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On some properties of the metric dimension 

LADISLAV MIŠÍK J R . , T I B O R ŽÁČIK 

Abstract. In the paper two covering functions JV, M defined on a given compact metric 
space K are studied; their binary logarithms are usually called e-entropy and e-capacity 
of this space, respectively. For a function u with suitable properties a compact countable 
metric space, for which the function u is the covering function, is constructed. By means of 
covering functions the both lower dim and upper dim metric dimensions of K are defined. 
It is shown that for a given compact metric space K and every a € [0, dim K] and fi 6 
[O.dim K] there is a compact countable subspace X of K with the unique cluster point 
such that dim X = a and dim X < /?. Finally, it is shown that there exist compact spaces 
with arbitrary small dim which are not isometrically embeddable into R m for each m € N . 

Keywords: Covering function, metric dimension, entropy dimension, limit capacity 

Classification: Primary 54D20, 54F45; Secondary 51K99 

Introduction. 
There are two well-known numerical characteristics of the "massiveness" of met­

ric spaces: topological dimension td, which is a natural number in any case, and 
Hausdorff dimension hd, which need not be an integer. In [PS] a new characteristic 
is defined, which is in [KT] called a lower metric dimension dim . Hereby the upper 
metric dimension dim was defined here. Both these dimensions are given by some 
integer-valued functions, the covering functions, defined for totally bounded sub­
sets of a metric space. Binary logarithms of these functions are called an e-entropy 
and an e-capacity ([KT]) of the metric space, respectively. That is why the metric 
dimension ([CS], [H], [KT], [V]) is also called an entropy dimension ([B], [P], [Y]) 
or a limit capacity ([M], [PT]). The basic relations of the different notions of the 
dimensions for a totally bounded metric space K, are given by the inequalities: 

td K < hd K < dim K < dim K, (see e.g. [P], [V]). 

The main difference between hd and dim consists in the fact that hd X = 0 for 
a countable set X , while dim X can be positive. So dim and dim can better control 
the partition of points of the metric space. On the other hand it is proved in [V] 
and [CS] that there exists a perfect subset I c R with prescribed Hausdorff and 
metric dimensions. In the general case a perfect subset I) of a complete metric 
space A with hd A = 0 and dim D = dim A is constructed there. Note that 
in [CS] a slightly different notion of metric dimension is used. Some other different 
properties of hd and dim can be found in [B] as well. 

The authors would like to express their gratitude to referee for his helpful comments. 
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The aim of this paper is to describe the behavior of the covering functions and 
some of the properties of dim and dim for compact metric spaces. The main result of 
the first section is the fact that for every covering-like integer-valued function there 
is a compact, countable subspace of /°° with the unique cluster point, covering 
function of which is the given function. Further, for compact subspaces of R m 

upper bounds of the "jumps" in points of discontinuity of the covering function N 
are shown. It is shown in the second section that every compact metric space 
contains a countable subset fulfilling some requirements given in advance. Then the 
consequence is the existence of a subset X C K such that dim X = 0 and dim X 
= dim K. The last theorem of the paper says that in spite of finiteness of upper 
metric dimension of a metric space K there need not exist an isometrical embedding 
of K to any finite dimensional Euclidean space Rm . 

1. Covering functions N and M. 
Let (K, d) be a nonempty compact metric space. For p £ K and r > 0 denote 

by B(p, r) an open ball centered in p with radius r and by H(p, r) its closure. Let 
N be the natural numbers and R the reals. Define the covering function N(., K) : 
R + —• N , where N(r, K) for every r > 0 denotes the least number of open balls 
with radius r covering K. 

The compactness of K implies that N(r, K) is finite for each r > 0, so the function 
N(., K) is well defined. In general this function is defined for totally bounded spaces. 
In this paper we shall need one more function M(., K) : R + —• N: 

For a set F C K denote /i(F) = mi{d(x,y);x,y € F,x ^ y} . We shall call 
a finite set F r-discrete, for r > 0 , if f*(F) > r . Now the number M(ry K) means 
the maximal cardinality of r-discrete subsets of K. 

There are some similar functions defined for totally bounded metric spaces. Their 
properties and mutual relations can be found in [KT]. Note that in [KT] the func­
tions N and M are defined dually in some sense: N(r, K) is defined by means of 
closed sets of diameter 2r and to get M(r,K) only finite sets F with fi(F) > r are 
taken. 

