — A is
a complete homomorphism, then g must be a constant mapping.

Proof: It is evident that <. is an ordering on C and (C, <) is a complete lattice.
Let g: C —» A be a complete homomorphism. Then by 1.3, g(C) = 4, is a closed
sublattice in 4. Let b, be the greatest element in 4,, a, the smallest element in A4,
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and let us admit that a, # b,. Let x, y € B be arbitrary, x # y. Then g(x) # g(y)
since g(x) vg(y) = g(xvy) = g(l¢) = by, g(x)Ag(y) = glxny) = 8(04) = a,. Thus
g| B: B — A, is an injection which is, however, not possible, since card B > card
A = card A;. Thus a, = b; and hence g(C) is one-element set.

4.2. Theorem: The complete lattice A is an injective retract in the category L if and
only if card A = 1.

Proof: I. If card 4 = I, then obviously A is an injective retract.
II. Let card A > 1. Let us form a complete lattice C in the same way as in
Lemma 4.1. Let us define the complete homomorphism f': 4 — C as follows:

fx) =x for every x € A.

Then there does not exist the complete homomorphism /1 : C — A such that if = id,,
since by 4.1, every h e Hy(C, A) is constant.

Since it is evident that one-element lattice is an injective object in € and every
injective object is an injective retract, there follows from Theorem 4.2

4.3. Corollary: The complete lattice A is an injective object in the category L if and
only if card A = 1.

§ 5. Projective retracts and projective objects.

5.1. Definition: Let 4 be a complete lattice, © a complete congruence on 4, 4 =
= A[@. A projective selection in A is a set P = A with:

(P1) P is a closed sublattice in A.

(P2) P nais a one-element set for every ae A4.

5.2. Lemma: Let P be a projective selection in A = A|©. Then P = A.

Proof: Let us denote P n 7 = {7,} for 7€ A. Since P is a closed sublattice in 4,
it is sufficient to prove that for arbitrary X, y € 4 such that ¥ < 7, there holds X, < y,.
By 3.3 and 3.4, X, > 7, cannot hold. Let us admit that x, | 7,. Then we have
X,VP, > Xy, X,V, > J,. But (X, vJ,) @3, holds, and since P is a closed sublattice,
there must hold x,vy,€ P, which is in contradiction with the supposition (P2).
Thus %, < 7,. The implication %, £ y,= x < y follows from 3.3.

By this Lemma is proved.

5.3. Lemma: Let A be a complete lattice, @ a complete congruence on A, A = A[©.
Let P be a projective selection in A, B a closed sublattice in A. Denote B = {x | x € 4,
XN B #0}. Then P~ {x|xeb, be B} is a projective selection in B.

The proof is evident.
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5.4. Theorem: A complete lattice A is a projective retract in L if and only if for
arbitrary complete lattice B, and for arbitrary complete congruence © on B such that
A =~ B0, there exists a projective selection in B|O.

Proof: I. Let A be a projective retract, B a complete lattice, and g : B = A an
epimorphism. By suppositions, there exists a complete homomorphism 4 : 4 — B
such that gh = id,. By Lemma 3.11, we have B|Kerf ~ 4, h(4) S B and it is
obvious that h(A) is a projective selection in B | Kerf.

II. Let A4, B be complete lattices, let g : B — A be an epimorphism. Let the projec-
tive selection P exist in B = B | Kerf. Let us denote p(b) = P n b for be B. Letus
define the mapping h: 4 — B as follows:

h(x) = plg”'(x)]  for xe A.

Then obviously 4 is a complete homomorphism and gh = id, is valid, so that A
is a projective retract.

5.5. Theorem: A complete lattice A is a projective object in L if and only if any
of its (0, 1)-component is a projective object in Q.

