Commentationes Mathematicae Universitatis
Carolinae

Cong Xin Wu; Hui Ying Sun
On the A-property of Orlicz space Ly,

Commentationes Mathematicae Universitatis Carolinae, Vol. 31 (1990), No. 4,
731--741

Persistent URL: http://dml.cz/dmlcz/106908

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1990
Institute of Mathematics of the Academy of Sciences of the Czech Republic

provides access to digitized documents strictly for personal use. Each copy
of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic
delivery and stamped with digital signature within the
\V project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz



http://dml.cz/dmlcz/106908
http://project.dml.cz

Comment.Math.Univ.Carolinae 31,4 (1990)731-741 731

On the A-property of Orlicz space Ly,

ConGgxIN Wu, HulYING SUN

Abstract. In this paper, we show that each Orlicz space L) with the Orlicz norm has the
A-property and give a criterion of that Lps has the uniform A-property.
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Notation. .

Let X be a Banach space, B(X) the closed unit ball, U(X) the open unit ball
and S(X) the unit sphere. A point e of a convex subset A of X is an extreme
point of A if z,y € A and e = }z + Jy imply e = ¢ = y. The set of the extreme
points of A is denoted by ext(A). A point z € B(X) is said a A-point if there exist
e € ext(B(X)),y € B(X) and X € (0,1] such that z = Ae + (1 — A)y. In this case,
the triple (e,y, \) is said to be amenable to z. X is called to have the A-property if
each z € B(X) is a A\-point. If X has the A-property and satisfies

inf{\(z):z € B(X)} >0,

where A(z) = sup{) : (e,y, ) is amenable to z}, X is called to have the uniform
A-property (see [1]).
Let M : R — R? satisfy the following conditions:

a) M(u) is even, convex and continuous;

b) M(0) =0 and M(u) > 0 for u # 0;

¢) limy—o M(u)/u =0, limy—oo M(u)/u = o0,
and G be a bounded closed set of n-dimensional Euclidean space E™. The Orlicz
space Ly is the family of all real Lebesgue measurable functions z(t), defined on G,
for which om(kz) = [, M(kz(t))dt < oo for some k > 0. Ly with the Orlicz norm

2]l = sup /G o(t)y(t)dt : on(y) < 1}

is a Banach space, where N(v) is the conjugate function of M(u).

We denote the set of all points on which M(u) is not strictly convex by D, i.e.,
for v € D there exist a, b such that a < v < b and M(u) is affine on (a, b). It is clear
that D = |J;(ai, b;), where (a;, ;) are non-overlapping intervals. We also define k?
and k2* by

k2 =inf{k >0 / N(p(ka(t))) dt > 1)
G
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ke* = sup{k >0 /G N(p(ka(t))) dt <1},

respectively. By [2] or Theorem 1.27 in [3],

I=ll = %(1 + /G M(kz(t))dt, z#0,

iff k € [k2, k%)

‘In [4], we obtain that each Orlicz space Ly with the Luxemburg norm (||z]|' =
inf{k > 0: pm(z/k) < 1}) has the A\-property and it has the uniform A-property iff
M (u) is strictly convex. In this paper, we shall see that the condition “Lps with the
Orlicz norm has the uniform A-property” is different from “Lps with the Luxem-
burg norm has the uniform \-property”, and the proving methods are completely
different.

Main results.
Lemma 1. Ifz € U(Lpm), = i3 @ A-point.

PROOF : Since ext(B(Ly)) # @ by [5], taking e € ext(B(La)), we have for any
z € U(Lm))

e =2+ (1~ Jel)(ze - 5¢)
1 1 1 1
= 3= lelle + (1 + lzl)(@ ~ 201~ lele)/ 51 + el

1 1
= 20~ lelbe+ 2 + el
where y = 2(z — 3(1 — ||z|)e)/(1 + ||zll) and y € B(Lp). This shows that z is
a A-point. ]
Theorem 1. Ly has the A-property.