In the following Proposition 1 the basic properties of the functions N and M are 
summarized. 

Proposition 1. Let K be a compact metric space and r > 0. Then the following 
hold: 

(i) Let A C K be a compact set. Then 
N(2r, A) < N(r, K), M(r, A) < M(r, K). 

(ii) Let K = Ki U K2, where Ki,K2 are compact subsets of K. Then 
N(r, K) < N(r, Ki) 4- N(r, K2), M(r, K) < M(r, Kx) + M(r, K2). 

(iii) i f K i , K 2 C K are compact and r < <1(Ki,K2), then 
N(r,Ki U K2) = N(r,Ki) + N(r,K2), 
M(r,Ki U K2) = M(r, Kx) + M(r, K2). 

(iv) IfFcK is an r-discrete set and0<p<r then N(p,F) = M(p,F) -= \F\, 
where \F\ denotes the cardinality of F. 

(v) M(2r ,K ) < N(r,K) < M(r,K). 
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PROOF : The proof is left to the reader. • 

R e m a r k s , (a) Note that if A C K then M(r, A) < M(r, K) is valid although the 
inclusion A C K does not imply the inequality N(r, A) < N(r, K), as the following 
example shows: Let K = {0,1,2} and A = {0,2}. Then £(1,2) D K and hence 
N(2, K) = 1, while N(2, A) = 2. 

(b) One can show by induction that (ii) and (iii) holds for any finite number of 
subsets . 

(c) With regard to the inequalities in (v), 

(1) M(2r, K) < N(r, K) < M(r, K), 

we also call M the covering function. 
The basic behavior of the functions N(.,K) and M(., K) for a fixed compact K 

is given in the following: 

Theorem 1. The function N(.,K) : R + —* N is piecewise constant, continuous 
on the left, nonincreasing and the set of all points of discontinuity of N can be 
arranged into a decreasing sequence {rn}, such that N(r,K) = 1 for r > r\. K is 
infinite iff {rn} is infinite, and then lim rn = 0, lim N(rn,K) = oo. The same is 

n — • o o n—>oo 

valid for the function M. 

PROOF: Let {B(yi,r)}^K) be a covering of K. T h e n f o r 5 > r {B(yi,s)}^'K) 

is the covering of K, too. Therefore the function N is nonincreasing and since the 
values of N are integers, N is piecewise constant. Denote Y = {y i , . . . ,yjv(r,K)} 
and define a function / : K —• Rj}~ by f(x) = d(x, Y). The function / is continuous 
and attains on K the maximum r* < r. Then for an arbitrary p € (r*,r) one has 
N(p, K) = N(r, K) and hence N is continuous on the left. 

Let X = {x\,..., x Af(r,K)} be an r-discrete set of K and s < r. Then X is also s-
discrete set and therefore M(s, K) > M(r, K). So M is nonincreasing and piecewise 
constant. Let {-s*}]^ be ari increasing sequence of real numbers tending to r > 0 
such that M(st,K) = M(SJ\K), % ^ j , and denote by K* the corresponding $*-
discrete set of K. As 2K is the compact metric space in Hausdorff metric h, we 
can choose a convergent subsequence {K*,} in this metric tending to some set XQ. 
Then Ko -s a finite set with \$Q\ = |X*t |» i''•> 1, and fi(X0) > r. So the function M 
is continuous on the left. 

The last statement of the theorem is obvious. • 

From the foregoing statement it follows that for a given compact K the functions 
N, M are uniquely determined by their points of discontinuity and by values in these 
points. The question is, if the opposite assertion is valid, i.e. if for every function 
u : R"*" —• N with the properties from Theorem 1 we can find a compact metric 
space K such that u(r) = N(r, K) or u(r) = M(r, K). The following lemma shows 
the existence of such a space. 

Lemma 1. Let { r n } n s = 1 and {fcn}n=-i> for p G N or p = oo, be two sequences of 
real numbers such that 
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(i) rn € RQ", rn + 1 < rn r„ = 0 */ p < oo and lim rn = 0 if p = oo, 
n — • < » 

(ii) kn € N , ki = 1, kn+1 > kn. 

Define the function u : R * -~* N , 

J ku for r>ru u(r) = < 
I kn, for r n < r < r n _ i , n > 1. 

