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Property (G) and (K) of Orlicz spaces!

WANG TINGFU

Abstract. For Orlicz spaces, (K)<=>(H) and (G)<=>(HR) are proved.
Keywords: Orlicz space
Classification: 46B20

In 1958, the property (G) of Banach space X was introduced by Fan and Glicks-
berg [1l. X is said to have (G) if every point on the unit sphere S(X) is denting
point of the closed unit ball. Twenty eight years passed, unexpectedly, Lin, Lin and
Troyanski [2] discovered that (G) is equivalent to (K) + (R) for any Banach space.
X is said to have property (K) if the norm topology and the weak topology coincide
on S(X). (R) denotes the rotundity. For Orlicz spaces, the criteria of property
(H) were obtained [8], [4]. X is said to have (H) if for any sequence on S(X), weak
and norm convergence coincide. In this paper, we proved that (K)<=(H) and
(G)<=(HR) for either the Orlicz function space Lp[0, 1] or the sequence space Iy
endowed with either the Orlicz norm ||. ||p or the Luxemburg norm || . ||(ar)-

M(u), N(v) denote a pair of complementary N-functions. For a function z(t),

1

its modulo pam(z) = [ M(z(t))dt and for a sequence (z(5))$°, its modulo pum(z) =
0

Y. M(z(j)). “M € A;” denotes that M(u) satisfies the A; condition for large

i=1

(small, in the case of the sequence spaces) u, and “M € sc[0,00)” denotes that
M (u) is strictly convex on [0, 00).

Theorem 1.1. For [Ip, || |l(an), (K)= M € O,.

PROOF : Necessity. See [3].
Sufficiency. Suppose z € S(Ip) and 7 > 0, by M € A,, there exists € > 0 such
that

1) pu(z) <26 = |izll(m) < 7/2.
Again by M € A, there exists § > 0 such that

(2) pu(z) <1 pu(z—y) <6 = |lom(z) — pu(y)l <€,
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j-th
Choose jo satisfying Z M(zo(j)) <¢. Denotee; =(0...0 1 0...). Put

J=Jjo+1
= {z € S(Im): [{z — zo, ;)| = |z(J) — zo(4)| < jio(j =1,...,j0)}.
L Jo Jo
For any = € 4s, 32 M(a(3) = 7o(7)) < 35 M (£) < £ £ =5. From (2
j=1 = i=1
Jo Jo
3" M(2(3)) = Y M(zo(3))| <c¢-

=1 =1
Thus

Z M(a(j)) =1- Z M(a(j)) = Z M(zo(3)) - Z M((j))+

J=jot+1 Jj=1 Jj=1
+ 2 M(zo(j)) < 2,
J=jo+1
hence
z-30) o= (20 =2() , 1 .
o (52 « S (0520) Q(J_J;Jrlmow

+ Y M(:c(j))) <2,

J=jo+1
it follows ||z — zol|(m) < 7 from (1), i.e. A5 C B(zo,T). ]
Theorem 1.2. For [y, |- ||m]), (K)&= M € A,.
The proof of this theorem is similar to that of Theorem 1.
Theorem 1.3. For [Ly[0,1], |- ll(a)), (K)= M € Ay and M € sc[0,00).

PROOF : Necessity. See [4].

Sufficiency. M € A; and M € sc[0,00) implies local uniform rotundity of
Lm[[0,1], 1. llca] 1. LUR implies (G) (7] and (G) implies (K) [2I. ]
Theorem 1.4. For Ly[[0,1),]].||m], (K)<= M € A, and M € sc[0,00).

PROOF : Necessity. See [4].

Sufficiency. {e;(t)}° denotes the system of Harr functions. Without loss of
generality, ||1]|y =1 and |lej|lm =1(j = 1,2...) may be assumed.

Suppose o € S(Luy). There exists § > 0 such that the measure of E =
{t: |zo(t)] 2 B} is positive. For arbitrary 7 > 0, there exists €, 0 < ¢ < 7 such that

©) pm(z) <8¢ = |lz|lm < 7.
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Take yo € En, ||lyoll(ny = 1 satisfying

1
@) / zo(t)yo(t)dt > 1— .

There exists £, 0 < £ < m—',—’E such that

(5) mesF <3( = |Ixrllvn <€, |lyoxrliy <ecand ||zoxrlim <e.

Let zo(t) = signzo(t)xg(t), choose j, satisfying

©co oo
(6) Y wlell <en || Y 2| <e.
j=jo+1 N i=jo+1 N

For every x € Ly[0,1], there exists k. > 0 satisfying |lzllm = 7-(1 + pm(k.2)).
Put

Ac = {z € S(Lu): Iz — 20, ¢;)] = |2(j) — 20(j)| < f— G=1,..,30)},

then
~ : By _
() Jnf mes{t: [o(t)| 2 T} =d. >0,
(8) sup k, = k. < 00,
ZGA:
(9) D, > 0, mes{t: |k, z(t)] > D.} <&, (z € A.).

In fact, if (7) is false, then there exists z € A, F = {t: |z(t)| > £}, mes F < ¢.
Hence

[ (zo(t) - att) sgnao(trat > [ teotoiat - / la(e)ldt >

E\F E\F E\F

2

NI

(mesE —§) > -Z—mesE.
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However, from (5) and (6),

/ (zo(t) — z(t)) signzo(t)dt < +

E\F

/(xﬂ(t) — a(t)) sign zo(t)dt

/(zo(t) — z(t)) sign zo(t)dt

F

<

IN

+llzo — z||mlixFlln <

/(:to(t) — z(t))20(t)dt

IA

+ 2 =

(Zmo) —a(j ))e,(t)) (Z 2o(j)ej(t)) dt
1=1 =1
( (zo(7) — 2(j ))e,-(t)) (Zo Zo(j)ej(t)) dt
j=1 j=1

-+

I
!

