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Wiener's test of thinness in potential theory 

MlROSLAV BRZEZINA 

Abstract. It is proved that Wiener's test of regularity provides a test for thinness of arbi­
trary sets. The result which is obtained in the context of harmonic spaces can be applied 
to a wide class of second order partial differential equations of elliptic or parabolic types. 
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Classification: 31D05, 35J25, 35K20 

INTRODUCTION 

Let (X, H) be a 'P-harmonic space with countable base such that points of X 
are polar; for definitions, see e.g. [C—C],[Ba], Let R® stand for the balayage of a 
hyperharmonic function u on X on a subset E of X. A subset E of X is said to be 
thin at a point z € X if 

Rf(z)<p(z) 
for some strict potential p on X. 

In this note we present a Wiener type test of thinness, if a suitable Wiener test 
for regularity is known. 

We shall adopt notations of [B—H2]. 

SEMICAPACITY AND THINNESS 

Let us denote by V(X) the collection of all subsets of X, 

Definition. A set function 7 : V(X) —• [0,00] is called semicapacity on X if the 
following conditions hold: 

(i) -y(A) < 7(H), whenever A, B € V(X), A C B\ 
(ii) 7(B) = sup{7(K); K C B, K compact}, whenever B is a Borel subset of X\ 

(iii) 7(M) = inf {7(17); M CU,U open}, whenever M is a subset of X. 

Remark. If c is a Choquet capacity on X, then the corresponding outer capacity 
c* is a semicapacity on X\ for definitions, see e.g. [He], [Brl]. 

Lemma 1. Let E be a subset of X, let (An)n
<L1 be a sequence of Borel subsets of 

X and let 7 be a semicapacity on X. Then there exists a Borel subset B of X such 
that 

y(EnAn) = <y(BnAn) 

for every n £ N. 

PROOF : Proof follows [Ha]. For n,fc € N let Un%k C X be open sets such that 
EnAnC Unik and 

<y(E H An) = inf{7(tfn,*); k € N}. 
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Let Bn = f|,£:i U^k- T h e n B* i s a B o r e l set> -® n An C -On and 

(*) 7(£n.An) = 7(£n). 

Let B == n«t=i(Bn V(x\ An))- Clearly, £ is a Borel set and E C B. Consequently, 
B H An C Bn. Further, 

7(-^n.An)<7(-5nAn)<7(Bn). 

In view of (*), the assertion follows. • 

Lemma 2. Let A be a subset of X. Then there exists a G$ set A' D A such that 

fcA _ f>A' Jttu -= £xu 

for every u € H%(X). 

PROOF : See [B-H2], p.250. • 

Lemma 3. Let E be a subset of X} z € X and let E be thin at the point z. Then 
there exists a Borel subset B of X such that E C B and B is thin at z. 

PROOF : By Lemma 2, there is a G& set B D E such that 

1*u == **% 

for all u 6 H+(X), thus also for potentials; now we can apply the assertion from 
[C-C], p.150. 

• 
Lemma 4. For an arbitrary set E C X and z € X, the following conditions are 
equivalent: 

(i) A is thin at z; 
(ii) A \ {z} is thin at z; 

(iii) i U { : } is thin at z. 

PROOF : See [C-C], p.152. • 

Lemma 5. Let B be a Borel set which is not thin at a point z € B. Then there 
exists a compact subset K of B such that K is not thin at z. 

PROOF : This is a special case of Lemma 5.1 from [B-Hl]. For the convenience 
of the reader, we present a direct proof. Let p be a strict potential and let (VOSILi 
be a sequence of relatively compact open sets such that 

Vn+iCVn and f\Vn = {z}. 
n-sl 

Consider n € N. Then 
p(*) = i^(z) = Af^(*). 



Wiener's test of thinness in potential theory 229 

By [B-H2], p.248, there exists a compact subset Kn of B n Vn such that 

£*"(*)>-<-)-! . 

Take K = \Jn
<L1 Kn U {z}. Clearly K is a compact subset of B and 

* * ( * ) - - * - ) , 

i.e., K is not thin at the point z. 
m 

Notation. For z € X, r €]0,1], let Ar(z) denote a compact set in X such that: 

(i) Ar(z) C A'OO for r < a; 

(") a<r<i ^ r w = {*}• 
For r = 2~~n write An instead of Ar. 

Theorem. Let z € X, let E be an arbitrary subset of X and let 7 be a semicapacity 
on X. Suppose that the following condition holds. 

There exists a sequence of positive numbers (ck(z))%L1 such that 
the following statements are equivalent, whenever F C X is com-

(p) pact: 

(i) F is thin at z; 
(-) EZi^izMFnA^z^Koc. 