T&en there exists a countable, compact metric space Ku such that u(r) = N(r, Ku) = 
M(r,Ku). 

PROOF : Put an = fcn+i - kn, for n € N, n < p. Further put Ktt = {x0} U 
U{Kn; n € N, n < p}, where Kn = { x n , . . . , xn

n } is a finite set, xm ^ x3
q for i ^ j 

or m ^ 9, and x' -̂ $o. Define a metric d on Ktt in the following way: 

d(x0, xn) ~ rn for 1 < i < an , 

<*(*n>*m) = rmht{m ,n} -OT 1 < * < « n , 1 < 3 < «m-

The space (Ku,d) is compact (it is finite for finite p and countable, with unique 
cluster point XQ, in the case of infinite p). Take r, rn+i < r < rn. The set 
B(XQ, r) = {xo}U Ut>n ^* of diameter rn+i has the distance rn from the rn-discrete 
set IJjLi Kj> and I Uj=i Kj\ = Ej= i a> = kn+i ~ 1. Therefore by Proposition 1 (iii) 
and (iv) 

N(r,Ktt) = N(r,£(*o,r)) + N^U^Kj) = 1 + (*B+1 - 1) = kn+i = u(r), 

and 

M(r,Ku) = M(r,B(*0 ,r)) + M^U^Kj) = 1 + (*n+1 - 1) = kn+1 = u(r). 

It is well known that every metric space can be isometrically embedded into some 
Banach space. In our case there is one Banach space into which any space K from 
Lemma 1 can be embedded. 

Theorem 2. Let u be the function from Lemma 1. Then there exists a countable, 
compact subspace Lu of the space l°°, with unique cluster point 6 , such that u(r) = 
N(r,Itt) = M(r,JDtt). 

PROOF : Recall that l°° is the space of all bounded sequences of real numbers 
with the supremum metric p. Denote by €j a sequence from l°° having 1 on j-th 
place and 0 on t-th place for t ^ j ; 0 = (0 ,0 , . . . ) is the zero element in l°°. Taking 
KM constructed in Lemma 1 it is sufficient to find an isometry g : Ku —> l°°. Define 
g in the following way: 

0(*o) = 6 , 

•7(<) = rn-e*n-i+,-. 
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p(9(*o),g(*n)) = p(6,rn -efcn-i-fi) = r n = d(xQ,xn) 

P(g(^n\g(^m)) = p(rn ' £fcn-l+»,rm • e*m_i+J-) = 

= max{r n , r m } = rm h l/n > m } = d(xn,x'm). 

It follows that g is an isometry and N(r, Lu) = N(r,g(Ktt)) = N(r,Ku) = u(r), 
where Ltt = g(Ktt)- • 

The compact subsets of R m play an important role in mathematics. That is why 
it would be useful to have some criterions for a given compact metric space to be 
isometrically embeddable into R m for some m > 1. In Theorem 3 we give only 
a necessary condition for it. 

We shall consider the space R m with an arbitrary metric derived from some norm 
on R m . This gives for any two such metrics di, d2 the existence of constants m, M 
such that m-di(x, y) < d2(x, y) < M-di(x, y) for all x, y € R m . Moreover, each 
such metric d is invariant with respect to translation and d(ax,ay) = a * d(x,y) 
for any a € R + and i , y 6 R m . This implies, for an affine mapping / : R m —» R m 

given by f(x) = ax + b, a £ R , b 6 R m , the equality 

(2) N(r,A) = N(ar,f(A)), 

whenever A is a compact subset of R m and r > 0. 

Propos i t ion 2. Let d\,d2 be metrics on R m , let Ni,N2 be the corresponding cov­
ering functions, let A C R m be a compact subset. Then 

(i) there exists a constant k G N such that N2(r,A) < k • Ni(r,A), r > 0. 
(ii) for an arbitrary c £ R"*" there exists a constant lc € N such that for r > 0 

Ni(r,A)</c.Ni(cr,A). 

PROOF : (i) Fix r > 0 and for x € R m and i =' 1,2 put B{(x,r) = {z € R m ; 
di(x,z) < r} , call it a di-ball. Let {Bi(j/j,r)}.--ii be a covering of A. Since d\ 
and d2 are topologically equivalent, B\(x,e) is compact in d2 for every x 6 R m 

and e > 0. Denote k = N2(|,Bi(0,1)). This implies by (2) that B%(yj,r) , 
1 ^ i 1̂  ro> can be covered by k d-balls with radius | and therefore B\(yj,r) f) A 
can be by Proposition 1 (i) surely covered by at most k ciVballs with radius r. 
Then we can cover the whole set A by k • Ni(r, A) d2-balls with radius r and hence 
N2(r,A)<k.N!(r,A). 

