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On entire solutions of elliptic equations 
with a singular nonlinearity 

J. CHABROWSKI, M. KONIG 

Abstract. The paper deals with positive solutions in Rn of the equation Lu = f(x)u 7 , 
where L is a uniformly elliptic operator of second order, / is a positive function and 
0 < 7 < oo. 

Keywords: Positive weak solution, uniformly elliptic, singular nonlinearity 

Classification: 35J15, 35B99 

1. Introduction. 

In this paper we are concerned with the solvability in Rn of the problem 

( Lu = - Y!U\ Di(<*ij{*)Dju) + c(x)u = f(x)u~t in Rn 

\ u(x) > 0 on .*Rn, 

where 0 < 7 < 00 is a constant and n > 3. Problems of this nature arise in 
the boundary layer theory of viscous fluids (see [1], [2] and [10]). The singular 
equation appearing in the problem (P) is called the Lane-Emden-Fowler equation. 
This problem has been recently studied by Edelson [4], Kusano and Swanson [7] 
in the case L = A and 0 < 7 < 1. Under a suitable decay condition on / , they 
proved the existence of a positive solution in C2(Rn) using the Schauder fixed point 
theorem. The article [6] contains some extensions of this result to the exterior 
Dirichlet problem. The main purpose of this paper is to investigate the existence of 
weak solutions. Our approach, based mainly on the Sobolev imbedding theorem and 
some approximation argument, allows us to cover a wider range for the parameter 7. 
We distinguish two cases: 0 < 7 < 1 and 1 < 7 < 00. In the case 0 < 7 < 1 we 
first solve the Dirichlet problem in a bounded domain with zero boundary data. 
A solution to the problem (P) is then obtained as a limit of solutions um of the 
Dirichlet problems on 0 m , with 0 m exhausting Rn. In the case 1 < 7 < 00 we 
were unable to solve the Dirichlet problem; we can only prove the existence of local 
solutions. However, this is sufficient to apply the approximation argument from the 
previous case 0 < 7 < 1. In both cases the solution u belongs to Wfc*(Rn) with 

Du 6 L2(Rn) and u 6 L^(Rn) in the case 0 < 7 < 1, and u € LZ^1(Rn) and 
Du 2 € L2(Rn) in the case 1 < 7 < 00, and obviously u satisfies the equation in 
the distributional sense. In the final Sections 4 and 5 we briefly discuss the existence 
of positive solutions with exponential decay, under the additional assumption that 
c(#) > Co > 0 on Rn for some constant Co. In particular, in Section 5 we derive 
pointwise estimate for solutions of the problem (P) with smooth coefficients. We 
use here a very simple argument based on a classical maximum principle. 
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2. Case 0 < 7 < 1. 
Tluroughout this paper we assume that 
(A) L is uniformly elliptic in .Rn, that is 

•,i=i 

for all £ € -Rn and x € Rn and some constant A > 0. 
(B) The coefficients ay(t, j = 1, . . . , n) and c are in £°°(i2n), with c(x) > 0 on .Rn. 
The assumption on / will be specified later. 
We need the following result on the solvability of the Dirichlet probleiu 

(1) Lu = f(x)u"* in ft, 
(2) u(x) = 0 on dft, 

in a bounded domain ft C Rn. 

Lemma 1. Let f € L2(Q), with f(x) > 0 on ft. Then the Dirichlet problem (1), 
o 

(2) admits a unique positive solution u € W1,2(Q). 
PROOF : Uniqueness can be obtained by a straightforward argument: let u\ and 

o 

u2 be two solutions in W1,2(Q) of the problem (1), (2). It follows from Lemma 1.2 
o 

in [8] that (u\—u2)
+ € W1,2(Q). Consequently, taking (ui — u2)+ as a test function, 

we obtain 

/ J2 a«iA-(t*i - ti2)+-0;(«i - u2)+ + c(ut - u2)+(u! - u2)+ dx = 

= [ K^-uDlui-^+dx. 
Jn 

Since û *7 < u j 7 on {x € ft;ui(x) > u2(x)}, the right hand side of this identity is 
nonpositive. Therefore (A) yields 

