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Derivations on the restricted Nijenhuis-Schouten 
bracket algebra 

JIŘÍ VANŽURA 

Dedicated to the memory of Zdeněk Frolík 

Abstract. In this paper, we describe all derivations on the restricted Nijenhuis-Schouten 
bracket algebra. This is a graded Lie algebra associated with every C°° - manifold. We 
show that with the one exception, all these derivations are inner. 

Keywords: Nijenhuis-Schouten bracket, graded Lie algebra, derivation 

Classification: 17B40, 17B70, 57R25 

This paper represents a direct continuation of my previous paper [4]. We shall 
investigate here derivations on the restricted Nijenhuis-Schouten bracket algebra 

m - l 

-k5*0 ^ ]C •£•» W-1-0-1 -8 a subalgebra in the Nijenhuis-Schouten bracket algebra 
i=0 

m - l 
L -=- £ L*. The absence of the —1-st component in the restricted algebra requires 
an application of methods different from those used in [4]. 

All structures appearing in this paper are of class C°°. We shall consider a 
connected paracompact manifold M,dimM = m. In contrast to [4], we do not 
assume that M is orientable. Let TM denote the tangent bundle of M, A*TM its 
i-th exterior power, and let us set 

Li -= TA'^TM, - 1 £ i jg m - 1, 

where T is the functor of sections over M. Obviously, Li is a real vector space. 
Further, we set 

Li -* 0 for i < - 1 or t > m - 1. 

We define 

L* £ 1 , . 

Provided with the Nijenhuis-Schouten bracket [,] : L x L -+ L, L is a graded Lie 
algebra. We call it Nijenhuis-Schouten bracket algebra. (For its basic properties see 



184 J.Vanfcura 

e.g. [3], [4]). Now we set 

Lr0=Lt for t ^ - 1 , 

L& = £ Lp. 
is- -OO 

Obviously L*° C L is a subalgebra. We shall call L«° the restricted Nijenhuis-
Schouten bracket algebra. An element a € Lf will be called homogeneous, and we 
shall write |a| = i. 

A derivation of degree k G Z on L*° is a linear mapping D : L=° —*• L-=° such 
that 

(i) DLf C L-+* for every i € 1 
(ii) D[a, 0] = [Da, fl + (-1)*H [a, D/?] 

for any two homogeneous elements a,/5 6 L. 

A derivation D is called local, if it satisfies the following condition: If a £ Lf , 
(7 C M is an open subset, and a|J7 = 0, then Da|Cl = 0. We shall denote by Derf 
the vector space of all local derivations of degree k on L*°. We set 

Der^°= £ Derf . 
fc-s-oo 

As usual, for Di € Der|f and D2 € Derf , we define [Di,D2] € Derj^j by the 
formula 

[D1,D2]-=DlD2-(-l) l f li>2i>l. 

With this operation Der*0 is a graded Lie algebra. The goal of this paper is to 
describe the Lie algebra Der-*0. 

We notice first that any derivation D € Derf is local. Therefore, by virtue of 
the Peetres theorem, D is a Hnear differential operator. 

Proposition 1. Derf0 = 0 for k < 0. 

PROOF : Let D E DerJ* , where k < 0, and let a G Li, 0 _̂  i; ^ m — 1 be arbitrary. 
For any vector field X € L0 we have 

D[K, a] =[DK, a] + [X, Da] = [X, Da] 

( £ x D - D £ x ) a = 0, 
where Cx denotes the Lie derivative with respect to the vector field X. In other 
words, the differential operator 

D : TAi+1TM -+ TAi+*+1TM 

commutes with the Lie derivative with respect to arbitrary X € Lo- (We take 
TA'TM = 0 for j < 0.) Using*[2], we can find easily that D = 0. • 
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Proposition 2. For any derivation D € Der^0 there exist a unique XD € Lo and 
c £ R such that 

Da = CxD <* + ica for a £ Li, 0 = i < m — 1. 

Conversely for any X € Lo a>nd c € R the formula 

Da = £x<* + tea for a € Li, 0 = «'^ m — 1 

defines a derivation D € Derg5 . 

PROOF : Let D 6 Der^ . Obviously D|Lo is a derivation on Lo- I* is w e-l known 
that any such derivation is inner, i.e. there exists a unique XD G Lo such that 
for any X G Lo there is DK = \XD,X). We denote D' = D - CxD- There is 
D' € Derjf0 and D'|L0 = 0. 

