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A new variant for the Meijer's integral transform 

J. RODRIGUEZ 

Abstract. In this paper a new aspect of the Meijer's integral transform is treated, for which 
its corresponding inversion formula has been duly achieved. It turns out to exist a relation 
between this transform and Laplace's, which opens the way to define different types of 
convolutions. Furthermore, some operational rules are obtained. 

Keywords: Ma^-integral transform, Meijer, Laplace, Kratzel, Bessel, Bessel—Clifford, 
convolution, operational rule 

Classification: 44A15 

1. Introduction. 
In this paper a new version of Meijer's integral transform has been studied, which 

will be referred to as the Ma>^-integral transform. This variant generalizes those 
of E. KratzePs [6], J. Conlan's, E.L. Koh's [3] and J. Rodriguez [9] as well, among 
others, and it is given as 

(1.1) F « = f0°(st)a^-1La^(st)f(t)dt 
Jo 

(12) f(t) = A / (st)^Ea^(st)F(s)ds 
*• Jrc 

with Tc =- {s/s € C,Re >/23 > c > 0}. The functions I«-i(t) and Ea-i(t) appear 
in their respective kerns, and are solutions of the differential equation [5] 

(1.3) ty" + ay'~y -=0 

E(*-i(t) admits the following expansion 

Z-* n? r(a -f n) 
n=0 v ' 

and it is known as the modified (or hyperbolic) Bessel—Clifford function of first 
kind and order (a — 1). When (a — 1) is a non-integer, then t1""aE\^a(t) consti­
tutes in itself another solution of (1.3), which is non-linearly dependent on Ea~i(t). 
Similarly, La^\(t) will be referred to as the modified Bessel—Clifford function of 
third kind and order (a — 1), and it is given as 

<"> L"-l{t) = "i=(^^),"'ft^ 
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It is of interest to emphasize the fact that Ea~\(t) and La-\(t) are linked to their 
corresponding Bessel functions by the following expressions 

E 0 - i( t )=t- a 7 i J a - i(2Vt) 

(1.6) X«-i(0 = t-^Ka-i(2v / t) . 

La-\(t) admits the generalization given in [7] and [8] as 

(1.7) rte,«;z) = J°°T-ae—T-dz (e > 0,|acg-| < | ) , 

which for j? = 1, reduces to 

(1.8) >7(l,a;-) = 2L0_i(-). 

The asymptotic behaviour of La~i(t) can be interfered from t)(l,a; t), as follows 

rUfllt1-" i f R e a - l > 0 

(1.9) _.„_,(*) ~ I E^ i < 1"° + m ^ -f »•-- " 1 - 0,« - 1 / 0 
1 -lnt i f a - l = 0 

E^f-i i f R e a - l < 0 

for t —* 0+, and 

І--.Г-VV** (i.io) _._-,(*) 2 

for t —• -foo. 

As for _E?a-i(2r), it can be referred to from [10] that 

(1.11) Ea-!(z) ~ =r-r if Rea > 0 and z -+ 0+ 

and also that 

(1.12) z*~iEa^(z) ~ ~4^{e2V~* ± tc^^-^^-^'Kl + Odzp1/2)) 

for z —• 4*oo. 
Similarly, the following integral representations for La-\(t) can be derived from 

(1.5) through appropriate changes: 

(1.13) .-._-.(««) * \ f ° T-ae—*fT dr 

(1.14) I„-i(st) = ia 1 -" F T - a e - r - ' l r dr 

(1.15) _-„_! (si) = i i 1 - " /°° T - « - 2 c - r - ' ! r dr 
2 jo 

which will be used to express the Ma ^-integral transform in terms of the Laplace 
transform, so as to enable us to obtain convolutions for that transformation. 
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2. The Ma ^-integral transform. 
Its existence is based on the following: 

Proposition 1. Let a, ft be complex numbers and f(t) a locally integrable function 
on (0, oo), such that 

f(t\ = f^t~^ t / R e o - l > 0 
A ' I O^1-"-") if Rea - 1 < 0 

for t —• 0+ , and 
/( t) = 0 ( e c ^ ) 

for t —• +oo. 
Under these conditions the integral given as 

(2.1) F(s) = Ma,0 {/(<)} = r(str^^La-i(st)f(t) dt 
Jo 

converges for Re >/2s > c. Besides, f(s) proves to be analytic on the convergence 
domain. 