b \D(u1-u2)
+\2dx<0 

and consequently (u% — u2)+ = 0 a.e. on ft, that is ui(x) < u2(x) a.e. on ft. 
Changing roles of u% and u2 we get u2(x) < ui(x) a.e. on ft and the uniqueness 
follows. In the proof of the existence of the solution we use some ideas from the 
paper [3]. To establish the existence of the solution we consider for every e > 0 the 
Dirichlet problem for the equation 
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with zero boundary condition (2). We now observe that f(x) u+hip < \f(x) o n 

o 

fi for all u. Therefore a standard application of compact imbedding of W1,2(Q) 
in L2(Q) and the Schauder fixed point theorem give the existence of a solution 

o 

ue € W1,2(il) of the problem (3), (2), which by the maximum principle is positive 
o 

a.e. on Q. Since any solution of (3), (2) in W1,2(il) must be positive, we show as in 
the previous step, that the solution ue is unique. We now check that the sequence 
{ue,e > 0} has the following properties: (i) {ue} is increasing as e \ 0, (ii) {ue + e} 
is decreasing as e \ 0 and (iii) {ue} is bounded in W1,2(Q). 

To establish (i) we take (uei — ^ 2 ) + , with e% > e2, as a test function and we 
obtain 

dx = / f E ^Oi(u9l - u^+D^ - ue2)+ + c((uet - ue2)+)2 

- / f(
g2+"*»)7~(g-+"«-)'YJ .+ . n 

JQ (6i + ^ 1 ) 7
V

£ 2 + ^ 2 ) T 

and consequently 

/ | D ( u e i - u e 2 ) + | 2 d x < 0 , 
Jn 

that is, uei - ue2 < 0 a.e. on 0. 
We now show that {ue + e} is decreasing as e \ 0. Let £i > e2 and since 

o 

uei — ue2 = 0 on 90, (uei +€i — ue2 - e 2 )~ € W1,2(Q) and on substitution we obtain 

/ iC auA-(uei + «i - ««, - ^rDifad + d - ue2 - £2)""+ 
+ c((uei + ei - ue2 - £2)"")2 <fe = 

/ . K a + ^ - ^ + e i ) 7 

" V K t + e i M u e 2 + e 2 ) 7 ( ^ + ^ - ^ - « » ) <**+ 

+ / c(ei - e2)(uet + ei - uei - e2)"~ dx. 
Jn 

It is easy to see that the right hand side is nonnegative, as before, we conclude that 
|D(uei + ex - ue2 - e2)"| = 0 a.e. on 0, that is, uei + ei > ue, + e2 a.e. on ft. 

Finally, taking ue as a test function and applying the Holder inequality we obtain, 
in the case 0 < 7 < 1, 

A-1 / |Due|
2 dx < f fu\-*dx < C(f|,7) / / * dx + i ( l - 7>? / u2 dx 

Jn Jn Jo * Jn 
for each 1? > 0, where the constant C(»?, 7) > 0 is independent of e. On the other 
hand, by Poincare's inequality we have 

/ u\dx<P í \Dut(x)\2dx 
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for some constant P > 0 independent of e. Hence choosing rj so that | (1 — y)rjP < 
A""1 we obtain 

/ |Due(:r)|2 dx<C f /(a:)*iV dx, 
Jn Jn 

where C > 0 is independent of e. In the case 7 = 1 we obtain 

A""1 / \Due(x)\2dx < f f(x)dx 
Jn Jn 

and this completes the proof of the claim (iii). By Sobolev's imbedding theorem 
there exists a decreasing sequence em \ 0, as m —• 00, such that uem —» u weakly 
in W1,2(ft), strongly in L2(Q) and a.e. on 0 . To complete the proof we show that 

o 

u satisfies (1). For every v € W1,2(^l) we have 

/ VI aijDiUemDjV + cuemv dx = / / V T — — —dx. 
Jn L ijZl 1 Jn y£m + uem p 

The left hand side converges to 

/»[ j> aijDiuDjV + cuv dx < 

On the other hand by the Monotone Convergence Theorem (we may assume" that 
u > 0 on fi) we have 

/ vf—dx= I vf lim •—=-ár = / У^ auDiuDjV + i 
Jn " 7 Jn *»-+<*> Єm + Uim JnlijÏ! 

dx < 00 

and this completes the proof. • 

We point out here that (i) and (ii) imply that 

(4) 0 < ue — u$ < 6 — e a.e. on ft 

for e < 6. Consequently, ue converges uniformly to u on ft. 