For any X € Lo and a G Li, 0 g i £ m — 1 we have 

D'[K,a] = [K,D'a], 

( £ x D ' - D ' £ x ) a = 0. 

Therefore, by virtue of [2], there exist di€R,0 = i < m - l such that for any 
a 6 Li, 0 £ i ^ m — 1 there is 

D'a = dia. 

Considering for any a € Li, P € Lj, 0 = t, j , t + j g m — 1 the equation 

!>'[*,/?] = [!>'«,/?]+ («,!>'/?], 

we find di -f dj = di+i- Now we can easily see that there exists c € R such that for 
any 0 = i £ m — 1 there is di = ic. The rest of the proof is obvious. • 

We shall now start to study a derivation D € Derf5 , where k > 0. We take any 
Li with 0 § t ^ m — 1. For any a 6 Li and X € Lo, we get 

D[K, a] = [DK, a] + [X, Da], 

D£x<* = (ad(DK))a + £x-Oa, 

( £ x £ - DCX)<* = ~(ad(DK))a . 

The last equality shows that the commutator CxD — D£x is a linear differential 
operator of order ^ 1. 

Lemma 3. Let D : TA , + 1TM - • TA i+ fe+1TM, where 0 £ t g m - 1, Jfe > 0, 6c a 
linear differential operator such that for anyX € Lo there is ord (CxD—DCx) = 1-
Then ord D < 1. 

PROOF : Because our considerations have local character we may assume that 
there is r > 1 such that ord D < r. We shall denote by o$ the r-th order symbol 
of a linear differential operator E. • 
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The formula 
(TCxD-DCx ~£x<?D 

together with the assumption ord (£x& ~ L>£x) 5 1 shows that for any X € L0 

there is £x<*D = 0. Obviously 

aD € (SrTM <8> A*+1T*M ® Ai+fc+1TM). 

Let us define a 0-th order linear differential operator 

K : .TA°TM -> T(5rTM <8> A«+1T*M <8> A'+*+1TM) 

by the formula 
K/ = / - * D . 

We find easily that £x<*D = 0 is equivalent with the equality 

£ x K - K £ x = 0 

Using again [2], we get K = 0, and consequently <ro = 0. We have thus shown that 
ord 1> < r — 1. Now we can easily see that ord D < 1. 

So far we have proved that every derivation D € Der^ , k > 0 is a linear differen­
tial operator of order < 1. We shall now denote by &D the first symbol of the first 
order linear differential operator D|Lo ' LQ —> £*. Let x € M, v,u? € TXM and £, 
17 6 T*M be arbitrary. Let K, F € £0, and / ,# € JS—i be such that 

Kx=v, n=-w, / W = 0 ^(ar)=0, 
d / * = ( , d^x = »?. 

We have 

(*) (->f/^,«jl'])* = P(/X),j;Y] , + [/A-,Z)(«,r)]I. 

Using the formula 
£fx<* = / £ x « - K A *df«, 

where * denotes the inner product operator, and which holds for any / 6 L_i, 
X € Lo, and a € I**, we shall calculate both sides of the above equality. 

(D{fX,gY])x = (D(f.Xg.Y - g.Yf.X + fg{X,Y)))z -

= ffDCflfoW-w) - ('DOjXfM-") -
= »K«>W(<!)(«») - CW-ffofoX"). 

{D(fX),gY], - -lffy.O(/jr)], - -(£ fy(U(/A-))), . 
- -(t)£y(0(/X)) - y A i,,g(i?(/Jr)))t . w A .,(<rD(£)(»)), 

[/jr,_»(9r)], = _«, A ..(<rD(,)(u,)). 
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Using (*), we obtain the equality 

v A is(<rD(r))(w)) - u> A tn(<rD(0(v)) 
{ } -««0.*D0?)(«0 + n(vUD(OM = o 

To understand properly this equality, let us consider cochains on the Lie algebra 
gl(V) = V* <8> V, where V = TxMy with coefficients in the gl(V)-module A*+1V. 
The bilinear mapping 

<rD . y* x V - A*+1V 

defined by the formula <rD(£, v) = aD(£)(v), induces a linear mapping (which we 
denote by the same symbol) 

tfD:g-(V)-*A*+1V. 