Proof: 1. Let A be a projective complete lattice, K its (0, /)-component. Let 4 # K
Let B, C be complete lattices, g : B — C an epimorphism, and f: K — C a complete
homomorphism. Let us denote f(K) = C;, g~ *(C,) = B,. Then f: K — C, is an
epimorphism, C, a closed sublattice in C and by Lemma 3.11, there holds K | Kerf ~
~ C; ~ B, | Ker g, where g, = g | B,. Let us denote H = 4 — K. By assumption,
we have H # @ and obviously H u {0,, 1,} is a closed sublattice in 4. Let H, be
an arbitrary ordered set such that H; ~ H, H, n (B u C) = #, and let us denote ¢
an isomorphism of the set H on the set H,. Letus put B, = BU H,,C, = CuU H,,
and let us define the relation < on B, (and analogously on C,) as follows:

For x, y € B,, we have x < y if and only if:

x€B,yeB,x < yin B, or
xeH,,yeH ,x < yin H, or
x€B,ye Hy, x < 0g, in B, or
xX€H;,yeB,y = 1, in B.

The sets B,, C, with the ordering defined in this way are obviously complete lattices,
B and B, are closed sublattices in B,, C and C, are closed sublattices in C,.
Let us define the mapping g, : B, = C, in the following way:
_ fe(x)  for xeB,
g2(%) _{x for xeH,,
and the lvna‘pping‘f2 e Cz as follows:

for xe K,
fo(x) = {égi for x:H.

230



Then g,, f, are obviously complete homomorphisms and moreover g, is an epi-
morphism. Since 4 is projective, there exists a complete homomorphism 4, : 4 - B,
such that f, = g, oh,. But then f=f, | K, g =g,|Band h=h,|K: K~ B is
a complete homomorphism such that f = gh, so that K is projective.

II. Let A be a complete lattice whose each (0, I)-component is projective. Let B, C
be arbitrary complete lattices, let g: B — C be an epimorphism and f: 4 - C
a complete homomorphism. Let us denote by " the system of all (0, 1)-components
in A4, let Ke X be arbitrary. Let us denote fx = f| K, Cx = f(K), Bx = g~ '(C),
gx = & | Ck. Then gi : By — Cy is an epimorphism and since the complete lattice X
is projective, there exists hy : K — By such that gg o by = fx. With regard to the
fact that for K, Le %", K # L, there holds K n L = {0,, 1,}, the mappingh : A - B,
defined by the relation

h(x) = hy(x) for xeAn K,KeX,

will be a complete homomorphism, if it is possible to select a mapping hg such that
for arbitrary K, L € ", there may hold hg(1,) = hy(1,), hg(0,) = h(0,). By 3.13,
it is possible to put hg(0,) = p, hx(1,) = q for every K e X', where p is the
greatest element of the closed sublattice g~ !'[f(0,)] of the lattice B and
g =infp {t|teg™'[f(1)], t = p}. But then h: A4 - B is a complete homomor-
phism and gh = f is valid, so that 4 is a projective object ir} L.

We shall prove now an analogous statement also for projective retracts.

5.6. Theorem: A complete lattice is a projective retract if and only if each of its
(0, I)-component is a projective retract.

Proof: I. Let a complete lattice 4 be a projective retract. Let K be its arbitrary
(0, I)-component. Let B be an arbitrary complete lattice and @ an arbitrary complete
congruence on B such that K ~ B/®. By Theorem 5.4, it is sufficient to prove that
in B/@ = B there exists a projective selection.

Let us denote H = A — K. If H = @, there is nothing to be proved. Thus let
H = @. Let p be the greatest element in O—B, q = infy {t[ te I;, t 2 p}, where (Zis
the smallest element and I, the greatest element of the set B = B/@. Furthermore
let H, be an arbitrary ordered set such that H, >~ H, H  n B =#. Let us put
B, = {p} ® [{p, q} + H,]1 ® {q}. Then B, is obviously a complete lattice. Now let
us define the relation ¢ on B; as follows:

xgy if and only if (a) x@y, or
(b)xeH,,ye Hy, x = y.

Then g is a complete congruence on B, and obviously B;/¢ = A4 holds. Since 4 is
a projective retract, there exists a projective selection P; in By/o. But {p, ) n B is
obviously a closed sublattice in B, and by 5.3, and 5.13 P; n Bis a projective selection
in B. It means that K is a projective retract. !
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II. Let A be a complete lattice whose each (0, 1)-component is a projective retract.
Let 4 be a system of all (0, I)-components in 4. Furthermore let B an arbitrary
complete lattice, © a complete congruence on B such that 4 ~ B/@.Letgp : A - B/®
be a given isomorphism. To complete the proof that A4 is a projective retract, it is
sufficient to prove by Theorem 5.4 that in B = B/© there exists a projective selection.