We are now in a position to establish the existence result for the problem (P). 

Theorem 1. Suppose that f € L2
0C(Rn) f) L »+*+*"<»--) (Rn) with 0 < 7 < 1 and 

f(x) > 0 on Rn. Then the problem (P) has a positive solution u € W|Vc(^») ^ ^ 
Du € L2(Rn) and u € L"^(Rn). 

PROOF : Let Om be an increasing sequence of bounded domains with* smooth 
boundaries and such that Rn = (jm>i ^m» By Lemma 1, the Dirichlet problem for 
the equation 

Lu = fu~~y in ftm 
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o 

with zero boundary data on dOm has a unique positive solution u € Wly2(0m). We 
extend um by 0 outside 0 m . The resulting function is in W1,2(Rn). Taking um as 
a test function and using the Sobolev inequality we obtain, in the case 0 < 7 < 1, 

n - 2 

(5) A - 1 C ( n ) ( / u^r* dx) < A " X / \Dum\2dx< f ful^dx< 
\Jnm / Jum Jsim 

( l - - Q ( n - 2 ) n + 2 + 7 ( n - 2 ) 

< ( / uІ^dxj ^ ( / /n + 2+?-Г(n-2) dxj 

where C(n) > 0 is a constant independent of m. Since 

n - 2 _ ( n - 2 ) ( l - 7 ) _ ( n - 2 ) ( l + 7 ) > 

n 2n 2n 

the inequality (5) implies that 

, m x w + 2 + 7 ( n - 2 ) 
f _2n_ / f 2 n \ (»-2)(l+Tr) 

(6) / um-2dx<C( /»+-+%%•--> cfc) 
Jnm \JRn ) 

Obviously, the estimate (6) continues to hold also for 7 -= 1. The estimates (5) 
and (6) imply that 

(7) / \Dum\2dx<C1 

for all m > 1 and some constant C\ > 0 independent of m. We nov show that the 
sequence {um} is increasing. Let m < /, then 0 m C ft* and 

, ч + ((Um-Щ)* 

(um - щУ = I Q 

on fìm, 

on ӣi — fìm , 

that is (um — M/) + 6 PV1,2(Om). Therefore taking (um — tt/)+ as a test function we 
obtain on substitution 

J \ __. a{j D{(um - u,)+Dj(um - ut)+ + c((um - u,)+f dx = 

Jӣr 

/ ( - - - )(t*m -utў dx < 0. 

Hence (um — w/)+ = 0 om O m , that is um < u\ on O m . This inequality continues 
to hold on Q,i — Om because um = 0 on 0/ — 0 m and u\ > 0 on 0\ — 0m. The 
estimates (6) and (7) together with the diagonal method imply that we may assume 
that there exists u € L n- 2(I£ n) with Du € L2(Rn) such that um —• u weakly in 
PV1,2(K), strongly in L2(K) for each bounded domain K C -Rn, moreover um —» u 
a.e. on Rn. By monotonicity of {um} the limit u is positive on Rn. The proof of 
the fact that u is a solution of (P) is similar to the corresponding part of the proof 
of Lemma 1. • 
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Remark 1. If c(x) > CQ > 0 on Rn for some constant CQ and if in addition / 6 

L1^ (Rn), then the solution constructed in Theorem 1 belongs to lV1,2(jRn). 

Indeed, taking um as a test function we obtain 

A"1 / \Dum\2 dx + co I u2
m dx < C(r?,7) / /* f r dx + rj f u2

m dx, 
Jtom JV JUm Jttm 

and choosing rj < CQ the result follows. 

3 . Case 1 < 7 < 00. 
The existence of positive solutions of (P) in the case 1 < 7 < 00 can also be 

obtained by approximation method of Section 2. However, for bounded domains we 
only prove the existence of local solutions. We need the following auxiliary results. 