PROOF : Set 

F(S) = j\sty+*-lLa~l(st)f(t) + J (sty+f>~lLa-l(st)f(t)dt+ 

+ / (st)a^"lLa^i(8t)f(t)dt for 0 < e < T < +oo. 
JT 

It can be noted that the first integral in the right-hand side exists due to (1.9) 
together with the hypothesis. The second integral exists because of f(t) being 
locally integrable and (st)a+P~lLa-i(st) a continuous function. Finally, existence 
for the third integral is guaranteed by (1.10) provided that Hey/2s > c. 

Analyticity proves obviously. • 
Now, the following inversion formula can be established. 

Proposition 2. Let a, ft be complex numbers with Rea > 0. Assume that F(s) 
is analytic over the domain ft = {s/s € C and Re-s/Ss > B > 0} and also that 
\F(s)\ < M\s\~q holds, M and q being real constants non-depending on s and such 
that q > — Re/? + | . Then, for any fixed real c> B, the following expression 

H') = pW+^La-lWfMdt 

is valid for Re y/2s > c. Here f(t) it given by 

(2-2) f(t) = -. ( (zt)-^Ea^(zt)F(z)dz 
""»Jr, 
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witk Tc = {z/z € C and Rey/2z = c}. 

PROOF : Assume s to be fixed and that 1 < R < oo. Set: 

I{s,T)= f {st)a^^La^{st)f{t)dt = 
Jo 

(2.3) = 4 / W+^La-tist) I (zt)-'Ea-i(*t)F(z)dz 
m Jo Jrc 

where 

Tc = iw/w € C and Re y/2w = c | = 

= <w = a + bi/a = -(c2 -*2),& = c.,t € (-oo,+oo)>. 

Consider, on the other hand, the domain defined as 

A = { ( t , - ) / t € [ o , - V e r e } . 

To make feasible in (2.3) inversion of the order of integration it suffices to apply 
Ribini's theorem, previously verifying that 

((3.-)a+"-1L0_1(a.)(z.)-',
J_a_1(2.)F(Z)) 

proves an absolutely integrable function on A, provided that 

5 
Rea > 0, and q > -Re,#+ - . 

4 

Therefore, the following holds true 

(2.4) I{s,T)~*—— / z~$F{z) I ta""1J_;0-_i(.«t)La-i(«t)*<fe. 
m JTe JO 

Now, by invoking equality [11] 

r 
JO 

+sEa-1(zT)La(sT)) -

[ t"-1Ea-i(zt)La-1(st)dt = —(zEa(zT)La-1(sT)+ 
J0 z-s 

2{z - s) 

and by substituting its right-hand side for the second part of (2.4), we obtain 

T 
/(atT) = î — j - / z-'Ңz) 

ҡг Jгc 

{zEa{zT)La^{sT) + sEa^{zT)La{sT)У 

2{z-s)щ 

z — s 
в l ~ a 1 

dz. 
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Now, by virtue of the asymptotic behaviour of La-i(t) and Ea-i(t)7 we can have 
the following inequality: 

\^-(zE4zT)La-l(sT) + aEa^(zT)La(aT))\ < 

* ll-l-ИI 
and, as a consequence, 

c a + / ? - l 

7T2 J7c Z~S 

< M 1 | s | R e ^ + R e ^ i e - V ^ ( R e ^ - c > / | ^ | ^ - R c t ~ R e ^ i ^ 

is true for Re \/2s > c, due to * - — n X - M l — being a bounded function. 
On the other hand, the last integral converges because 

a 3 
g > - R e / ? + l > - R e - - R e £ + ~. 