+ / ( Z (zo(4) - z(j))ej(t)) ( Z zo(j)ej(t)) dt| + 2 <
0 J=jo+1 j=jo+1
Jo I
Y (@) = 2z())e; || Nzolin + llzo — zllm 3 a()es|| +2 <5e.
j=1 M J=jo+1 N

This is a contradiction when ¢ is small enough. Therefore (7) is true.
For any z € A,,

-1 > 1 B Lo (k8
_kz(1+pM(k,a:)) o / M(k )dt>k M(k 2)d€,
{t: 12(1)128/2}

combined with lim —L)- = 00, it is easy to see that the set {k,} has an upper

u—+00
bound k.depending on d,. i.e. (8) is true.
For any z € A., by (8), 1 > L J M(D)dt > 5-M(d)mes{t:
" {t: Ik 2(9)]>D)
lk.z(t)] > D). Let D = M~! ( ) then mes{t: |k,z(t)] > D} < €. ie. (9)

is true.

By the strict convexity of M(u) on [0,00), there exists 8., 0 < 6, < 1, such that
lul, [ol < D, [u—v]| 2 ¢, 0< I < a < 1iyg; < 1implies
(10) M(au + (1 - a)) < (1 -6 )aM(u) + (1 — a)M(v)).

Take 7 satisfying
(11) 0<n<aM(S)e/an,
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and jy > jo satisfying

(12) D wo(es]| <.
J=js+1 M
Put

Ay = {z € S(Ln): |2() — zo(j)| < ]1 G =1,e0s0)};

obviously A, C A,. For any z € A,, by (12) we have

i s
llz +zollae 2 || D () +zoG))es|| 22D zoli)es|| -
Jj+1 M j+1 M
Jo
(13) =D (@) —2())e;|| =21 -m)—n=2-3n.
i+1 M
Put
G: = {t: |ks2(t)] < D, |kozo(t)] < D, |kzz(t) ~ kozo(t)| = €},
By (13)a

k. +k ke ko
2 = el + loale = S22 (14 5 puhomn) + 2 pu(hee)) 2

kz""ko
2> >92-—3n.
Z_k,ko (1+p (k +k($o+$)))_":to+z"M_2 3y

Combine with (10) and notice that k; > 1 (z € S(Lm)),

3n 2>
ke+k f
z+ 0
> *oko /{k +ho M(kozo(t))
0

> k,::;c’:o / { - ’1 = M(kozo(t)) + 7 " M(k,x(t)) M (;%Z;(x(t)ﬂo(t)))}dt

o MOk (O)-M (el aa(e)) | e

kz+ko kz kﬂ
2 ko b / {k, +koM(ko$o(t))+-———-k’ +koM(k,z(t))}dt

> k,;;ko&‘kz-'_koM(z)mesG,—— ( )mesG

Combine with (11), mesG; < £ is obtained. Put
G, = {t: |kzz(t) — kozo(t)| > €} .
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It follows from (9) that
(14) mes G, < 3€.

1
By (6), it is easy to deduce that | [(zo(t) — z(t))yo(t)dt| < 3e (z € Ay), hence
0

1

from (4), [ z(t)yo(t)dt > 1 — 4. Combine with the definition of G, (14) and (5):
0

1-4e< /z(t)yo(t)dt
0

<t [ (Ra—o) witl+1 [ Paotimm(tyl+
paNe, PG,

| [ zo(t)yo(t)dt| <
/

<

7% ) Xoane:
z

ko
< E+2€.

i.e. (ko/kz) —1> —6¢. In addition,

ko
llvoll(wvy + T llzollm + izl mllvoxae Il v
M ke

1
IZ/thWWZ / le(t)vo()ldt >
0 [0,1\G%,

k k
> [ Reoow®it- [ 12z - s(Ollw(O)
paNe, e,

> %( / zo(t)yo(t)dt — / |Zo(t)yo(t)ldt) — & 2 E‘f(l —2%)-e.
J :

Gz
i.e. (ko/kz) —1 < 6¢ if € < 1/2. Therefore

-,59-—-1|<6€ (z€4,).

(15) -

Thus, for z € A,,

1 k
Iz = =a)xto ey I < - ICksz = kozn)xto ey o + |2 = 1| leoxoanas

(16) <€e+46e=Te.
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Combine with (5), [lzxp,p\a.llm = [lzollM — llzoxcLllM > 1 — &, hence
”zX[O,l]\G’,"M >1-—8e.
Because of

=Nl =+ [ M)+ [ Miko)d
[0,1\G G,

> llexpone, Il + ] M(a(t))dt > 1 - 8& + pr(exa).
Gl

pm(zxc.) < 8e. It follows from (3), ||zxc || < 7. Thus by (16)

Iz — zollm < [[(z — zo)xpoapne, IIM + lIzoxa,lIm + llzxac [ M
<Te+e+71<9r.

This means A, C B(zo,97). ]

It is easy to deduce from the theorem in [2]

Theorem 2. For [Lum[0,1)]| Il [Larl0, 2L 11 Ncanl,  [1m[0,1],11-llas) or
[IM[O’ 1]1 " . "(M)l
(G)&=(H)+(R).

The author expresses his gratitute to Prof. Shi Zhongrui for his discussions.
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