L e m m a 2. Let 0 be a bounded domain in Rn and suppose that f £ Lp(fl) with 
f > 0 on Q, and p > n. Then there exists a positive function u 6 W^C(Q,) 0 

LIL^i(0)nL00(n) satisfying 

Lu = f(x)u~"y in Q,, 

moreover u 2 G W1,2(fl). 

o 

PROOF : Let {ue} be the solution in TV1,2(0) of (3) with zero boundary condi­
tion (2). Taking u7 as a test function, we obtain on substitution, 

7 / \^ aijDiUeDjUeu€ dx + I cu1+y dx = I / - ——- dx < I f dx, 
Jn rr±l Jn Jn \e + ueP Jn 

a = 7 — 1, and consequently 

(8) / IDK1*1)!2 dx and / u«\Due\
2 dx 

Jn Jn 

are bounded as e \ 0. By the Sobolev inequality we also have 

(9) / u « -
Jn 

dx < C 
Jӣ 

for some C > 0 independent of e > 0. As in the proof of Lemma 1 we show that 
ue is increasing and ue + e is decreasing as e \ 0. Let v be a positive solution in 

TV1 '2(0) of the Dirichlet problem 

Lv = f(x)z in 0 , 
JK Jl + v~* 

v(x) = 0 on f5fi. 
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By a standard regularity theorem v G L°°(0) f) C(H) (see Theorems 8.16 and 8.22 
in [5]). We also have v(x) < ue(x) on ft for each 0 < e < 1. This combined with 
the second estimate (9) gives the following property of the sequence {ue}: 
for each compact set K C 0 , there exists a constant C(K) > 0 independent of e > 0 
such that 

/ |Dtt£(x)|2 dx < C(K). 
JK 

Consequently, using the diagonal method we can select a sequence em \ 0 such that 
u£m —> u weakly in W1,2(K) and strongly in L2(K) for each compact set K C 0 , 
moreover ue —* u a.e. on Q. By virtue of the first estimate (9) we may assume that 

7 + 1 

u£m —• u weakly in W1,2(ft) and strongly in L2(Q,). According to the estimate (10) 

u € L n~2 (0) . It is also obvious that u 2 £ W1,2(Q) and v(x) < u(x) on 0 . It 
remains to show that u is a solution of our equation. Let w 6 Wll2(Q) with compact % 

support in ft, then for each m we have 

/ V^ aijDiU£mDjW -f cu£mw dx = I f -: 
M ^ J Jn em+u] 

dx. 

Since u£m > mfsuppu; v > 0, the result follows from tne weak convergence u£m in 
JV1,2(supptv) and the Monotone Convergence Theorem. As in Lemma 1 we have 

(10) 0 < u£ — u$ < 8 — e a.e. on ft 

for all 8 > e. • 

Lemma 3 . Let f 6 L1(Rn) fl Lp(Rn) with f(x) > 0 on Rn and p > n. Then 
there exists a positive solution v G JVfo'c (Rn) C\ L n-2 (Rn) with Dv (E L2(Rn) of the 
equation 

(11) Lu = f(x)~- — in Rn. 
v J JK ; ( i + u)y 

PROOF : Let {0 m } be an increasing sequence with smooth boundaries such that 
o 

Rn = Um>i ^™- For each m there exists a unique positive solution vm € W1,2(flm) 
of the Dirichlet problem 

Lu = f(x) in 0 m , 
v ; 1 -f u** 

u(x) = 0 on dQm . 

We extend vm by 0 outside 0 m . As in Theorem 1 we check that {vm} is an increasing 
sequence. Taking vm as a test function we obtain 

/ Y] aijDiVmDjvm+cv2
m dx= f Vm dx < / f dx. 

Jsimli^lx J Jsim (1 + ^m)7 Ju 
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Consequently the sequences of integrals JQm \Dvm |2 dx and Jttm vm~~ dx are boun­
ded independently of ra. Applying the diagonal method we may assume that there 
exists t; € Wf£(Rn) f) L^(Rn) with Dv € L2(Rn) such that vm -* v weakly in 
W1,2(K) and strongly in L2(K) for each bounded domain K C Rn. Also, vm -* v 
a.e. on Rn. It is easy to see that v is a solution of the equation (11). • 

Remark 2. If c(x) > c0 > 0 on Rn for some constant c0, then v € W1,2(Rn).. 