(ii) Put d2 = C' di and apply (i). • 

Lemma 2. Let K be a compact metric space and let r' < r" be two consecutive 
points of the discontinuity of the function N(.,K). Denote q = N(r",K). Then 
there exist points t / i , . . . , yq in K such that 

{JB(yiy)cKc\jB^~?). 
i = l * i = l 
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PROOF : Let {pk} be a sequence of points from the interval (r', r"] tending to r'. 
For every pk there exists {x\,...,xq} C K such that K C U L i B{xh,r) for r > pk. 
Since Kg with the supremum metric is a compact metric space, we can choose 
a convergent subsequence of {{x\,..., a ; J ) } ^ of points of K; we can assume that 
the original sequence is convergent. Let lim {x\,..., xj) = ( t / i , . . . , yq) and r > r'. 

k-*oo H 

Since x* —• yj , ,;* = 1 , . . . , g , and p* —* r' , there exist kj G N , j = 1, . • . , q, 

such that B{xk,pk) C B{yj,r) for k > k;-. Then for k > max{k i , . . . , f c j we have 

K C U L i #(**>P*) C U L i B{yi,r). Therefore K C U L i B{yhr<). m 

The following theorem shows that the jumps of the function N(., A) cannot be 

arbitrary when the set A is a compact subset of R m , m > 1. 

Theorem 3. For every m € N there exists km € N such that for every r > 0 and 
an arbitrary compact set A C R m the following inequality holds: 

(3) N(r,A)<km- lim N(s,A). 
a—+r+ 

PROOF : If r is not a point of discontinuity of N(., A) then (3) holds for km = 1. If 
r is a point of discontinuity, the Lemma 2 implies the existence of points y\,..., yq , 
where q = lim N(s,A), with A C U L i ^ ( 2 / n r ) - Proposition 1 (i), (ii) and (2) 

s—*r+ 
then imply: 

9 

Щ^A^KЩ^lJBІyi^кj^Җ^BІУi^^q-NІ^BІO,!)). 
1=1 1=1 

Denote k = N(|, H(0,1)). For such k we obtain (3). • 

2. M e t r i c d imens ions dim a n d dim . 
There are more equivalent definitions of the lower ([B], [H], [V], [P]) and upper 

([BT], [H], [V], [Y]) metric dimension. We will use the following definition. Let K 
be a compact metric space. Then we put 

d i m ^ = l i m i n f l2S4(!^) , 
r—o+ — logr 

diSA' = l i m s u p M l ^ ) . 
r _o+ - l o g r 

Taking into account the inequalities (1) one can replace the function N by the 
function M which can be sometimes useful. 

Proposition 3. Let (K, d) be a compact metric space and letXcK be its compact 
subset. Then 

(i) dim X < dim K. 

(ii) dim X < dim K. 
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P R O O F : We have, by Proposition 1 (i), 

dhn X = liminf l o S ^ * > < l i m i„f l 2 i l ^ Q = ^ K 
r_o+ — logr r-*o+ — logr 

which proves (i) . (ii) can be proved in the same way. • 

Proposition 4. Let K = IJJLj Ki, where K, are compact subsets of the metric 
space K. Then dim K = max {dim K»} . 

l < t < n 

P R O O F : 

7 - „ .. logN ( r ,K ) ^ 
dim K = hmsup & , v — L < 

r_^o+ - l o g r 
- < ( - 1 . « M } ) / l o g n m ^ l o g ^ r , * , ) ^ 

< lim sup = ~ = hm sup I —: f- -=-"= - I = 
r _ 0 + - l o g r r _ 0 + I - l o g r - l o g r / 

J r l o g N ( r , K Q l SA--VI 
= max < hmsup : > = max {dim K,}. 

-<*<« I r—0+ - l o g r J l<*'<nl 

R e m a r k . A similar result is not valid for the lower metric dimension, for the 
countersx ~.rr>le see e.g. [B]. 

Corollary 1. In each compact metric space (K,d) there exists a point XQ with the 

property dim K = dim (K, xo) = inf{dim B(#o,r) ;r > 0}. 