_- 4 

Thus, for every fixed s, with Re y/2s > c > 0, this integral proves uniformly conver­
gent on 1 < T < oo and then it is valid to take up the limit for T —• oo: 

s? f z~*F(z) 
_____ _. I O. JL I — I 1 d t 1 -_-.-__ 1 U I I U I (At _ I 

T-
Um -(-,T) = r(str+f,-1La-1{t)f(t)dt = -f-. í Z-^^-dz 

r->oo j 0 im Jpc s — z 

To finish the proof, it only remains to perform the evaluation of the integral 

z-'F{z) 

/ , 
•dz 

which can be achieved by considering the closed domain drawn in this figure: 
V2 

Rztyć~—^z 

г C ł У 

Ä-,* 

Jг 
/ 2 / 2 

R2>V \ . ~~cy ^ / 
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Ry = Tc>f + 2_jRi,*> 
i = l 

whose contour (considered by J. Betancor [1]) admits the following parametric 
representation 

p f«(*) = !(y 2 -* 2 ) , c r , 
i ř l " = \ W = yt ť 6 [ _ y , y ] 

í«(t) = j ( t ! -y 5 ) , c . . 

* 2 " = W ) = -y< ť € [ c , y l 

f«W = K*2-y2) , c r , 

a(t)=Ш-ŕ) J «(*)=*< 
^ \ 6(ť) = cť *Є[-y,y]. 

If F(-j) is holomorphic on Q = {z/z € C and Re y/2z > B > 0}, then it follows 
from Cauchy' theorem that 

/ Ľfmdz=2жis-ßF{3). 
JR. »-* JR, *~* 

But according to the previously established bounds we can write 

which tends to zero for y —> -foo in view that q > — Re/? -f 1. Here d(s) denotes 
the distance from s to Rit9* 

The same procedure and conditions lead to 

for y -+ oo. 
Hence 

/ €im.dz=i Limdz 
JR, *-* J-rc,f

 3"~z 

and, as a consequence, 
TnmJ(s,T) = F(s) 

can be easily inferred. • 
In the following, several propositions will be given in order to express the Ma,p-

integral transform in terms of Laplace's. We always take the assumption that every 
integral is absolutely convergent. 
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Proposition 3. The integral transform 

F(S) = Ma,0 {/(.)} = / ° ° ( в í ) a + / ' - 1 i a - lИ ) / ( í )Л 

Jo 

can Ьe re-written for Ћjea > | as: 
(2.5) F(s) = Ma,ß{f(t)} = 

= Г(a%2)3"+ß'12 { í20+2"_1 i ' ( 1 " ^ ° " f T "/(Є 2 r)dr;2^} 

To justify this we will invoke the well-known connection existing between the 
K-integral transform and Laplace's [4], given as 

r(xy)^2Ka^(xy)g(x)dx = 
Jo 

= # ^ ° - y t t - * r - " " (\X

2-rir-^-"g(r)drdX 

T(a - 2) Jo Jo 

Now, by performing the changes of variable x = y/i y = 2y/s and r = y/ir 
and also by using the relation 

La^(x) = x-^K^&y/i) 

we obtain 

r(str+"-1 La-t(st)f(t)dt= 
Jo 

<**> = c ^ i r e " 2 * ' " + ' " ' i ' ( i - r r " ! r ' / ( < r ) ' ' r ' f i 

where /(t) = t~i-0+ig(y/i). 
Finally, the new change t = f2 in the right-hand side of (2.6) leads to the result 

stated in (2.5). 

Proposition 4. The Maj-integral transform can be expressed as 

(2.7) F(s) = Ma,„ {/(«)} = y £ {/-„,„+,,-,(.•)} 

provided that Rets > Q, which proves equivalent to stating that 

(2.8) F(s) = J-W {/<<)> = ^ ^ — * { / . -W W) 
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with 

(2.9) / A , 7 W = / ° ° -Me- f / ( r )dr . 
Jo 

In fact, by substituting the integral representation of (1.14) for the last part of 
(2.1), we have 

F(s) = Ma,ß {/(.)} = - J (stГ+^ms1-" J x-ae~"-i dxdt = 

= T J°° e—đx Г x-ť+^f^-i dt = y £{/_„,„+,_,(_);*} 

once the integration order has been inverted. 
Now, to obtain (2.8) substitute (1.15) for (2.1) and invert the order of integration. 