Theorem 2 . .£e< / G L 1 ( E n ) n l p ( H n ) «*'& p > n and.f(x) > 0 orkJ?n. T&en the 

problem (P) has a solution u in W^(Rn) n LS&*1(Rn) with Du2^1 € £2(-Rn). 

PROOF : Let {Om} be an increasing sequence of domains from Lemma 3. By 

Lemma 2 for each ra there is a positive function um G Wf^(ilm) C\ L »-2 (Rn) 
-f+l o 

with um
7 € W1,2(ilm) satisfying the equation 

Lum = f(x)um
1 in 0 m . 

It follows from the proof of Lemma 2 that 

(12) vm(x) < um(x) on Om , 
o 

where vm is the positive solution in W1,2(Qm) of the problem 

Lvm = f(x) 7 in Qm , 
1 T* I'm 

Um(i) = 0 on d$lm . 

According to (9) and (10) 

(13) / \D(uT)?dx<Cl and / um\Dum\2 dx < Ct 
Jftm JQm 

and 

(14) / t i „ r 2 

-1nm 

Јx <CX 

for some constant Ci > 0 independent of ra. Since the sequence {um} is increasing 
it follows from the second estimate (13) that 

/ , 
u;\Dum\2dx<d 

for p < ra. We may also assume that vm € C(il) (see Theorems 8.16 and 8.22 in [5]). 
Therefore for each compact set K C Rn there exists Qp D K with infK «p > 0. 
Consequently, by the diagonal method we may assume that um —• u weakly in 
W1,2(K), strongly in L2(K) for each compact set K C Rn, also um —• u a.e. 
on .Rn. According to Lemma 3, vm - • v a.e. on Rni where v is a positive solution of 
the equation (11). Consequently, we have by (12) 0 < v(x) < u(x) on Rn. It is now 
a routine to show that u is a solution of the problem (P) with required properties. • 
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Remark 3. If c(x) > c0 > 0 for some constant Co, then u a £ Wl'2(Rn). 

4. Solutions with exponential decay-
In this section we show that if / has an exponential decay at infinity, then the 

same is true for a solution of the problem .(P). 

Theorem 3 . Let 0 < 7 < 1. Suppose that c(x) > c0 > 0 on Rn> where c0 is 
a constant and that f € L°°(Rn) with 

0 < f(x) < Kexp ( - a J2 M ) on Rn 

i = l 

for some constant a > 0. Then the solution u of the problem (P) satisfies 

f [\Du{x)\2 + u{x)2)exp{80T\xi\)dx 

JRU n r 

< OO 

for some S0 > 0. 

PROOF : Let {um} be a sequence from Theorem 2. Taking as a test function 
v(x) = um(x)H(x)2 where H(x) = n iLi CObh8x,-, with 8 > 0 to be determined, we 
obtain 

r r n n 

/ J2 (HjDiUmDjUmH2 +2 ] T a i j D l u m u r n D i HH + cu2
mH2 dx = 

Jamiij=i ij-i 

= / ful
m^H2dx<^[ u2

mH2dx + C(con) [ f^H2dx. 
Jilm * JQm JO 

Since 

2 / TaijDiUmUmDjHHdx^^f \Dum\2H2dx+ C(X) [ u2
m\DH\2dx, 

Jilm ijZl lX Jilm JOm 

we obtain 

- W \Dum\2H2dx+f {%H2-C{\)\DH\2)u2
mdx<C{co,y) f f&H2dx. iXJam Jam * Jam 

We now note that there exists 6Q > 0 such that 

f H2 - C{\)\DH\2 > ^-H2 

for all 0 < 8 < 8o and all x € Rnj we may also assume that 8o < x+z- Hence 

± [ \Dum\2H2dx + % I u2
mH2dx<C(c0^)[ f&H2dx. 

lX JOm 4 Jtom JOm 

Letting m —• oo the result follows. • 

By a similar argument using Lemma 2 one can establish the following result. 
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Theorem 4. Let 1 < 7 < oo and suppose that f and c satisfy hypotheses of 
Theorem 3. Then the solution u of the problem (P) satisfies 

jf | |D(u(*)a* l)|- + u ( * r * + 1 
exp (8o 2_^ \XІ I) dx < 00 

for some constant 6Q > 0. 