PROOF : By Lemma 1, we only need to prove that for any z € S(Lum), z is a A-
point. By [5] or Theorem 2.3 in [3], # € S(Ly) is an extreme point of B(Lp)
iff for all k € [k2,k2*],m{t € G : kz(t) € D} = 0. Hence for z € S(Lp) but
z € ext(B(Lm)), there exists k; € [k}, k3*] such that m{t € G : k,z(t) € D} > 0.
Define

Gi={t€G:kyz(t) € (a;,b;)}, i=1,2...,

then m {J; G; > 0. Without loss of generality, we may assume z(t) > 0. Let

Ey = {t€Gi: kuat) < 3bi + Jai),

" 1 3
E; = {t€ Gi:ksz(t) 2 2%+ 7%}
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G, G’ be partitions of G; with G; D E;,G; D E!,i=1,2,... , and

ke =1+ 3 (M(a:)mG, + M(b)mG)) + / ) o, Mk
i G i

then k. < co. Indeed, if 3, M(b;)mG; < oo, it is clear. Otherwise, we set ¢; =
l2XG: lloo» €; = min{bi, 4c; — a;} and

E;={te G;:k,z(t) > %a,- + %c;}, 1=1,2,....
Obviously, mG; > 0 implies mE; > 0. As M(u) is linear on (a;, b;) and
3 1
Z M(Za,- + Zc;)mE;
3 1 .
= {(M(5) - M(a))(gai + gei — ai)/(bi — i) + M(a:)}mE;
i

= E{(M(bi) — M(a;))(ci — a;)/4(bi — a;) + M(a;)}mE;

<> /G M(k,z(t)) dt < /G M(k.z(t))dt < oo,
we have
D M(cymBi <3 {4(M(b:) ~ M(a:))(ei — ai)/(bi — i) + M(ai)}mE,
=162M(%a; + %c,-)mE,- - 15ZM(a;)mE.~ < 00.

Remarking mE; > mG:-', as ¢; < b;, and mG;' = 0 whenever b; > c;,i =1,2,...
we obtain

ke <1+ pm(kez) + Y MGIMG, <1+ pu(kez) + Y M(c)mE; < oo.
Set l ‘
A= min{%,ke/4k,}, 1/ks = Mke + (1= A)/ky,
e(t) = kic(Z(aing +bixgr) + kez(xayJ, o)
and z = Ae + (1 — N)y. For t € G\ U; Gy, kzxz(t) = kee(t) and

kaalt)/ by = ka(®)( = 2)/(1 =)

=(ke — Akz)z()/ke(1 = A) = (2(t) — Akzz(t)/ke)/(1 - )
=(z(t) — Ae(t))/(1 - A) = y(2),
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80 k;z(t) = kee(t) = kyy(t). Since Ak;/k. < % and (1 — A)ko/ky > 2, fort € G,
a; <k,:l:(t) = Akzai/ke + (1 - A)k,k,y(t)/k,

i.a. + =bi < Akzaifke + (1 — N)kzbi/ky .

From ¢; < Akza;/ke + (1 — Ak, kyy(t)/k,, we have kyy(t) > a; and from
Akzaifke + (1= Nkzkyy(t)/ky < Akzai/ke + (1= Mkzbi/ky,
k',y(t) < b;. Similarly, for t € G,
b 2k.z(t) = Akzbifke + (1 — Nk kyy(t)/k,

>2bi+ Sai > Mecbifke + (1~ Nkeai/ky

and a; < k,y(t) < b;. Hence we have kyy(t) € [ai, ;) for t € Gi, i =1,2,... . This
shows that

1ol = -1+ [ M(kco(t) dt)

=(1 - Xk)clc,:"i- z\kl(l + ,/GM((—fl_—:\IE)%k—v?}-_/\—l—c—(/\e(t) + (1= Ay(t))) dt)
(L= Nk, 42k,

=%k, OtET /\)k oV / M(kee(t)) dt
el RV OLY

(,\) (1)

+

(1 +em(kyy)) =2+

='l:\_,(1 + om(kee)) + (1 + om(kyy))

and ||y]] < -kl'-(l + gM(k,y)) = 1 by Theorem 10.5 in [6].
Now, if we have e € ext(B(Ly)), then z is a A-point. To prove e € ext(B(Lp)),

it is enough to show that k. = k} = k2* by Theorem 2.3 in [3].
Let k, = k} = k}*. For any k > k., we fix k' € (ke,k) and define o=
K'ke/( ke + 3K'), ko = min{k.k/k', k. k" [k.}. H k" (1a; + 3b;)/ke > b;, then
i1 3 1 3,
Za: + 2b)/ (= SEYS b
¥ (Goi+ 300/ + 1K) 2 5
Y 3 3, 1
= 4 =b) 2 =k by + —k.b;,
(- .+4b)_4kb +4kb

%k,b.., and k' a;/k, > b;.

