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On lattices and algebras of simple functions 

Y . A . ABRAMOVICH, Z. LIPECKI 

Abstract. We prove tha t every (linear) sublattice of the lattice-ordered algebra S(2 t t ) of 
all real-valued simple (=s tep) functions on a set Q is uniformly closed. It follows that 
the same is t rue for every subalgebra of 5 ( 2 ° ) . In the proof we use a special case of the 
latter result due to P. Dierolf, S. Dierolf and L. Drewnowski. We also give a description of 
sublattices, subalgebras and ideals in lattice-ordered algebras of simple functions. 

Keywords; Simple function, ring of sets, linear lattice, algebra, ideal, prime, maximal, 
homomorphism, hyper-Archimedean, uniformly closed 

Classification: 46A40, 06F20, 28A20 

1. Notation. 

Let O be an arbitrary non-empty set. Given a family 2t of subsets of Q, we denote 
by 5(21) the real linear space spanned by the characteristic functions 1,4, A € 21. If 
21 is a ring of sets, then 5(2t) is both a sublattice1 and a subalgebra of the lattice-
ordered algebra RQ. For a subset Z of S(2U) we denote by Z its uniform closure 
in S(2Q). We also define 

%z = {A£2Q:lA£Z}. 

(In [3, p. 982] this family of sets is called the trace of Z. It also appears in [5, De­
finition 2.3.7], where a different symbol is used.) Clearly, S(%z) C HnZ. Sufficient 
conditions for the equality to hold are given in Lemma 1 below. 

For x e S(2Q) we define 

supprc = {a; € 0 : x(u>) / 0}. 

In the sequel !SH stands for an arbitrary ring of subsets of 0 . 
Given a linear lattice X, we denote by H(X) the set of all linear-lattice homo-

morphisms from X into R. The notation H(S(M)) is abbreviated to H(£H). 

2. Uniform closedness of sublattices and subalgebras. 

The following lemma is at least partially known; in particular, see [5, pp. 167-168] 
for another proof of part (b). 

We are indebted to Prof. A.I. Veksler for suggesting the relevance of the class of hyper-Archimedean 
linear lattices to the material of the paper. 
1 By a sublattice of a linear lattice we always mean a linear sublattice. A similar convention applies 
to su be paces of linear spaces. 
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Lemma 1. 

(a) If Z is a sublattice or a subalgebra of 5(2n ) , then %z w a Ttng of sets. 
(b) If Z is a sublattice of S(2U) such that z A In € Z whenever z £ Z, then 

Z = S(1Z). 
(c) I/ Z is a subalgebra of S(2Q), then Z = S(%z). 

PROOF : For the lattice case of (a) see [3, Lemma 1] or [5, Proposition 2.3.8(a)]. 
The algebra case follows from the well-known formulas 

1>A1UA2 = !AI + 1A2 ~~ ^At ' 1A2 and 1A!\A 2 = ^Ax - l ^ • -,42-

We shall establish (b) and (c) simultaneously. Fix ZQ € Z with z0 ^ 0. The 
assumption of (b) implies that lSUpp *0 € Z. Denote by ZQ the sublattice [subalgebra] 
of 5(2 f i) generated by ZQ and lsupp*0 [̂ o alone]. Let a i , . • . , a n be all the non-zero 
values of ZQ (without repetitions). Now ZQ can be identified with a sublattice 
[subalgebra] of Rn. Therefore, applying a suitable version of the Stone-Weierstrass 
theorem (see [4, §4, theoreme 2] and [9, Theorem 4E]), we get 

ZQ = l i n ^ - i ^ . j : t = l , . . . , n } . 

Hence zQ~1(ai) € %z and zo € S(%z)- • 

Remark 1. We have used above some versions of the Stone-Weierstrass theorem 
with the underlying space being finite. In that case the standard proof of the lattice 
version can be somewhat simpHfied (cf. [4, n°l]) and a straightforward proof of the 
algebra version based on Vandermonde determinants is available. The latter proof 
also yields the complex counterpart of (c), since it does not require the subalgebra 
in question to be self-adjoint (cf. [11, Theorem 3]). 