This shows that we can consider aD as an element from the vector space of cochains 
C-(gl(V), A*+1V). We shall now compute the coboundary SaD. 

(6<rD)(( ® v, rf <8> w) = (£ <g> v)aD(v ®w)-(r)<8) w)aD(£ <g> v ) -
- ^ D ( K ® v, rf <g> u>]) = v A ^(ajpfa <8> w)) - tt> A t»-(<7£>(f ® v)) 

•~<rD(£(w).v ®r)~ rf(v).w <g> f) == t> A 4$(<TD(»?)(«0)~ 

-«> A *,(<JD(0(«)) - f W - ^ X v ) + n(v)-<rD(t)(*>)-
We can now see that (**) can be written in a simpler from 

(6<rD)(£ <S> v, »y ® u>) = 0. 

The gl(V)-module A*+1V is irreducible, which implies that InvA*+1V = {a € 
A*+1F; (VI € gl(V))(/a = 0} = 0. Consequently (see [1}), there is #Hgl(V); 
A*+1V) = 0. Moreover, because InvA*+1V = 0, the coboundary operator 6 : 
C°(gl(V); A*+1V) = A*+1V -> CHgl(V); A*+1V) is injective. Therefore there 
exists a unique element ax € A*+1V = A*+1TXM such that for any t; € TxMf 

f € T*M there is 
<rD(0(v) = «A v^ax. 

It can be easily verified that the family {ax}x$M determines an element a^ € 
TA*+1TM = LK> We have thus proved the following lemma. 

Lemma 4. For tvtry D 6 Derf , k > 0, thtrt exisU a unique element aD € LK 

such that for anyx€M,v€ TXM, ( € T*M thtrt is 

°D(Q(V) ~ v A H<*D' 

Let lis consider now the inner derivation adaD € Derf , k > 0. Obviously the 
restriction 

adaD\I*Q : LQ —t- LK 

is a linear differential operator of order < 1. For ist first symbol we find easily 

<r*daD\tM)(v) ~ v A HQD-
By virtue of the preceding lemma, we can immediately see that 
ord((D-adaD)|£a) = 0. 
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Lemma 5. Let D' € Derjp, k > 0 be such that ord(D'|L0) = 0. Then D'\L0 = 0. 

PROOF : Let X € Lo> and let g £ L-u Y 6 L0 he arbitrary. We get 

0 ~D'[X,gY] - [D'X,gY] - [XtD'(gY)\ = 
=D'(K<jr.r + g[X, Y)) + [gY, D'X] - [K, gD'Y] = 
~Xg.D'Y + gD'[X, Y] + £,y(D'X) - Cx(gD'Y) = 
=K^.D ' r + gD'[X, Y] + gCY(D'X) - r A M,(I>'K)-
- K ^ . D ' r - ^ £ x ( D ' r ) = 
=<7D'[K, r ] + g[Y, D'X] - r A td,(1>'K) - g[X, D'Y] = 
= - r A Idg(D'X). 

But this equality implies D'K = 0. • 

Using the last lemma, we find that for any D € Der f 0, k > 0 there is 

(D - adaz?)|L0 = 0. 

Lemma 6. Let D' € Derp, k > 0 be such that D'\L0 = 0. Then D' = 0. 

PROOF : For arbitrary t > 0 let us consider the linear differential operator Df\Li : 
Li —> .£,+*. For X € L0 and a € Li, we get 

D'[K,a] = [D'X, a] + [K,D'a] = [K,D'a], 

( D ' £ x - £ x D ' ) a = 0. 

Now [2] again gives D' = 0. • 
Applying this lemma we come to the following proposition. 

Proposition 7. Every derivation D € Derf0, k > 0 is inner. 

Proposition 2 shows that 

where 

Der=0=Derl?°'©Der|0", 

D e r ~ ° ' ^ D = adK ;K€Lo}, 

Der|°" = {D; Da = tea for a G L„ 0 < i < m - 1,c € R}. 

The decomposition Der*0 = Derjf0 ©Derf0 © £ Derf0 induces a projection 
*=-

7r: Der -0 —• DOTQ . We can easily see that Der,̂  is a one-dimensional commu­
tative Lie algebra which may be naturally identified with R, and n is a Lie algebra 
homomorphism. Thus we come to the following proposition. 

Proposition 8. The sequence 

O^L^^Der^^R-^0 

is an exact sequence of Lie algebras. 
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