Fort€G;i=1,2,...,if k' (3a; + 3b;))/k. > b;, then

%k'a,- 2

p(ke(t)) = p(k ka;/k k') > p(kbi/k ) > p(kkzz(t)/k') > p(koz(t))
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and if k"(%ai + 2b;)/k. < bi, then
” 1 3
p(ke(t)) 2p(kee(t)) = pla:) = p(k (Fai + 7bi)/ke)
>p(k" kz2(t)/ke) > pkoz(t)),

as p(u) is rlght -continuous and k" (1 1ai + 3b)/k. > a;. Noticing that for
te G, =12

p(ke(t)) = p(kbi/ke) > p(kksz(t)/ke) 2 p(kkz2(t)/k') 2 p(koa(?)),

k' /ke > 1,k/k > 1, and ko > k2*, we obtain

[ Wtk aez [ Mpkostey)de> 1.
G G

This yields k. > k2*. Similarly, we have k. < k%. So k. = k} = k™.

Now, let k} < kz*. Foranys',s” € (k3,k3*),s <s', N(p(s' =(t))) < N(p(s"=(t)))
and

1= / N(p(s =(t))) dt < / N(p(s" 2(t))) dt = 1.
Hence N(p(s z(t))) = N(p(s" z(t))) a.e.. As N(v)is convex and N(v) > 0 for v # 0,
(s’ z(t)) = p(s z(t)) a.e.. We assume, for simplicity, p(s z(t)) = p(s" z(t)) for all
t € G. This implies that for any s € (k2,k%*) and t € G with z(t) # 0, there exist
a,b such that a < sz(t) < band p(u) is constant in (a, b), i.e. sz(t) € D. Rema.rkmg
(u.) # p(u;) for u; € (a;,b;),uj € (aj,b;),i # j, we have
{teG:sz(t) € (aib)} = {te G:s z(t) € (a;, bi)}

for any s',s € (k%,k2*) and kiz(t) > a;,k2*z(t) < b;, whenever for some k €
(k2, k2*) with kz(t) € (ai,b;),1 =1,2,... . Let

N ={i:m{te G:ka(t) € (ai, b))} >0, ke (ki k*)}.
Obviously, N is not empty. If there exist k; € (k%,k*) and j € N' such that

m{t € G:a; < k1z(t) < aj/4 +3b;/4} > 0,
m{t € G:3a;/4+b;/4 < kz(t) < b;} >0,

then taking k; instead of k., we can choose G;,G'; with mG; >0, mG;-' > 0. For
k > k., without loss of generality, we may assume ko < k3*. Hence for ¢t € G";

p(ke(t)) = p(kb;/ke) > p(a;) = p(koz(t))
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and for t € G\ G}, p(ke(t)) 2 p(koz(t)). Therefore

| Wokeydt> [ N@oae)at+ [ Noke())at =

G G\G] (e

= [ Nothos)dt+ [ Nothe(t))dt = [ N(a(kua(t)) de > 1
G Gj G_,'

ice. k. > k**. Similarly, we can get k. < kZ. So k. = k} = k2*.
Otherwise, for all i € N’ either

m{t € G : a; < ka(t) < i—a.- + gb,-} —0
or
3 1 -
m{teG: 7% + Zb,- <k*z(t) < b} =0.
If there exist i ,i’ € N  such that
m{teG: a. += b < k**z(t) <bs} =0,
mi{t € G :ap < krz(t) < %a,. + 3501 =0,
we may assume mG;, > O,mG:'u > 0, or else take k € (k}, k;*) instead of k,. As
above, we have k. = k} = k?".
Ifforalli€ N' '
m{teG: a.+ b < k}*z(t) < b} =0,
then
‘m{t € G: k2*z(t) € (a;,b)} >0, i€ N

Let k, = k*, then mG; > 0,mG; =0 for i € N'. In the same way as above we
have k, = kt = k2*. Ifforalli € N’

m{teG: a.<k‘a:(t)<—a,+ b} 0,

let k, = k7, the result is the same. ]
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Lemma 2. If D # 0 and K = sup{b;j/a; : b; > 1} < oo, then M(b;)/N(p(a;)) <
2(K — 1) provided M(b;)/M(a;) > 2K.

