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A note on the Ramsey-type theorem of Erdos 

O N D Ř E J Z I N D U L K A 

Abstract. If T is a normal filter over a cardinal K and / : [K]2 —• 2 is a colouring, then 
there is a «*>t A C K t h a t is either infinite and homogeneous in 0 or of positive ^-measure 
( = meets every F £ T) and homogeneous in 1, respectively. If T is a filter of club sets 
over an ordinal of uncountable cofinality, the same holds. There are /c-complete filters not 
having this property. 

Keywords: Normal filter, stationary set, partition relation 

Classification: 04A20, 05C55 

Throughout this note, K and S stand for infinite cardinal or ordinal, respectively, 
and u) denotes the first infinite cardinal. For a set A, we let [A]2 = {{#, y} : x,y G 
A , x ^ | / } . If / : [A]2 —> {0,1} is a mapping, a set B C A is called homogeneous in 0 
(in 1) for / if /({x,t/}) = 0 (= 1) for each {x,y} G [B]2, respectively. | A | denotes 
the cardinality of A and 2 = {0,1}. 

For a filter T over 8, ?* = {S - F : F G T} is the dual ideal to T and T+ = 
{ACS:A<£f*}. 

We deal with certain generalization of the Ramsey theorem. This famous theorem 
asserts that if / : [u;]2 —» 2 is a mapping such that each set A C w homogeneous in 0 
for / is finite, then there is an infinite set B C u> homogeneous in 1 for / . Erdos, 
and Dushnik and Miller [1] generalized this, showing that if / : [K]2 —• 2 is as above, 
then there is a set B C K homogeneous in 1 such that |H| = K. Rowbottom (see 
Kanamori and Magidor [2]) showed that if K admits a normal ultrafilter £/, then 
a very strong partition relation holds which implies that if / : [«]2 —> 2 is again as 
above, then there is A G U homogeneous in 1 for, / . 

1. Definition. Let S be an ordinal, ACS and T a filter over 8. We write 

to abbreviate the formula: 
"For each mapping / : [A]2 —• 2 there is a set B C A such that either B is infinite 
and homogeneous in 0 for / or else B G *F+ and B is homogeneous in 1 for / . " 

All the mentioned assertions are of the type K ~* (c*;,/*"**)2; the relevant filters 
are ( i C w : \w — A\ < w } , { A C K : \K — A\ < K} and U, respectively. First note 
that not every filter T over S satisfies S —> (u;,.F+)2. 

2. Fact . Let K be an infinite cardinal. Then there is a cf (zc)-complete filter T over 
K such that K •++ (u>,.F"*")2. 
PROOF : Without loss of generality assume that K regular. Provide « x / e b y the 
product order and let /{a;, y} = 1 for a;, y G K X «, if a; < y or y < x and / {# , y} — 0 
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otherwise. Since each decreasing sequence of ordinals is finite, each set homogeneous 
in 0 for / is finite. It is routine to show that if A C K X K is homogeneous in 1 for / , 
then either A C K x aU a x K for some a < K or |(AC X a U a x AC) n A\ < AC for 
each a < AC. Consequently, if we let J be the family of sets of the form AUB where 
ACAcxaUaXAc for some a < AC and \(K xal) a x K)C\B\ < K for each a < AC, then 
each set homogeneous in 1 for / is a member of I. One can easily verify that J is 
a Ac-complete ideal over AC X AC and that AC X AC $ X. Hence T = {K x K — A : A € 1} 
is the required filter and / destroys AC —*(a;, T*)2. • 

The purpose of this note is to show that if T is a normal filter over a cardinal AC, 
then AC —> (a;, T*)2. Recall that T is called normal if {A C K : |AC — A\ < AC} C T and 
T is closed under diagonal intersections, i.e. A a < K A a = {/? < AC : (Va < /?)(/? G 
-4a)} € T whenever Aa G T for each a < K. 