Proposition 5. The Ma,p-integral transform can be given for Rets > 0 as: 

(2.10) F(s) = Ma,„ {f(t)} = y £ { x - £ {*0+'-7(*); x'1} ; s} 

or else 

(2.11) F(s) = MaS {f(t)} = - L _ _ - £ { x « - 2 £ r^ / ( t ) . x-i} ; s } 

3. "Convolutions for the Ma ^-integral transform. 
In this section several convolutions for the M0j^-integral transform are given. 

a). Define convolution * of two functions f(t) and g(t), as: 

/(*) * g(t) = i*-'/""1 J\t - if <* J* -.-+>--(- - nr+e-1 • 

(3.1) •/(^)</[(i-n)(*-0]^, 

where Ia~~l stands for the Riemann—Liouville fractional integral [10]. 

Proposition 6. If we define convolution f(t)*g(t) as in (3.1); f(t),g(t),f(t)*g(t) 
being Ma,0-transformable functions for Re y/2s > c > 0, then 

Ma,0 {/(*) * g(t)} = s1-"->Ma>/, {/(*)} • Ma,p {g(t)} 

is true. 

PROOF : In fact, from (2.11) it follows that 

F(s) = Mai0 {/(<)} = ^ ^ l°°e~tTTa~2 £*-*'***f(t)**r = 

= £ -^-£{'— 2 /o(r);S} 
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where /„(T) = J " , - * - V / ( - ) < f t . 
Similarly, 

G(s) = Ma,0 {g(t)} = ^ ^ £ { T - V T ) ; - } . 

Hence, 

2a+20-2 
Af„., {/(.)} • Ma,p {g(t)} = - £ {r*-2/o(r)} . £ {r">-2,0(r)} = 

-2a+2/3-2 (ft \ 

-—-—£ { / ^-VoKX* - oa-2«7o(< - ode} • 
Now, t h e change £ = tu leads t o 

,2_+2^-2 (- rl •) ,2_+2,8-2 

___ £ J,2_-3 y „«--/0(t„)ff0[(l - U)t] rfu} = -—-— 
£{* 2 f l ," ,r 0r°/ 1«O" 2 ( - - - ) a" 2 -"'"'" ",T+(1-u)"'!']TV/(r)</(y)d«dTdy} 

which combined with 

x = w _ 1 r -f (1 — w)_ 1_/, £ = u~"lr 

yields 

,-2a+2/?-2 

(3.2) • / ' u ^ - ^ l - u r + ^ / K ) . [(* - 0(1 - «)1 d«} : 

,-2a-f20-2 f* foo \ 

= - XJJ.--Í--1 y e-«
_ -_T(/,ff;x)d_} 

where 

H(f,g-,x)= Ax-eyfde / ' ^ - ' ( l - ^ - ' / K M ^ - O f l - " ) ] ^ 
Jo Jo 

and by taking into account t ha t 
>«oo i*00 

f „_, I e - . - i - j j ( / > - . x ) d - s _ / e-t-lzIa~1H(f,g;x)dx 
JO Jo 

holds, t hen it can be easily inferred tha t (3.2) can be re-wri t ten as: 

sa+.-l [£!+^£ | t a-2£rx / >£__ Ja- l f f ( / )„._ ) ; rl} ; s} = 

-°+'-1JI--«,/l {/(*)*»(*)}. 
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b ) . If we define convolution * of two functions f(t),g(t) as 

•£ rìß(l-r))ßf(Шa-V)(t-0]dњ 

(3.3) f(t)*g(t) = £~^-I1-" j\t - fl«+/>-i{«+'-i d^ 

;o 

the following holds true: 

Proposition 7. If convolution f(t)*g(t) is defined as in (3.3) and if f(t),g(t) and 
f(i)*g(t) are Ma^-transformable functions for Re y/2s > c > 0,then 

Ma,p {f(t)*g(t)} = s~pMa,p {/(t)} • Ma,p {g(t)} 

holds. 

By using of (2.10), proof follows a similar procedure as in the previous proposition. 

c) . Let a,/? be real numbers with a > 1. It is feasible to define a convolution for 
the M t t |^-integral transform in the space C(f3)y which is made up of all complex 
functions of the form f(t) = ¥*""& f\(t), where 7 > —1 and fi(t) being a continuous 
function on [0, oo). 