We shall now establish our main result. It generalizes simultaneously [6, Lemma 2] 
(see also [8, Lemma 2]) and [1, Example 1]. It is worth-while to compare it with 
[1, Theorem 6], asserting the existence of a variety of dense sublattices in every 
infinite-dimensional complete metrizable topological linear lattice. We also note in 
this connection that every infinite-dimensional metrizable topological linear space 
contains proper dense subspaces (see e.g. [7, Theorem 1]). 

Theorem 1. Every sublattice of S(2Q) is uniformly closed. 

PROOF : Let Z be a sublattice of 5(2 n ) . We shall prove that Z = Z in four steps-
S tep 1. The assertion holds if In € Z. Indeed, in view of Lemma 1(a) and (b), 
%z -s then an algebra of subsets of 0 and Z = S(%z)- Therefore, Z is uniformly 
closed by [6, Lemma 22] (see also [8, Lemma 2]). 

S tep 2. The assertion holds if there is ZQ € Z with ZQ(U>) > 0 for all UJ € 0 . Indeed, 
by Step 1, 

{ f : zez} 

is uniformly closed in 5(2^), whence so is Z, because the map x —* ZQ • x is a ho-
meomorphism of 5(2 f t) onto itself. 

2Note that the condition (J^Lj ^* = UI=i Bib = I *s missing in that proof. 
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Step 3 . The assertion holds if there is z0 € Z with 

supp z C supp z0 for all z £ Z. 

This follows from Step 2, since 

{x £ S(2U) : suppx C suppzo} 

is uniformly closed in 5(2^). 

S tep 4. Let Z be arbitrary and suppose, to get a contradiction, that Z ^ Z. Take 
x0 £ Z\Z and choose zo € <~-M- with 

supp so C suppzo-

Define 

Z0 = {z £ Z : suppz C suppzo}-

Clearly, Z0 is a sublattice of S(2Q) and x0 £ Z0. We claim that x0 € Z0l which is 
in contradiction with Step 3. Let (zn) be a sequence in Z tending to x0 uniformly. 
Moreover, take t £ R with |xo| < tz0. Then the sequence 

(*«Atz 0 )V( - i* 0 ) 

is in Z0 and tends uniformly to x0. • 

Corollary 1. Every subalgebra of S(2Q) is uniformly closed. 

This is a direct consequence of Theorem 1 and Lemma 1 (c). 

Corollary 2. Every sublattice [subalgebra] of S(9\) is the intersection of a family 
of sublattices [subalgebras] of S(9$) of codimension 1. 

PROOF : In view of the Stone representation theorem for Boolean algebras, we 
may and do assume that Q is a compact space and !SH is contained in the algebra 
of open-closed subsets of 0 . Let Z be a sublattice of 5(~H) and denote by Z its 
uniform closure in C($l). In view of Theorem 1, 

Z = Z D 5 ( « ) . 

Now, it is a consequence of a classical result due to S. Kakutani, and M. Krein 
and S. Krein ([4, §4, exerc.4]) that every uniformly closed sublattice of C(0) is the 
intersection of a family of (uniformly closed) sublattices of C(Q) of codimension 1. 
The lattice case of the assertion follows. Since every uniformly closed subalgebra of 
C(Q.) is a sublattice of C(Q) ([9, Lemma 4D]), the algebra case also follows. • 



630 Y.A. Abramovich, Z. Lipecki 

Remark 2. The complex counterpart of Corollary 1 is also true. More precisely, 
every subalgebra Z of 5c(2 f i), the algebra of all complex-valued simple functions 
on 0 , is uniformly closed and self-adjoint. Indeed, Lemma 2 of [6] holds, with the 
same proof, in the case of complex scalars. Therefore, in view of Remark 1, the 
assertion in question holds if In € Z. The general case follows, since Z is uniformly 
closed in lin(Z U {In}), which is a subalgebra of 5c(2 f i). As a consequence, the 
algebra part of Corollary 2 is also valid in the complex situation. 