PROOF : Let d; = M(b;)/M(a;) > 2K, then
di = ((bi — a:)p(a:) + M(a:))/M(a;)
by Theorem 1.1 in [6]. Hence
(di — 1)M(a;) = (bi — a;)p( ;)
and
M(b;)/(bi — ai)p(ai) = di/(di - 1).
Using the equality in Young inequality, we have

(bi — ai)p(a:)/(N(p(a:)) + M(a;)) = (b; — ai)p(a;)/aip(ai) < K -1

N(p(a:)) 2 (bi — ai)p(as) (Kl— 1 d; 1_ 1) .

This means

M (b:;)/N(p(as)) < di(K — 1)(d; = 1)/(di — K)(di — 1)
<di(K ~1)/(di ~ 3i) < 2(K ~1).

Theorem 2. Lps has the uniform A-property iff
sup{b;/a,- : b,' > 1} < 00.
PROOF : If K =sup{bi/a;:b; >1} < oo,let N' = {i : b; > 1}, K’ = M(1)mG +

4K +1and A = 1/4K’. For z € S(Ly)\ext(B(Ly)), we define k,,Gi,i = 1,2, ... ,
and k. as in Theorem 1. Denote

Cc=1 +/ M(k.e(t))dt =1 +/ Mk 2(t))dt.
VU, AU,
Using Lemma 2 and

> Na)mG: < [ Np(a)de<1,

737
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by Lemma 9.1 in [6], we have

ko ke = (14 / M(kea(2)) d6)/(1 + / M(k.e(t)) dt)
<(Z M(b;))mG; + C)/(Z M(a;)mG; + C)

M(l)mG +2K Y e M(a,)mG +2(K - 1) Y ;env N(p(a;))mG; + C
Y M(ai)mG; +C
<SM()mG+2K +2(K -1)+1< K.

Hence Ak, /k. < AK' < :—. Setting e and £ = Ae + (1 — A)y as in Theorem 1, we
may prove that (e,y,A) is amenable to z in the same way as in Theorem 1. This
implies A(z) > 1/4K’ for = € S(Lu). By [1), for ¢ € B(Lu)

Me) 2 51+l /el 2 1/8K', = #0,

and A(©) = 1. Thus, we obtain that L has the uniform A-property.
Let Ljs have the uniform A-property, then

inf{\(z) : z € B(Ly)} = Ao > 0.

If sup{bn/an : by > 1} = oo, without loss of generality, we may assume b,/a, >
n®,n=1,2,... , and N(p(a;))mG > 1. Fix the disjoint sets F',F" C G satisfying
mF =mF" and N(p(al))mF' = 1. For n > 3, taking G, C G\ F UF" such that
N(p(an))mGn = } and a partition of the same measure {En;}} of Gn, we define

un, = (1 —1/ilnn)a, + ba/ilnn 1 <i < n,

kn=1+ Z M(un,)mE,; + M(ay )mF‘ +m(b)mF"
1 i ¢

and

1
Ty = 'k"(zunaXE.... +a1xp +bixpr)-
L |

For k < kn,kzp(t) < bn,t € Gn;ikza(t) <bi,te€ F" and kza(t) < a,t € F xmply
p(kza(t)) < p(an),t € Gn s D(kzpo(t)) < plar),t € F" and p(kza(t)) < p(ay),t € F'.
Hence

/ Np(kza(t)) dt
G

- /G N(p(kan()dt + /ﬂ N(p(kea(t))) dt + /F N(p(kzq(t))) dt
<N(p(an))mGa + N(p(al))mF" + N(p(ay ))mF' =1.
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For k > kn, as kzn(t) > by, p(kza(t)) > plar),t € F

/G N(p(kza(t))) dt > N (P(an))mGn + N(p(a)}mF" + N(p(ay)ymF" = 1.