PROOF : Put BQ = K and suppose that for each i = 1,2, . . . , n we have a closed 
ball Bi such that the radius of Bi is less than or equal to 2""*, Bi C Hi_i and 
dim Hj = dim K. Let us have a finite covering of Hn with balls of radius less than 
or equal to 2"~(n+1*. Applying Proposition 4 we can choose a ball -Bn+i* Take XQ 
to be the unique point in the intersection n^Li ^«* * 

By the Lemma 1 we can prescribe the function u(r) arbitrarily in spirit of Theo­
rem 1, and we are able to find a compact metric space K with N(r, K) = M(r, K) = 
u(r). Now we may ask: What happens if we seek such a space only as a subspace of 
a gven ompact metric space? Although we have seen in Proposition 1 (i), Proposi­
tion 2 (ii) and Theorem 3 that we are not so free in prescribing the function N(r, K) 
or M(r, K) in this case; the relative great freedom will be stated in Lemma 3 and 
Theorem 4 where metric dimensions are concerned. 

Lemma 3. Let (K, d) be ah, infinite compact metric space. Let {an)n
<Ll) {/?n}JJLi 

be two sequences from the interval [0,dim K] and let {6n}n
<Llf {an}n%1 and {&n}JJLi 

be sequences of positive real numbers such that 6n —1> 0, an —• 0 and for each n the 
inequality 6n+1 < an < bn holds. Then there exists a compact subspace X C K 
with the unique cluster point and a decreasing sequence { S n } ^ ! °f ^eal numbers 
converging to 0 such that the following hold: 
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(i) Vn € N M(en,X) € ((l/en)an'$n ,(l/en)Qn+6n), 

(ii) Vc* > limsupo:n 3r0 > 0; Vr < r0 M(r,X) < (1 / r )" , 
n—*oo 

(iii) there exists a sequence {kn^-i °f natural numbers such that Vn € N and 

Vr € (aknMn) ™ have M(r,X) < (l/rfm . 

PROOF : Let x0 be such a point that dim K = dim (K,XQ). For r € R+ denote 

5 n ( r ) = ( ( l / r ) a n ~ 6 n , ( l / r ) a n + M n N . Note that for fixed n the cardinality of 

Sn(r) grows to infinity as r tends to 0. We shall construct consecutively by induction 
positive real numbers pn, en, a finite set Kn C K and a natural number kn in such 
way that the following properties will be true for each n € N: 

(a) akn < bkn <en< 2pn < m in{a . . _ . t - ( » » * - ' > } . 

(b) \Sn(2Pn)\ > 3, 

(c) max Sn(2pn) > \Xn-i | + 1 _ ^ ^ _ 

(d) en = m a x { r € (0,2pn];M(r,B(x0,pn)) +\Xn-V\ > (l/r)"""*" + l } , 

(e) Xn is an e„-discrete set, 
(i) \Xn\eSn(en) and |Xn | + 1 6 Sn(en), 
(g) |X„| + l < ( l / 6 t „ y \ 
Put K0 = 0 and k0 = 1. Suppose that n € N and pi, a, K,, k» are constructed for 

all t € N , i < n. Choose pn fulfilling (b), (c) and, if n > 1, the last inequality in (a). 
Put Bn = B(xQ,pn). For each r/ < dim Hn and d G R there are arbitrarily small 
r > 0 such that M(r,Bn) > (l/r)* -f d. Now the special form of the function M 
(see Theorem 1) implies that the set in (d) has the greatest element. Denote this 
maximum by e n . Note that if 0 < p < q are real numbers then |»S'n(p)| > |-5n(g)| ~~ 1 
and max Sn(p) > maxSn(q). Using this, (b) and (c) imply the existence of the 
minimal nonnegative integer qn with 

r»~~̂ » / 1 \ a»"+*^» 

- 1 . ( г г Г " " < f c + " " ' < ( = ) ' 
Now (d) implies qn < M(en,Bn) and therefore there exists a finite en-discrete set 
Fn C Bn which does not contain # 0 with | F n | = qn. The last inequality in (a) 
implies that Fn and Kn-i are disjoint. Put Kn = Xn-i U Fn and we can see that 
(e) and (f) are fulfilled. Finally choose kn fulfilling the conditions (a) and (g). Put 
X = U ^ l i Xn U {#<)}• Using Proposition 1 we are going to prove (i)-(iii). 