We note that Theorem 1 and Corollary 1 fail if the topology of uniform conver­
gence is replaced by that of pointwise convergence. Indeed, the subalgebra 

{x £ R : suppx is finite } 

is pointwise dense in 5(2Q) . 

3. Ideals. 

We shall give a description of lattice and algebra ideals in S(9\) and derive from it 
a version of Corollary 2 for ideals. We shall also characterize ideals of codimension 1 
in S(M). 

Proposition 1 (cf. [13, Proposition 5.1]). For J C 5(-H) the following three con­
ditions are equivalent: 

(i) J is a lattice ideal in S(SR). 
(ii) J is an algebra ideal in S(£H). 

(iii) %i is an ideal in iH and S(%i) = J. 

PROOF : (i)==>(ii) It is enough to observe that, given x, z £ 5(2°) , we have \xz\ 
< t\z\ for some t £ R. 

(ii)=>(iii) This follows from Lemma 1(a) and (c) and the formula l^nB = 1.4 1B-
(iii)=>(i) It is enough to show that, given x £ S(-H) and z £ J with \x\ < |z | , we 

have x £ I. We may confine ourselves to the case where x = 1^, A £ -H. Then 
A C supp z. It follows from (iii) that A £ T j , and we are done. • 

The following result is essentially known (see [2, theoreme 14.1.2]). It is also 
a consequence of [10, Theorem 33.5] and Proposition 2 below. 

Corollary 3 . Every ideal in S(tR) is the intersection of a family of ideals in 5(fH) 
of codimension 1. 

PROOF : Let J be an ideal in 5(fH). In view of Proposition 1, Tj is an ideal in £H. 
Therefore, 

ot£M 

where {3a : a £ M} is the family of all maximal ideals in £H containing T j ([10, 
Theorem 4.4]). It follows from Proposition 1 that S(3a) is a maximal ideal in 5(91) 
and 

/= n sp.,). 
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An appeal to [10, Theorem 27.3(i)] completes the proof. • 

Recall that an ideal I in a linear lattice X is said to be prime if, for all x\, x2 € X 
with X\ A x2 € I, we have x\ 6 I or x2 6 I ([10, Definition 33.1]), 

P ropos i t ion 2. For I £ 5(91) the following four conditions are equivalent: 

(i) I is a (lattice) ideal in 5(£H) of codimension L 
(ii) I is a prime lattice ideal in 5(91). 

(iii) I is a prime algebra ideal in S(9\). 
(iv) T j is a prime ideal in 9\. 

PROOF : The implication (i)=^(ii) holds in every linear lattice (see [10, The­
orem 33.3(i)]). 

We shall show that (ii) implies (iii). In view of Proposition 1, we only have to 
check that if x, y 6 5(-H) are non-zero and xy G I , then x € I or y € I. Represent ' 
x and y in the usual way: 

m n 
x = YlailAi and y ̂  Yl^1B; ' 

1=1 i=l 

where a j , . . . , am £ R are non-zero and Ai,..., Am € £K are pairwise disjoint, and 
the same holds for &i , . . . , bn and Hi,..., Hn. If x $. I, then 1^. £ I for some i. 
Since 1^, A l^ i € I, we have IQ. E I for all j . Consequently, y € I . 

The implication (iii)=>(iv) is obvious. 
To show that (iv) implies (i), observe that 5(Tj) is an ideal in 5(-H). Since Tj is 

a maximal ideal in 1H ([10, Theorem 4.3(i)]), 5(Tj) is a maximal ideal in S(9i) by 
Proposition 1, The assertion now follows from [10, Theorem 27.3(i)], as 5(Tj) C I. 

• 

4. Sublattices and subalgebras of codimension 1. 

We shall need the following general lemma. 

Lemma 2. Let Z be a sublattice of a linear lattice X of codimension 1. If x\,x2 

and £3 are pairwise disjoint elements of X, then at least one of them is in Z. 