5. Point wise e s t i m a t e . 
The estimate of Theorem 3 can be improved in case of the equation with smooth 

coefficients. Inspection of the proofs of Lemmas 1 and 2 shows that the solution u 
of (P) satisfies the estimate 

(15) 0 < v(x) < u(x) < v(x) + 1, 

where v is a positive solution of the equation (11). This is an immediate conse­
quence of the inequalities (4) and (10). In this section we additionally assume that 
a,j, Didij,c and / are locally Holder continuous. Using standard regularity results 
the solutions u and v of (P) and (11), respectively, are locally C 2 + o r on Rn. The 
equation (1) can be written in the form 

n n 

Lu = — 22 aijDijU + 2_]bjDjU + cu = / u ~ 7 , 
i , j=l J = l 

where bj(x) = — Y^=i Aatj(-*0- We point out here that some existence results for 
the Dirichlet problem in bounded domains for the equation with smooth coefficients 
can be found in [3] and [9]. To use the classical maximum principle we assume that 
c(%) > Co on R?n for some constant Co > 0. We need the following well known result. 

Lemma 5. Suppose that u is a bounded function in C2(Rn) and that Lu > 0 
on Rn. Then u(x) > 0 on Rn. 

To derive pointwise estimates we compare the solution of (P) with a function H 
given by 

n 

H(x,6) = T7cosh8£j for x € Rn and 0 < 8. 
.-=1 

It is easy to see that there exist constants 8o > 0 and K > 0 such that 

I ^ H - ^ i c o i - r 1 on Rn and for 0 < 6 < 60 

and 
L^-^^KH-1 on Rn. 

Moreover, we have 

c-'EILiI''! < H(x,6)~l < 2Be-*-£r.iM 

for x € Rn and 0 < 6 < 00. 
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Lemma 6. Suppose that o < 7 < 00 and that 

d e - ' ^ - i ^ < f(x) <C2 

on Rn for some constants C\ > 0,C2 > 0 and 0 < S\ < 8o- Then the solution v of 
the equation (11) satisfies the estimate 

(16) v(x) > Ci2"nK~1(l + - ^ " V * 1 - C i l*'l on Rn . 
CQ 

PROOF : Let vm be the sequence of the solutions of the Dirichlet problems in Qm 

from the proof of Lemma 3. Ey a classical maximum principle we obtain that 

C2 
0 < vm(x) < — on 0 m . 

co 

Letting m —• 00 we see that this estimate continues to hold for v on Rn. This also 
remains true for 0 < 7 < 1. Let d = Ci2~nK"1(l + ~ * ) " 7 and Hi = H(x, 8i), then 

L(v - dHr1) > Ci(l + — r 7 e" 6 1 SLi I"' - dKH~l > 
CQ 

> e~6ì -Сľ.i lXiUcг(l + — )~7 - 2ndK) = 0 
co 

in Rn and the estimate (16) follows from Lemma 5. • 

We now establish the lower and upper bound of the solution of the problem (P). 
To derive this estimates we need some restrictions on 7. 

Theorem 5. Suppose that 

Cxe~6' E,-i I*'* < f(x) < C2e~6> Er . i ^ 

on Rn for some constants C\ > 0, C2 > 0 &nd 0 < 62 < 61 < S0 <m>d let 0 < 7 < J*. 
Then the solution u of the problem (P) satisfies the estimate 

Kie~
61 E L i M < u(x) < K2e-(62-76l)^=i l*'l, 

on Rn, where Kt = Oi2~nK-1(l + &)-* and K2 = 2 n + 1 t7 2 c 0 K i~ 7 . 

PROOF : The lower bound follows from Lemma 6. We set w = u - kH-1, where 
fc = 2 1 + ^ K ^ C 1 " 7 ( ^ ) - ^ and H = H(.x,82 - 6f). Using the lower bound we check 
that Lw < 0 on Rn and the result follows from Lemma 5. • 
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