First note that for each n € N: 

M(r,X) = M ( r , K n U K \ K n ) < M(r,Xn)-rM(r,X\Xn) < M ( r , X n ) + M ( r , £ n + 1 ) 

a_nd for r < en we have M(r,Xn) = |K n | , for r > 2/on+1 M ( r , B n + 1 ) = 1. 
(i) By the choice of X n and by (f): 

f J-) < \Xn\ < M(en,Xn) < M(en,X) < \Xn\ + 1 < ( JL J 
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and so M(en,X) € ( ( l / e n ) a " - * " ,{l/en)
a"+6n). 

(ii) Let a > 1imsupan . Choose no such that a > a n + S for each n > no and put 
n — • o o 

r0 = en o . Now let r < ro. Then there is an n > no such that r € (£n+i-£n]» If 
r > 2pn+\ then using (f) 

/ 1 \ ° n *^ n / l \<*n+$n / l \ a 

M(r,X)<lXn\ + l<(-) < ( - ) < ( - ) • 

On the other hand if r < 2/on+1 then using (b) and (d) 

/ • i \ * n + i - * n + i / • ! \ a n + i + 6 n + l / -j \ Of 

M(r,X)<M(r,Bn+1) + |Kn|<^-J + 1 < W < W ' 

(iii) Let r € [a*n,&fcj. Then using (a) and (g) 

M(r,X) < \Xn\ + M(r,Hn+1) = \Xn\ + 1 < ( j M " . 

Theorem 4. Let K be an infinite compact metric space, a € [0,dim K], ft € 
[0,dimK ] , and a > ft. There exists a countable, compact set X C K with the 
unique cluster point such that dim X = a and dim X < ft. 

PROOF : Put an = a, Pn = ft, 6n = - for each n € N and an , 6n arbitrary with 
an —• 0, 6 n + 1 < an < 6n, and use Lemma 3. The conditions (i) and (ii) imply 
dim X = a while (iii) implies dim X < ft. This completes the proof. • 

The following corollary says that each infinite compact metric space with posi­
tive upper metric dimension contains!* a simple infinite compact subspace which is 
"pathological" in the sense of distinction between upper and lower metric dimension. 

Corollary 2. Each infinite compact metric space K contains a countable compact 
subspace X with unique cluster point for which dim X = 0 and dim X = dim K. 

While the upper metric dimension for a countably compact subspace with the 
unique cluster point in Theorem 4 is prescribed exactly, for the lower metric di­
mension we have only the upper estimate. The following example shows that this 
restriction is substantial. 

Examp le . There is a compact K C R with dim K = 1 such that dim X = 0 for 
each compact subset X C K with unique cluster point. 
PROOF : According to [H], there are subsets F\ C [0,1] and F2 C [2,3] with 
dim Fi = dim F2 = 0 and dim (Fx U F2) = 1. Then put K = Fj U F 2 . • 

One further pathological property of the metric dimension compared to the topo­
logical dimension is given in the following theorem. 
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Theorem 5. For each 0 < c < oo there exists a compact metric space Kc such that 

dim Kc = c and Kc is not '* v .trically embeddable into R m for any m € N . 

PROOF : Let {km}m-i ke a sequence of constants from Theorem 3. Let {cm}w = = 1 

be a decreasing sequence of real numbers with lim cm = c. Construct the se-
m—>oo 

quences {!„»}£=! and { r m } ^ = 1 : 
lm = (h + 1) • (k2 + 1) • . . . • (kw -f 1) and rm = / m

1 / C m . Defining the function 

u(r) = I ' 
V ' m i 

for r > r\, 

for r m +i <r <rm, 

this fulfils the conditions of Lemma 1 and so there exists a compact metric space 

Kc (even countable with unique cluster point) such that N(r,Kc) = u(r). Now 

dim" Kc = c, since u(r) < ( l / r ) C m for r < rm zud u(rm) = (l/rm)Crn > (l/rm)c. 

Moreover, 

N(rj, Kc) = ki + 1 > k! = ki • lim N(s, Kc), 
s-+r+ 

and for m > 1 

N(rw,Kc) = (kw + 1) • N(rm-uKe) > km • lim N(^,KC), 
«~*rm 

and so by (3) Kc cannot have an isometrical image in R m , m > 1. • 
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