PROOF : We assume that the x^s are non-negative. (The general case follows 
by considering (.rj)+,(xj)_ for i = 1,2,3.) Suppose x\,x2 £ Z. Then there exist 
Ai, A2 € R and z\, z2 € Z such that 

Xz = XiX{ -f Zj, i = 1,2. 

We have 

(*i)+ A (*2)+ = (a-3 - Aixi)+ A (xz - A2z2)+ = x3 , 

as a?i, x2 and x3 are pairwise disjoint. It follows that x3 € Z. • 

The trivial example: X = R2 w i t h the canonical ordering, 2 = {(A, A) : A € R} 
and * ! _ ( ! , 0) and x2 = (0> ^ g h o w s t h a t t h e n u m b e r «3„ a b o y e fa b e s t ^ y ^ 
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Lemma 3 . Let Z be a sublattice of S(9\) of codimension 1. Then there exist ideals 
Ii and I2 in S(9l) of codimension 1 such that I\ C\ I2 C Z. 

PROOF : We may and do assume that Z is not an ideal in 5(91). We define 

I = {z G S(9\) : Vx G S(9\)[\x\ < \z\ =• x G Z}}. 

It follows from [10, Corollary 15.6(i)] that I is an ideal in S(9t). Moreover, I £ Z. 
Lemma 2 shows that if xi^x2 and #3 are pairwise disjoint elements of X, then at 
least one of them is in I. We claim that there exist ideals Ii and I2 in 5(91) of 
codimension 1 such that Ii 0 I2 = I. This can be established by two methods. 

1. Proposition 2 shows that the ideal Xj is not prime in 5(91). Therefore, there 
are disjoint Ai and A2 in 9 t \Xj . Denote by 3j the ideal in 91 generated by XjU{A t}. 
Clearly, 3\ f)32 = Xj. As easily seen, 3 t is a prime ideal. Define It = S(3 t) , i = 1,2. 
It follows from Propositions 1 and 2 that I! and I2 are as desired. 

2. Since S(#t) is hyper-Archimedean, i.e. every quotient of 5(91) by an ideal is 
Archimedean (see [10, Theorem 61.1]), we conclude that codimI = 2 ([10, The­
orem 26.10] and [12, Lemma 11.3.8]). Our claim now follows from [1, Lemma 3(b)]. 

• 
Part (a) of the following result is not new. In fact, it holds in every linear lattice 

(see [12, Proposition II.2.6 and its Corollary]). 

Theorem 2. Let Z be a sublattice of S(9\) of codimension 1. 

(a) Z is an ideal in 5(1H) if and only if there exists T G H(9l) with Z = T ^ O ) . 
(b) Z is not an ideal in 5(91) if and only if there exist linearly independent 

TuT2e H(9l) such that Z = (Tx -T2)~
l(0). 

PROOF : To show the "if" part of (b), take x!,;r2 G S(9\) with Ti(xj) = 0 or 1 
according as 1I =fi j or i = j . We may assume that re,- ^ 0 . Then 

xi + s 2 € (Tj - T 2 ) _ 1 ( 0 ) and a,,-<ari + - 2 . 

Therefore, (Tt - T2)~1(0) is not an ideal in S(9t). 
To show the "only if" part of (b), take Jj and I2 according to Lemma 3. Clearly, 

Z (Ji I\ U I2. It follows that there exists 

x0ez+\ (^ u I2). 

Take Tt G H(91) with Trx(0) = It and Ti(x0) = 1 (see (a)). Then 

Cn -^-'(0)3 (I, n I 2 )u {*(,}, 

which yields the assertion. • 

Remark 3. Lemma 3 and Theorem 2 hold for arbitrary hyper-Archimedean linear 
lattices. This is so, since the second variant of the proof of Lemma 3 works in that 
generality. 
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R e m a r k 4. In the case where ~H is an algebra of sets, Theorem 2 could also be 
proved in a similar way as Corollary 2, that is, by an application of Theorem 1, the 
Stone representation theorem and the Kakutani-Kreins theorem. The proof given 
above is, however, more direct and does not involve the axiom of choice. 