Define in C(j3) the following operation: 

(3-4) f(t) o g{t) = ^L. £ [ jf .->(! - «,)--fc(l - ,,))>. 
• (*i(l - t i ) ) " ^ " 1 f(ttit2t3)g(th(l - t i ) ( l - t2))dtxdt2dtz 

By virtue of Weierstrass' approximation theorem the operation (o) is completely 
defined by invoking 

t 7 - / H F o r - * + , = r ( 7 + a + p ) r ( T + a + q)T! + p + i ) r 7 + q + l ) t t t ^ - ^ p - 4 . a 
T(27 + 2a + p + tf )r(27 + a + p + ^ + l) 

for each p, <? € N with 7 > —1. 
Let us now consider the integral transform 

T„,„ {/(*)}= rta+^La-i(3t)f(t) 
Jo 

Л 

which is closely related to Ma,p> 
It is proved in [2] that the (o)-operation proves a convolution for the transfor­

mation Tatp in the subset of C(P) denoted as C(fi, c), with c > 0, and defined as 
follows: 

C(P, c) = {/(*)//(<) € C(/9) and /(*) = 0 ( e c ^ ) for < - oo } . 



A new variant for the Meijer's integral transform 553 

Note that MQj {f(t)} = s^^Ta,? {/(*)} and also that 

2 
T(-a-ß + l)Г(-2a-ß + 2) 

Ta,ß {t~2a~2ß+1} = s"^'1 

hold provided that -a - /3 + 1 > 0 and -2a - /? + 2 > 0. 
Under these conditions we define the operation 

/ (< ) 6* ( < ) = T(-a-0 + l)l(-2a-e + 2f2a-2$+1 ° ( / ( < ) ° «® 

and then the following can be established: 

Proposition 8. If a > 1, - a - /? +1 > 0 and - 2 a - /? + 2 > 0 for each /(*), g(t) € 
C(/3, c) in such a way that the expressions t~2a~2^+1 o (f(t) o g(t) and f(t) o g(t) € 
C(/?,c) belong to C(/?,c), then the following holds: 

Ma,0 U(t)og(t)} = Ma,p {f(t)} • MaJ {g(t)} 

for Re y/2s > c. 

PROOF : It suffices to note that 

Ma,0 {f(t)og(t)} = s^-'T^ {f(t)og(t)} = 

T(-a-P + m-2a-P + 2)Ta>> ^ ^ ° ( / (<) ° ̂  = 
2sa+P~l 

:Ta,ß {t-
2"-2"*1} • Ta,ß {(f(t)og(t))} = 

T(-a-ß+l)T(-2a-ß + 2) 
s2a+2ß~2Ta,ß {f(t)} • Ta,ß {g(t)} = Ma,ß {/(<)} - Ma,ß {g(t)} . 

4. Operational rules. 
The following operational rule, which relates the operator Aa$ = t1"a"^DtaDt^ 

to the Maj#-integral transform, comes in very useful in numerous applications. 

Proposition 9. Let f(t) € C2((0,oo)), with 

f(t) = 0(tm) ifm> max(- Re/9, - Re(a + /?)) 

Dtfif(t) = 0(tn) if n > max(-l, - Re a) 

for t —• 0+ and 
f(t) = 0(e^) 

for t —> +oo. 
Then 

Ma,e{Aa,0f(t)}=sMa,e{f(t)} 
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holds. 
In fact 

Ma,0{AaJf(t)} = f00(st)a^-1La-1(st)t1-a-^DtaDt^f(t)dt = 
Jo 

= * t t + ' - 1 ( a i - A a + / tfiDtaDLa-1(st)f(t)dt = sMa,p{f(t)}1 
Jo 

can be stated after performing two integrations by parts and verifying that 

Al=taDt^f(t)La.l(st)]^=0 

A2 = tPf(t)DLa„1(st)}~=0 

in view of the behaviour of f(t) and La-i(st). 
This result can be extended by induction as it is shown in the following: 

Proposition 10. Let k be a positive integer and f(t) € C2*((0, oo)), with 

Aajf(t) = O(t'), ifp > m a x ( - Re/?, - Re(a + /?)) 

DtfiAk~Jf(t) = 0(tq) ifq > m a x ( - l , - R e a ) 

for t —y 0 + , and 
f(t) = 0(e^) 

for t —.• +00. 

Then, the following holds 

MaJ{A
k
Qjf(t)}=skMaJ{f(t)}. 
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