Then E is thin at z} if and only if the series 

00 

Y,ck(zh(EDAk(z)) 
*=i 

is convergent 

PROOF : Let E be not thin at z. By Lemma 4, we can assume that z £ E. 
According to Lemma 1, there exists a Borel set B D E such that 

7(EnAn(z))~<y(BnAn(z)) 

holds for every n 6 N. Clearly, B is not thin at z. By Lemma 5, there exists a 
compact set K C B such that K is not thin at z, so according to the condition (P) 
the series 

f)c»(*h(-fnii t(-)) 
fc«l 

is divergent. Since K 0 Ak(z) C B ( 1 Ak(z), we have 

y(K n Ak(z)) < 7 (£ n Ak(z)) = y(E f) Ak(z)\ 
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hence 
oo oo 

J2ck(z)7(KnAk(z)) < Y,ck(zh(EnAk(z)). 
*=i *=i 

Consequently, the series on the right hand side is also divergent. 
Let now E be thin at z. According to Lemma 3, there exists a Borel set B D E 

such that B is thin at z. Choose a sequence of strictly positive numbers (ek)kL1 

such that X^*=i ck(z)ek < oo. Since the set B n Ak(z) is a Borel set, there exists , 
for every k € N, a compact set Kk C B n Ak(z) such that 

7(BnAk(z))<y(Kk)+ek. 

Clearly, the set K = U*=i Kk U {z} is compact and K C B U {z}, i.e., the set K is 
thin at z. By the condition (P), the series 

oo 

J2ck(zh(KnAk(z)) 
*=i 

is convergent. Since E C B, it follows 

-y(E n Ak(z)) < 7 (B H Ak(z)) < 7(K*) + ek< 7 (K 0 Ak(z)) + ek. 

Thus 
oo oo oo 

J2 ck(z)y(E n Ak(z)) < J2 ck(z)y(K n Ak(z)) + £c k ( z )e k l 

*=i *=i *=i 

and the series on the left hand side is convergent because both series on the right 
hand side are convergent. • 

REMARKS 

The Wiener test for regularity in classical potential theory (i.e. for Laplace ope­
rator), was proved in 1924 by N.Wiener, see [W]. In 1944, M.Brelot proved the 
Wiener test of thinness in this case, see [Br2]. The way to an analogous criterion 
in the heat case took more than 50 years. In 1982, a heat analogy of the Wiener 
test for regularity was established in [E—G]. The Wiener test of thinness in the heat 
case was proved in [Brz]. 

If we apply Theorem proved above we get directly the corresponding criterions of 
thinness in the classical as well as in the heat case, because in these situations the 
condition (P) is fulfilled (the condition (P) is, as a matter of fact, a reformulation of 
the criterion of regularity). Thus immediately we get the corresponding assertions 
from [Br2] and [Brz]. 

Theorem can also be applied to parabolic equations with variable coefficients 
considered in [G—L]. 

In Rn+1, n > 1, we consider the second order operator 

^=E|:K^.^)-^. 
I , J = 1 J 
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where (0t,j(#>O)-,i=i,...,n is real symmetric, matrix-valued function on Rn+! with 
C°° entries. We assume that there exists v G]0,1] such that, for every £ £ Rn and 
every ( x , t ) € R n + 1 , 

m2< E^iC^^ei^^iei2. 
t , j=l 

Let HL be the sheaf of all continuously differentiable (twice with respect to 
x\,..., xn and once with respect to t) solutions of the differential equation Lu = 0. 
According to [Ba], p.61, ( R n + 1 , H L ) is a P-harmonic space. It is easy to see that 
the points are polar. The capacity capL is defined in a usual way, see e.g.[G—L], 
capL denotes the outer capacity deduced from the capi,. Let T(x, t; y, s) denote the 
fundamental solution of L. Let us denote (for a given z = (x, t) € R n + 1 , k € N, and 
Ae]o,i[) 

A(x,t;\k) = {(y,s) € Rn + 1 ;(47rAA + 1)"n / 2 > T(x,t]y,s) > (47rAfc)~n/2} U {(*,*)}• 

The validity of the condition (P) with Ck(x,t) - A~*n/2, A €]0,1[, is proved in 
[G—L], We have now: 

Theorem. Let E be a subset o /R n + 1 , let X €]0,1[ and let z = (x,t) € Rn + 1 . Then 
E is L-thin at z, if and only if the series 

J2^kn/2^pl(Ef)A(x,t]\
k)) 

is divergent. 

Similarly, Theorem can be applied to a wide class of degenerate operators con­
sidered in [N-S]. 
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