Corollary 4. Let Z be a subalgebra of 5(9^) of codimension 1. Then Z is not an 
ideal in 5(1H) if and only if there exist (distinct) algebra homomorphisms U\,U2 : 
5(91) -> R such that Z = (Ui- U2)'

1(0). 

PROOF : Lemma 1(c) and Proposition 2 enable us to apply Theorem 2(b). It yields 
the "if" part, since every algebra homomorphism from 5(1H) into R is a linear-lattice 
homomorphism. This last assertion is a special case of the following simple and 
well-known result: A non-zero linear functional T : S(9i) —+ R is a lattice [algebra] 
homomorphism if and only if 

{ T ( U ) : A € * } = {0,A}, 

where A > 0 [A = 1]. 
Suppose now Z is not an ideal in 5(91), and take Ti and T2 as in Theorem 2(b). 

The set functions 
9t 3 A -> Ti(lA) € R, f = 1,2, 

are additive and two-valued. We claim that their ranges coincide. Otherwise, 

T z = { A e - H : T 1 ( l A ) = T2(l /i) = 0 } ) 

and so %z would be an ideal in £H. Therefore, S(%z) & Z, & contradiction (see 
Lemma 1(c)). Let A denote the non-zero element of the common range of these set 
functions, and put Ui = A_1Tj for i = 1,2. • 

R e m a r k 5. Corollary 4 carries over to the complex case verbatum. Indeed, denote 
by 5c(-H) the algebra of complex-valued 9t-simple functions. For every algebra 
homomorphism U : 5c (9t) —• C we have 

U(S(9\)) c R. 

Let Z be a subalgebra of 5c (~H). Clearly, 

ZR = {z € Z : z(0) C R} 

is a subalgebra of S(9\). It follows from Remark 2 that Z = {zi+iz2 : z\,z2 € ZR} 
and the codimension of Z in 5c (1H) coincides with that of ZR in 5(1H). Moreover, 
Z is an ideal in 5c(~H) if and only if ZR is an ideal in 5(£H). 

In closing, we shall be concerned with the uniqueness of the representation given 
in Theorem 2(b). Throughout the rest of the paper X stands for an arbitrary linear 
lattice. 
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Lemma 4. Let Ii,..., In and I be ideals in X of codimension 1. If 

J i f v . . n I n c I , 

then I = I, for some i. 

PROOF : Assume It- 7- Ij for i 7- j and define Y = X/Ii (1 • • • 0 In. Denote by Q 
the canonical homomorphism of X onto F . Clearly, d i m F < n and Q(It) 7-= Q(Ij) 
for t ^ j . Moreover, Q(I,-), i = 1 , . . . , n, and Q(I) are ideals in Y of codimension 1 
([12, Proposition II.3.1 ]). It follows from [12, Theorem II.3.9] that Q(I) = Q(U) 
for some t, which yields the assertion. • 

Frdm Lemma 4 we immediately obtain 

I m p o s i t i o n 3. If Tu...,Tn,T G H(K) ana1 T G lm{Ti, . . . , T n } , *hen T = AT, 
for some A ^ 0 ana* i. 

Corollary 5. Let T i , T 2 , 5 i , 5 2 G H(K) and suppose 

{T1-T2)-
1{0) = {S1-S2)-

1{0) 

is not an ideal in X. Then {5i ,5 2 } = {ATi, AT2} for some A > 0. 

PROOF : By assumption, 5i - 5 2 = A(Ti - T2) and the sets {TlyT2} and {SX,S2} 
are linearly independent. Therefore, by Proposition 3, we get 5i = aTi or 5i = o;.T2 

for some a > 0. In the first case, we have 

(A - a)Tx - AT2 + 5 2 = 0. 

Another application of Proposition 3 yields 5 2 =-= /?T2 for some {$ > 0. It follows 
that 

( A - a ) T 1 = ( A - / 8 ) T 2 , 

whence A = a = p. The argument in the second case is similar. • 
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