Thus k, = ki = k3*. By Theorem 1.27 in (3],

1
"z"" = ',;—(1 + QM(knxn)) =1L
By Theorem 1, z,, is a A-point, n = 3,4,... . Let (€n,¥n, An) be amenable to z,

) “6,,” =1+ QM(ke,.en))/ke..’
lyall =1 + om(ky,yn))/ by,

and
kn =ke,ky, [(Anky, + (1 = An)ke,),
then
||:z:,,|| = ’\n”en” +(1- '\n)”yn"
'\ ( — ’\n)
;——(1 + enlkenen) + S2L(1 + em(kyayn)
1

/ Mk, en(t)) dt + ‘kj")"" /G M(ky,yn(t)) df)

]

Ic
E—(l +/ M(Ic zn(t)) dt) > ||zl

=

-

By Theorem 1.27 in (3], k, € [k%,k%*], hence k, = kn. Considering t € Ga,
knzn(t) € (an,bn), we have k., ea(t), ky, yn(t) € [an,ba] for t € G, and knza(t) =
ke, en(t) = ky,yn(t) for t € F' UF". By Theorem 2.3 in [3], for t € Gy, either
ke, ea(t) = an or k. en(t) = b,. Since

bn bn
M(ba) = /0 p(u) du = M(an) + / p(u) du > (bn — an)p(an)

and
N(p(an)) = a,.p(a,.) - M(an) < anp(an)
by Young inequality, we have
M(bn)/N(p(an)) 2 (bn - an)P(an)/anP(an) P4 n®-1.

Thus .
M(ba)mG 2 (n* — )N (p(an))mGn = 5(n° = 1)-
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Let E,, = {t € Gn : ke, en(t) = b,}. f mE, = 0, then
/\n(E? M(un;)mEa; + Cl)

Ankn/ken = S e Gt C
A 311 = 1/i Inn)M(ap) + M(b,)/i Inn)mE,,
M(a,)mG, +C’
,\ aM(b,)mGp/n lnn _ An/nlnn
M(ap,)mG, +C' M(an)/M(bp) + C' /M (bp)mGr
An/nlnn
"M(a,.)/M(n"a,.) +2C'/(n® -1)
An/nlnn

—_ n2 ! an
—M(an)/n3M(a,,)+4C'/ 3 =an’/(4C +1) Inn,

where C' = M(a))mF' + M(b))mF" + 1. Remarking Ankn/ke, < 1, as 1/k, =
Anfke, + (1= An)/ky,, and Ap > Ao, we have

Aon?/(4C" +1)lnn < 1.

The contradiction for large n implies that there exists n’ such that for n > n,
mkE,, > 0. Let

t(n) = max{i : m(E; NE,)>0, 1<i<n}

For t € E, N Ep,,, C Ga,

i(n

(1-1/i(n) Inn)a, + b, /i(n) Inn

Ankn 1-A,)k,
kaza(t) = 22Kn g, ety + L2y )
kc,, k!ln
Ankn, (1= An)kn Ankn (1= An)kn
e >
ken b"+ kyn ky"y"(t)—' kc,. + k!ln n

as ky, yn(t) € [an,bs]. Hence A\pkq/k., < 1/i(n) Inn.
On the other hand, as 37 1/i < Inn,

An(307 M(un)mEn, + C,)

Y1 M(ap)mE,, \ E, + Y7 M(b,)mE,,NE, +C’
An 3r M(ba)mEy, [itan

- Z:>x(n) M(an)mEqn; + Ex<-(n) M(bs)mE,, +C'

(AnM(bp)mGn 37 1/i)/ Inn

(M(an)mGy + i(n)M(by)mGy/n+C')n

. AnM(bn)mGn

= nM(ap)mGy +i(n)M(by)mGy + nC’

An
2w im) +nC (s = 1) = 0/3()

/\nku/ke,. =

v
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for large n. Take n > n’ satisfying nC'/(n® — 1) < 1 and )¢ > 3/ Inn. Then
1/i(n) Inn > Apka/ke, > Xo/3i(n) > 1/i(n) Inn.

The contradiction shows that Ly does not have the uniform A-property. ]
Notes.

1. Theorem 1.27 in [3] had been used in Chen Shutao’s paper “Some rotundities
of Orlicz spaces with Orlicz norm” (Bull. Acad. Polon. Sci. 34 (1986), No. 9-10,
585-596).

2. ext(B(Lm)) # 0. In fact, Ly = Efyyy, where

Emy = {u € Ly : om(ku) < oo for all k > 0}
with norm ||-||(m) (see § 14.5 and Theorem 14.2 in [6]). By Krein-Milman theorem,
B(Ly) = ext(B(Lm))-
Therefore, ext(B(Lpy)) # 0.
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