Let us denote ¢ = ¢ | K, By = @(K), By = {b|be B, b n By # 0} for KeA'.
By is a closed sublattice in B and by assumption, there exists a projective selection
in By denoted by Py. By 3.13 the projective selection Py may be chosen so that Py <
< {p, q), where p is the greatest element in O, and g = infp { | tely, t = p}). But
then |J Py is evidently a projective selection in B.

Kex

5.7. Theorem: If a complete lattice is a projective retract, it does not contain

JM-reducible element.

Proof: Let A be a complete lattice, a € JM(A) JM-reducible element. Let us put
B = A v {a,}, where a, ¢ A4, and let us define the ordering <y of the set B as follows:

For xe A, ye A, we have x <z y if and only if x < y in A.

For x € A, there holds: x <ga, if and only if x £ ain 4,

a, <pxifand onlyifa < xin 4.

It is easy to see that (B, <p) is a complete lattice. Let us define now the mapping
f: B — A as follows:

x for xeB, x + a,,

a for x =a,.

-1

Then evidently fe Hy(B, A) and it is an epimorphism. In A4, by assumption, there
exist sets X # 0 # Ysuchthata¢ X U Y, a = supy X = inf, Y. But then a projec-
tive selection does not exist in B | Kerf though 4 ~ B | Kerf, since supy X = a,
infg ¥ = a, and thus it is not possible to select in a suitable manner a unique element
in the interval <a, a,) € B| Kerf.

From Theorem 5.7, there directly follows

5.8. Corollary: If a complete lattice contains a JM-reducible element, then it is not
a projective object of the category L.

5.9. Example: (a) Let A be the lattice shown in Fig. 4a. The element d is
JM-reducible element in A. If we form the lattice B in the same manner as in the
proof of Theorem 5.7, we get the lattice in Fig. 4b. Now it is obvious that if we define
f:B— A, so that f(d,) = d, f(x) = x for the other x e B, there does not exist
a projective selection in B | Kerf. Thus A is not a projective retract.

(b) Let A be a closed interval {0, I of real numbers. Then JM(A) = (0, I) and if
we double an arbitrary element x € (0, 1) analogously to the example (a), it is again
evident that A is not a projective retract.
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It will be seen later that it is not possible to reverse in general the statement of
Theorem 5.7 and its Corollary respectively. But it will be shown now that the mention-
ed necessary condition is a sufficient condition for chains.

g
]
c f
e f
4 9
d
b @
b C
a
(a Q
(b)
Fig.lf

5.10. Theorem: A chain A € 2 is a projective object of the category L if and only
if it does not contain JM-reducible element.

Proof: I. If JM(A) # ¥ holds, A4 is not projective by Lemma 5.7.

II. Let a chain A € & contain no JM-reducible element, i.e., JM(4) = 0. Let
B, Ce ' be arbitrary, let f: A - B be a complete homomorphism, let g: C - B
be an epimorphism. Let us denote 4 = A | Kerf, C = C|Kerg, C, = g~ *{f(4)},
g = g| C,. It is clear that C, is a closed sublattice in C and C; = C, ] Kerg, is
a closed sublattice in C. Let us now construct the mapping 4 : 4 —» C as follows:

For X e A, we have (%) = g~ ![f(x)], where x is an arbitrary element of X. By
Lemma 3.11, & is an isomorphism A in C (since A : A - C, is an isomorphism).
Now let us construct h: A — C in the following way:

Let us denote i, = sup¢ h(x) for every element x € A. There exists the element i,
for every x € A. Now for every element x € 4 there occurs one of the two following
possibilities: : ‘

(@) x¢J(4),
(B) xe J(A) (ie., x is J-reducible in A).