3. Theorem. Let AC be an infinite cardinal, T a normal filter over K and A G T*'. 
ThenA~>(w,T+)2. 

PROOF : Let / : [A]2 ~> 2. For a: € A put C0(x) = {y G A : f{x,y} = 0} and 
C\(x) = AC — Co(x). Consider the following condition. 

(*) For each B C A, if B € T+, then B n C0(x) G T+ for some x G B. 

If (*) is valid, put A0 = A and for each n G u>, find xn G An with Anf)Co(xn) G 
T+ and let An+i = An f) Co(xn). (*) ensures this is possible for each n £ UJ. 
Let B = {xn : n G u>}. Since xn £ An+i,H is infinite. On the other hand, 
xn-fi G An C Co(x0) n • • • n Co(xn), i.e. f{xn+i,Xi} = 0 for each n € w and * < n. 
Hence B is homogeneous in 0. 

If (*) fails, there is B C A,B £ T+ such that B n C0(x) G T* for each x e B. 
For a < AC, let Aa = (K- B)U Ci(min(H - a)) . Then Aa G F , for AC - Aa = 
£ n Co(min(B — a)) and min(I? — a) G B. Since T is normal, Aa<K-4a G T, and 
therefore D = B 0 Aa<KAa G F + . We show that D is homogeneous in 1. Let 
a,0 G D and a < /5. Then, by the definition of A, /? G Oi(min(# - a)) = Ci(a), 
as required. • 

If T and Q are two filters over AC and T C C7, then obviously Q+ C T*. Hence: 

4. Corollary, Let K be an infinite cardinal and T a filter over K which is extend­
able to a normal filter. Then 

K^(U,F+)\ 

Maybe it is relevant to remark that the filter T from Fact 2 is not AC+-saturated 
(for there is an almost disjoint family of cardinality > AC+) and that this lack could 
be essential: It is known (see Kanamori and Magidor [2]) that a AC+-saturated 
Ac-complete filter T over AC is "almost normal" in that there is an incompressible 
function f €* K such that {A C K : f"1(A) G T} is normal. So that it remains 
open, whether the Ac-completeness and Ac+-saturatedness of T ensure AC —* (u;,.F+)2 . 

We conclude this note with an application of Theorem 2 to stationary sets, which 
is similar to the theorem of Erdos, Dushnik and Miller, and in fact strengthens it 
for the case of AC regular. 
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Recall that F C 8 is called c.u.b. if F is cofinal with 8 and closed in the order 
topology. If the cofinality of 8 is uncountable, then cu.b . sets generate the filter 
which is usually denoted by Cub (8). If K is regular and uncountable, then Cub(>c) 
is a normal filter, see e.g. Kunen [3, II. 6.14.]. The sets in Cub(8 )+ are called 
stationary sets. 

5. Corollary. Let 8 be an ordinal of uncountable cofinality and AC 8 a stationary 
set. Then A -> (w, Cub (8)+ )2 . . 

PROOF : Let K be the cofinality of 8. Then there is a cofinal set C C 8 of 
order type K. Let t : K —* C be the order isomorphism. For a < K limit, put 
g(a) = sup {£(/?) : b < a} and, for a < K isolated, put g(a) = t(a). One can easily 
compute that the map g : K —• 8 is increasing (and, in particular, one-to-one) and 
g(a) = sup {g(f$) : fi < a] for each a < K. Also sup g = 8. This shows that g 
transfers Cub (K) to Cub (8) and hence stationary sets to stationary sets. 

For / : [8]2 -> 2, we define / * : [K]2 -> 2 by /*{x,y} = /{gar,gy}. Let A C 8 be 
stationary in 8. Then g_1A = {a < K : ga € A} is stationary in « and according 
to Theorem 3 either (a) there is infinite B C g~lA homogeneous in 1 for / , or 
(b) there is stationary (in K) D C g~lA homogeneous in 1 for / . In both (a) and 
(b), g[B] (g[D\) is homogeneous in 0 (in 1) for / , respectively. If (a) occurs, g[B] is 
infinite, for g is one-to-one. If (b) occurs, then the above mentioned property of g 
ensures that g[D] is stationary in 8. • 
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