Now let us define

o _ Jix  forevery x # xo(= 0,),
(a) h(x) = lx’ (ﬂ) h(x) - {supc {iy | yeA,y < f} for X = xO‘ '
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It is evident that A : 4 — Cis a complete homomorphism and gh = f'is valid. Thus 4
is a projective object in €.
Further we get

5.11. Theorem: Let A be a complete lattice such that JM(A) = 0. Let ae R(A)
be the smallest and b € R(A) the greatest element of the closed sublattice R(A). If {a, b)
is a projective object (resp. projective retract) in &, then A is a projective object (resp.
projective retract) in L.

Proof: There evidently holds 4 = K@® {a, b) @ L, where of the sets K, L is
either empty, or it is a chain without reducible elements. The statement of the theorem
is now quite evident.

(a) (b)
(c)

Fig. 5

5.12. Examples: It follows from 5.5, 5.10, and from 5.11 that e.g., the lattices
in Figs. 5a—5d are projective objects of the category L.

Now another necessary condition will be stated for a complete lattice to be
a projective object or a projective retract in 8, respectively. But first let us mention
two auxiliary statements.

5.13. Lemma: Let A, B be complete lattices. Then the cardinal product A x B is
a complete lattice.

Proof is evident.

5.14. Lemma: Let A be a complete lattice, let a, b € A be arbitrary such that a < b.
Let B = {t;, t;}, t; < t, be two-element chain such that

(4 — <a, b)) n ({a, by xB) = 0.
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Let us define the relation <. on the set

= (4 ~ <{a, b)) U (a, b) x B)
as follows:
For x, y e C, there holds x <cy if and only if there occurs one of the following
possibilities:

(@) x,yed —<a,b), x L yin A,

®) x,ye<ca,b)xB,x < yin<a,b)x B,

(c) xeAd —<{a,b),y = [u,t]Jea,bdxB, x < uin A,
(d) x =[ut]eda,byxB,ye A — {a,by,u < yin A.

Then (C, S¢) is a complete lattice.

Proof: Itisclear that the relation <c is an ordering on the set C. Now let X < C,
X # 0 be an arbitrary set. It will be showr e.g., that there exists inf X.

For X ¢ 4 — {a, b), there exists 1nf X. If inf, Xe 4 — (a, b, then obviously
infc X 1nf X. If inf, X € {a, b, then infc X = [inf, X, t,).

For X c <a,b) x B, let us denote X, = {y|ye<a,b), [y,t]e X for i =1, or
i =2}, and By = {t;| t;€ B, [x, 1] € X for some x € {a, b)}. Then there evidently
holds infc X = [inf, X, infy By]. Finally, if X < C is such a subset that X n
N ({a,b)xB) # 0, X n (4 — {a, b)) # 0, there holds

inf, X = inf, {infe (X A (Ca, b5 x B)), infe (X n (4 — <a, b)),

where there exists this greatest lower bound.
Analogously, there may be proved the existence of supc X.
By this Lemma 5.14 is proved.

5.15. Theorem: If a complete lattice is a projective retract in the category L, it does
not contain an aprojective couple.

Proof: Let A be a complete lattice and let the elements a, b € 4, a < b form in 4
an aprojective couple. Let B, C have the same meaning as.in Lemma 5.14 i.e., it holds:
= (4 — <{a, b)) U ({a, b) x B). Let us define the mapping f: C - A as follows:

X for xe A— {a, b),

S = {xl for x = [xy, t;] € {a, b) x B. *)

It is easy to see that fis an epimorphism, '€ Hg(C, A). By Lemma 3.11, 4 ~ C[Kerf.
It will be shown now that in C = C/Kerf there does not exist the projective selection.
It follows from the definition of the mapping f that for ¢ € C, there holds either

¢ = {c}, where ce A — <a, b), or ¢ = {[x, t;], [x, ,]} £ <a, b) x B. By assumption,
the elements a, b € A form an aprojective couple in A i.e., (see Definition 2.9) there
exist the sets X;, X, & A — {(a,b) such that a = inf, X;, b = sup, X,. Since

235



fi(4 - <a,b)) =id,_,, we have f7'(X)) = X;, f7'(X2) = X;. But then
evidently
infc X; = [a, t3], supc X, = [b, 1]

From this follows that a projective selection does not exist in C, because [a, t,] <
< [b, t;] and it is not possible to select the representants in these classes in such
a way that we may get a projective selection, since [a, 7,] || [b, #;].

Thus A is not a projective retract.

5.16. Corollary: If a complete lattice is a projective object of the category L, it does
not contain an aprojective couple.

5.17. Examples: (a) It follows from 5.15, and 5.16 that no lattice of those in
Figs. 3a—3d of Example 2.11 is a projective retract and thus no one of them is
a projective retract and thus no one of them is a projective object of the category £.

(b) Let A be the lattice in Fig. 6a where the elements ‘@, b form an aprojective
couple. Let us form the lattice C in the way described in the proof of Lemma 5.14
(see Fig. 6b).

fig.6

Now it is obvious that in lattice C it holds: fAg = [a, t,), dve = [b, t,]. If we
define the mapping f': C — A by the relation (*) in the proof 5.15, then C/Kerf >~ 4
and in C/Kerf there does not exist a projective selection, since the only closed sub-
lattice in C, containing at least one element of every class of the decomposition C/Kerf,
is obviously the lattice C itself.

5.18. Remark: The statements of Theorems 5.7, and 5.15 may be summarized
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in the following way: we say the complete lattice contains an aprojective subset if it
contains JM-reducible element or an aprojective couple. Then from 5.7, and 5.15
there follows:

If a complete lattice is a projective retract in the category L, it does not contain an
aprojective subset.

It will be shown that the mentioned necessary condition is by certain assumptions
also a sufficient condition.

5.19. Theorem: Let A be a ramified complete lattice such that the set R(A) of its
reducible elements is finite. Then A is a projective retract in £ if and only if it does not
contain an aprojective subset.

Proof: If A is a projective retract, it does not contain an aprojective subset by 5.18.

Let now A be a ramified complete lattice such that R(A) is finite and 4 does not
contain an aprojective subset. We shall prove that A is a projective retract.

Let C € & be arbitrary, f: C - A be an epimorphism. By Theorem 5.4 it suffices
to prove that in C = C/Kerf there exists a projective selection. A construction of this
projective selection will be mentioned in conclusion of this proof. But first let us be
aware of the requirements that such a construction must satisfy.

Since C ~ A, then also R(C) & R(4) and thus R(C) is a nonempty finite subset
in C and at the same time C does not contain an aprojective subset. From Theorems2.2
and 5.3 there follows further that if P is a projective selection in C, then {x | x€P,
x € R(C)} is a projective selection in R(C). When constructing a projective selection
in C, the choice of representants in the classes of the set R(C) is obviously “critical”
and that is why we shall choose first the representants in these classes. To be, however,
our construction correct, we must obviously choose representants of classes from
R(C) so as

(1) to obtain a projective selection in R(C),
(2) to be able to complete this projective selection by choosing representants of
classes from C — R(C).

Requirement (1) in our construction can be satisfied by choosing the greatest
“admissible” elements as representants in classes from M°(C), and the smallest
“admissible” elements as representants in classes J°(C). (The meaning of the word
“admissible’” will be cleared in the construction).

If we construct the projective selection Q in R(C) in this manner, for fulfilling
requirement (2) it is necessary to satisfy the following conditions: If a, b € R(C),
a < bare arbitrary,aea n Q,be b n Q, and ¢ € Cis arbitrary such thatd < ¢ < b,
then there must be ¢ n {a, b) # @ for to choose a representant in the class é. From
Lemma 3.13, however, it follows that this set is nonempty. From the construction
of the set Q it immediately follows that in the set ¢ n {a, b) any element may be
chosen as a representant.
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Thus, the construction of projective selection in R(C) will be as follows. The
choice of representants in these classes is naturally in a certain manner forced because
each element @ € R(C) is subjected to certain “‘connections”. At the same time it is
not difficult to mention that the choice of a representant in @€ R(C) is the more
complicated the higher is the characteristic of this element a. (See Definition 2.3).
Therefore we shall proceed from the elements with the highest characteristic to
those with the lowest characteristic and in the sets SM*(C) u SJ*(C) we shall choose
representants by layers (see Definition 2.7). The fact, that in the set C an aprojective
subset does not exist, ensures that the choice of more than one representant cannot
be forced in a class @ € R(C) (compare e.g. with 5.17).

And now

Coustruction: The following terminology will be used in the whole construction:
Let a representant x be chosen in the class x € R(C). Let y € C, y be comparable with x
in R(C). Then the elements of the set {r| € 7, t is comparable with the element x
in C} will be called the admissible elements of the class y. By Lemma 3.13 the set
of all admissible elements in y is nonempty and there exists the greatest element and
the least element in this set (since admissible elements in y forms obviously a complete
lattice).

As a representant of the class Oz let us now choose its greatest element, as
a representant of the class I; its least admissible element (obviously 0z, 1z € R(C)
since C is ramified).

Only finitely many sets SM*(C) u SJ*(C) are nonempty since the set R(C) is finite.
Let now k be the greatest number such that SM*(C) u SJ*(C) # @. Then we shall
choose the representants in classes of this set in the following way:

(a) SJXC) # 0: We shall choose the least admissible elements in the sets X € ST¥(C),
and then the greatest admissible elements in the sets X € SM*(C). After having de-
termined the representants in classes from SJ¥(C) u SM¥(C), we choose the least
admissible elements in the sets x € SJ{, ;(C) and then the greatest admissible elements
in the classes from SM}, (C), etc. Since the set SJX(C) v SM*(C) is finite, then after
finite number of steps we choose the representants in all classes from this set.

(b) SJXC) = #: Then necessarily SM*(C) # 0 and representants are chosen as
follows: _ .

We choose the greatest admissible elements in classes from SM}(C), then the
greatest admissible elements in classes from SM%(C) etc. After a finite number of
steps a. choice of representants in all classes of this set is abtained.

After having chosen representants in the classes from SM*(C) u SJ¥C), we choose
quite analogously representants in the classes from SM*(C) u SJ(C), where i is the
greatest number such that i < k and SM(C) L SJY(C) # 0 (at the same time the
“admissibility” . of elements is obviously influenced by the previous choice of
representants in SM*(C) u SJ*(C)) etc. After a finite number of steps we choose
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representants in the whole set R(C) and from the construction it is obvious that we
have got a projective selection in R(C). A construction of projective selection in the
whole set C is now quite simple since in remaining classes from C (i.e. in classes
%€ C — R(C)) we can choose arbitrary admissible elements as representants.

5.20. Remark: The statement of Theorem 5.19 can be extended also to complete
lattices that are not ramified. Namely, it is obvious that in case A € £ is not a chain,
then 4 = P@® Q ® G, where the sets P, G—provided they are nonempty—are
chains and Q is a ramified set. At the same time it obviously holds

5.21. Theorem: Let A,, A,, ..., A, € L. Then the complete lattice A; @ A, @ ...
... ® A, is a projective retract in L if and only if every complete lattice A,,
(i=1,2,...,n) is a projective retract in L.

5.20, 5.21 and 5.10 imply

5.22. Theorem: Let A be a complete lattice. Let JM(A) =0 and A = P D Q ® R,
where P, R are empty or complete chains and Q is a ramified complete lattice such that
R(Q) is a finite set and Q does not contain an aprojective couple. Then A is a projective
retract in L.

5.23. Example: In the case when « is an ordinal number, let us denote W(a) =
= {B | B is an ordinal number, f < a}. From 5.22 it follows that if « is an isolated
ordinal number and C is a complete lattice from the example 5.17 (see Fig. 6b),
then W(x)@® C is a projective retract in g.

REFERENCES

[1] Birkhoff G.: Lattice theory, Third (New) Edition, New York 1967.

[2] Balbes R.: Projective and injective distributive lattices, Pacific J. of M., Vol. 21, 3 (1967),
405—420.

[3]1 Dwinger Ph.: Complete homomorphism of complete lattices, Indagationes Mathematicae XIX,
(1957), 412—420.

E. Fuchs
662 95 Brno, Jandékovo ndm. 2a
Czechoslovakia

239



		webmaster@dml.cz
	2012-05-09T16:04:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




